LAUNAFLSÚTJÖFNNUN Í RAFORKUERFI
Högni Haraldsson

Lokaverkefni í rafmagnstæknifræði BSc
2014

Höfundur: Högni Haraldsson
Kennitala: 201086-2139
Leiðbeinandi: Magni Þór Pálsson

Tækn- og verkfræðideild
School of Science and Engineering
Heiti verkefnis:
Launaflsúttjöfnun í Raforkukerfi

<table>
<thead>
<tr>
<th>Námsbraut:</th>
<th>Tegund verkefnis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafmagnstæknifræði BSc</td>
<td>Lokaverkefni í tæknifræði BSc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Önn:</th>
<th>Námskeið:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haust 2014</td>
<td>RT LOK 1012</td>
</tr>
</tbody>
</table>

Ágrip:

Pessi ritgerð fjallar um hvernig best er að útfæra launaflsúttjöfnun í raforkukerfi þar sem hluti kerfisins er lagður í jörðu. Miðast var við að jarðstrengur sem settur er í kerfið sé frá 50 til 90 kilómetra langur.

Höfundur:
Hógni Haraldsson

Umsjónarkennari:
Ragnar Kristjánsson

Leiðbeinandi:
Magni Þór Pálsson

Fyrirtæki/stofnun:
Landsnet.

Dagsetning:
4.12.14

Lykilorð íslensk:
Jarðstrengir,
Launaflsúttjöfnun,
raforkukerfi

Lykilorð ensk:
Underground Cables,
Power systems,
Reactive power compensation

Dreifing:

<table>
<thead>
<tr>
<th>opin</th>
<th>lokuð</th>
</tr>
</thead>
</table>

til:
Formáli

Verkefnið fjaller um hvernig best sé að háatta launaflsútjöfnun í flutningskerfi sem að hluta er lagt sem jarðstrengur. Notast er við hermunarforritið Power World til að herma áhrif þess að leggja jarðstreng sem hluta af raforurkerfi.

Höfundur vill koma á framfæri þókkum til allra þeirra sem að þessu verkefni komu. Sérstakar þakkir fá Magni Þór Pálsson hjá Landsneti og Ragnar Kristjánsson umsjónakennari höfundar fyrir alla þá aðstoð og upplýsingagjöf sem þeir veittu. Einnig fá aðrir kennarar hjá HR sem komu að mínu námi þakkir fyrir fræðandi og skemmtilegt samstarf sínustu þrjú árin.

Að lokum vill höfundur þakka Söndru Óskarsdóttur kærustu sinni fyrir þá þolinmæði og þann stuðning sem hún hefur sýnt yfir námið.

Reykjavík, 4. desember 2014

Högni Haraldsson
Efnisyfirlit

<table>
<thead>
<tr>
<th>Formáli</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myndaskrá</td>
<td>vii</td>
</tr>
<tr>
<td>Töfluskrá</td>
<td>viii</td>
</tr>
</tbody>
</table>

1 Inngangur

1.1 Markmið verkefnis 1
1.2 Uppbygging verkefnis 1

2 Flutningskerfið á Íslandi

2.1 Almennt .. 2
2.2 Uppbygging .. 3
2.3 Framtiðarplön 4

3 Flutningslínur

3.1 Almennt .. 5
3.2 Lýkan háspennulínú 6
3.3 Per Unit kerfið 7
3.4 Styrkur kerfis 8
3.5 Aflflæði .. 9
3.5.1 Raunafl ... 9
3.5.2 Launafl ... 9
3.5.3 Sýndarafl .. 9
3.5.4 Aflstuðull 10
3.6 Spennuþrep 10

4 Jarðstrengir

4.1 Leiðarar .. 12
4.1.1 Kopar ... 12
4.1.2 Ál ... 12
4.1.3 Uppbygging og lögun 13
4.2 Uppbygging háspennustrengs 14
4.3 Jarðvegur .. 14
4.3.1 Varmaviðnám jarðvegs 15
4.4 Lagning háspennustrengs 15
4.4.1 Fyrirkomulag strengja í skurði 15
4.4.2 Tengimúffur 17
4.4.3 Víxlanir leiðara og skerma 18
B Spennugildi á teinum
 B.1 Lína 25 Km - Strengur 50 Km - Lína 25 Km 87
 B.2 Lína 20 Km - Strengur 60 Km - Lína 20 Km 89
 B.3 Lína 15 Km - Strengur 70 Km - Lína 15 Km 91
 B.4 Lína 10 Km - Strengur 80 Km - Lína 10 Km 93
 B.5 Lína 5 Km - Strengur 90 Km - Lína 5 Km 95

C Spennuris í streng
 C.1 Lína 25 Km - Strengur 50 Km - Lína 25 Km 98
 C.2 Lína 20 Km - Strengur 60 Km - Lína 20 Km 99
 C.3 Lína 15 Km - Strengur 70 Km - Lína 15 Km 100
 C.4 Lína 10 Km - Strengur 80 Km - Lína 10 Km 101
 C.5 Lína 5 Km - Strengur 90 Km - Lína 5 Km 102

D Spennuþrep
 D.1 25Km - 50Km - 25Km ... 104
 D.2 20Km - 60Km - 20Km ... 105
 D.3 15Km - 70Km - 15Km ... 106
 D.4 10Km - 80Km - 10Km ... 107
 D.5 5Km - 90Km - 5Km ... 108
7.16 Spennugildi á teinum - Veikt kerfi með auka tein. ... 57
7.17 Spennugildi á teinum - Sterkt kerfi með auka tein. ... 58
7.18 Uppsetning á kerfinu í Power World - 80Km strengur. .. 58
7.19 Spennugildi á teinum - Veikt kerfi - Óleiðrétt. ... 62
7.20 Spennugildi á teinum - Veikt kerfi - Leiðrétt. ... 63
7.21 Uppsetning á kerfinu í Power World - 80Km strengur með auka tein. 63
7.22 Spennugildi á teinum - Veikt kerfi með auka tein. ... 64
7.23 Spennugildi á teinum - Sterkt kerfi með auka tein. ... 64
7.24 Uppsetning á kerfinu í Power World - 90Km strengur. .. 65
7.25 Spennugildi á teinum - Veikt kerfi - Óleiðrétt. ... 69
7.26 Spennugildi á teinum - Veikt kerfi - Leiðrétt. ... 69
7.27 Uppsetning á kerfinu í Power World - 90Km strengur með auka tein. 70
7.28 Spennugildi á teinum - Veikt kerfi með auka tein. ... 70
7.29 Spennugildi á teinum - Sterkt kerfi með auka tein. ... 71
7.30 Hlutfall raunafls af heildar flutningsgetu strengs. .. 74

8.1 Launaflsframleiðsla í streng. ... 79
A.1 Fjarlægð milli fasa. ... 84
B.1 Spennugildi á teinum - Veikt kerfi - Óleiðrétt. ... 87
B.2 Spennugildi á teinum - Veikt kerfi - Leiðrétt. ... 88
B.3 Spennugildi á teinum - Sterkt kerfi - Óleiðrétt. .. 88
B.4 Spennugildi á teinum - Sterkt kerfi - Leiðrétt. ... 89
B.5 Spennugildi á teinum - Veikt kerfi - Óleiðrétt. ... 89
B.6 Spennugildi á teinum - Veikt kerfi - Leiðrétt. ... 90
B.7 Spennugildi á teinum - Sterkt kerfi - Óleiðrétt. .. 90
B.8 Spennugildi á teinum - Sterkt kerfi - Leiðrétt. ... 91
B.9 Spennugildi á teinum - Veikt kerfi - Óleiðrétt. ... 91
B.10 Spennugildi á teinum - Veikt kerfi - Leiðrétt. .. 92
B.11 Spennugildi á teinum - Sterkt kerfi - Óleiðrétt. .. 92
B.12 Spennugildi á teinum - Sterkt kerfi - Leiðrétt. .. 93
B.13 Spennugildi á teinum - Veikt kerfi - Óleiðrétt. ... 93
B.14 Spennugildi á teinum - Veikt kerfi - Leiðrétt. .. 94
B.15 Spennugildi á teinum - Sterkt kerfi - Óleiðrétt. .. 94
B.16 Spennugildi á teinum - Sterkt kerfi - Leiðrétt. .. 95
B.17 Spennugildi á teinum - Veikt kerfi - Óleiðrétt. ... 95
B.18 Spennugildi á teinum - Veikt kerfi - Leiðrétt. .. 96
B.19 Spennugildi á teinum - Sterkt kerfi - Óleiðrétt. .. 96
B.20 Spennugildi á teinum - Sterkt kerfi - Leiðrétt. .. 97

C.1 Spennugildi á teinum - Veikt kerfi með auka tein - Óleiðrétt. 98
C.2 Spennugildi á teinum - Sterkt kerfi með auka tein - Óleiðrétt. 99
C.3 Spennugildi á teinum - Veikt kerfi með auka tein - Óleiðrétt. 99
C.4 Spennugildi á teinum - Sterkt kerfi með auka tein - Óleiðrétt. 100
C.5 Spennugildi á teinum - Veikt kerfi með auka tein - Óleiðrétt. 100
C.6 Spennugildi á teinum - Sterkt kerfi með auka tein - Óleiðrétt. 101
C.7 Spennugildi á teinum - Veikt kerfi með auka tein - Óleiðrétt. 101
C.8 Spennugildi á teinum - Sterkt kerfi með auka tein - Óleiðrétt. 102
Töfluskrá

3.1 ABCD breytur fyrir flutningslínur [4], bls.258. 7
5.1 Útreiknuð gildi fyrir fræðilega kritíska lengd 24
6.1 Upplýsingar um skilyrði á Íslandi. 26
6.2 Grunnupplýsingar um streng 27
6.3 Niðurstöður viðnámsútreikninga. 27
6.4 Grunnupplýsingar um línu 28
6.5 Niðurstöður RLC útreikninga fyrir loftlínu. 28
6.6 Samanburðurður á launaflsframleiðslu. 30
6.7 Samanburður á spennugildum. 30
7.1 Upplýsingar um p.u. gildi jarðstrengs. 32
7.2 Upplýsingar um p.u. gildi loftlínu. 33
7.3 Veikt kerfi - Fullt álag [375 MVA] 39
7.4 Veikt kerfi - Meðal álag [200 MVA] 39
7.5 Veikt kerfi - Lítið álag [50 MVA] 39
7.6 Veikt kerfi - Opinn endi [0 MVA] 40
7.7 Sterkt kerfi - Fullt álag [375 MVA] 40
7.8 Sterkt kerfi - Meðal álag [200 MVA] 40
7.9 Sterkt kerfi - Lítið álag [50 MVA] 40
7.10 Sterkt kerfi - Opinn endi [0 MVA] 41
7.11 Veikt kerfi - Fullt álag [375 MVA] 72
7.12 Veikt kerfi - Meðal álag [200 MVA] 72
7.13 Veikt kerfi - Lítið álag [50 MVA] 72
7.14 Veikt kerfi - Opinn endi [0 MVA] 72
7.15 Sterkt kerfi - Fullt álag [375 MVA] 73
7.16 Sterkt kerfi - Meðal álag [200 MVA] 73
7.17 Sterkt kerfi - Lítið álag [50 MVA] 73
7.18 Sterkt kerfi - Opinn endi [0 MVA] 73
7.19 Veikt kerfi - $U_{p.u.}$ á teinum T2-T5 við mismunandi álag. 75
7.20 Sterkt kerfi - $U_{p.u.}$ á teinum T2-T5 við mismunandi álag. 76
8.1 Heildar launaflsútreikningu við hvert tilfelli. 78
8.2 Launaflsframleiðsla strengs. 78
A.1 Niðurstöða RLC útreikninga fyrir loftlínu. 84
A.2 Niðurstöða viðnámsútreikninga. 85
Kafli 1

Inngangur

Í þessu verkefni er markmiðið að skoða útfærslu og rekstur á flutningskerfi sem að hluta til er lagt í jörðu. Ákveðið var að hafa flutningskerfið um það bil 100 km langt og rekið á 220 kV spennu. Lengdin sem áætluð er að lögð verði í jörðu er 50-80 km. Skoðað verður sérstaklega hvernig best er að útfæra launaflsútfjöfnun þegar hennar er þörf við mismunandi aðstæður í kerfinu. Einnig verður skoðað hvernig og hvaða áhrif slík útjöfnun hefur á flutningsgetu og almennan rekstur á slíku flutningskerfi.

1.1 Markmið verkefnis

Ákveðið var í samráði við Magna Þór Pálsson hjá Landsneti og Ragnar Kristjánsson umsjónakennara að einblína á launaflsútfjöfnunina sem slíka og útfærslu hennar. Þegar jarðstrengur er settur inn í flutningskerfi hefur hann þau áhrif að spenna í kerfinu hækkar töluvert. Lengd strengsins sem settur er í kerfið skiptir höfuð máli þegar horft er á launaflsframleiðslu og þar af leiðandi aður nefnda spennuhækkun. Markmiðið er að finna betri útfærslu á launaflsútfjöfnun þegar þessari lengd er náð.

1.2 Uppbygging verkefnis

Flutningskerfið á Íslandi

2.1 Almennt

Mynd 2.1: Flutningskerfið á Íslandi árið 2014 [2].
2.2 Uppbygging

Í flutningskerfi Landsnets eru um 3.200 km af háspennulínum, bæði í lofti og í jörðu. Hið svokallaða meginflutningskerfi sé kalla má meginæð raforkuflutnings í landinu er um 2.000 km. Meginflutningskerfið tengir saman vinnslu og notkun, einnig almenna notkun svæðisflutningskerfa eða stórnotenda sem tengdir eru beint inn á kerfið á hærri spennum. Meginflutningskerfinu er skipt niður í 8 landssvæði: Höfuðborgarsvæði - Vesturland - Vestfirðir - Norðurland - Norðausturland - Austurland - Suðurland [1]. Sjá má þessa skiptingu á mynd 2.2

Mynd 2.2: Meginflutningskerfið árið 2014 landssvæðaskipt [1].
2.3 Framtíðarplön

Í kerfisáætlun Landsnets hefur komið fram sú tillaga að leggja svokallaða Sprengisandslínu þvert yfir hálendi Íslands, á milli Hofsjökuls og Vatnajökuls. Miklar vangaveltur hafa skapast um þessa tengingu, þar ber hæst umræðan um sjónræn áhrif ef kerfið er eingöngu byggt sem loftlína, en mikil náttúrufegurð er á þessu svæði. Lagning jarðstrengs er því mikið í umræðunni, en hugmyndin er sú að leggja hluta kerfisins í jörðu. Sjá má á mynd 2.3. hvernig framtíðar flutningskerfið gæti litið út. En á myndinni má sjá hvar möguleg tenging byggðarlínunnar yfir Sprengisand er á milli Hofsjökuls og Vatnajökuls.

Mynd 2.3: Næsta kynslóð flutningskerfis [2].
Flutningslínúr

3.1 Almennt

Flutningskerfið er að mestu leyti byggt upp á loftlínúnum. Þessum háspennulínúnum fylgir mikið umhverfisrask, en þegar keyrt er um þjóðvegi landsins má sjá ýmsar gerðir af möstrum. Mörgum þykir miljó sjónmengun stafa af sílkum möstrum, enda geta þau staðið margi metra upp í loftið. Burðarvirki háspennulínna er annaðhvert úr timbri eða stáli, með eða án sérstakra undirstaðna. Þegar byggingarefni burðarvirkis er ákveðið íðar gert með þilliti til spennugildis línunnar, en eins eru aðrar forsendur teknað með í reikninginn, t.d. vindur og ísing. Til dæmis má nefna að 220 kV möstur eru nær undantekningarlaust byggð úr stáli og eru á steyptum undirstöðum. Neðan úr þessum möstrum hanga einangrarar sem eru úr efni sem leiðir illa rafmagn, svo sem gleri og postulíni. Í einöngrunum hangir svo vír sem leiðir rafmagnið, nú til dags er vírinn úr einhverskonar álblöndu en hér áður fyrir var meira um að kopar væri notaður.

Þegar hæð mastra er ákveðin er fyrst og fremst tekið mið af því hvert spennugildi línunnar er. Aðrir mikilvægir hlutur háspennulínun, að ofantöldu undanskildu, sem vert er að nefna eru upphengjubúnaður, stagbúnaður sem styrkir burðarvirkioð, jarðskaut sem jarðtengja möstrin og jarðvírar sem oftast eru staðsettir efst á burðarvirkinu og verja línuna gegn eldingum. Helgunarsvæði, sem einnig er nefnt byggingarbangsvæði er meðfram háspennulínunum, á þessu svæði er með öllu óheimilt að reisa mannvirki. Stærð svæðisins ræðist algjörlæga af spennugildi línunnar, en almennt gildir að því hærri sem spennan er, því breiðara er helgunarsvæðið [3]. Mynd af helgunarsvæðinu miðað við spennugildi má sjá á mynd 3.1.
3.2 Líkan háspennulínu

Hægt er að lýsa flutningslínum með π líkani eins og sjá má á mynd 3.2.

Mynd 3.2: π líkan fyrir háspennulínu [4].

1e.Shunt admittance
2e.Series impedance
\[V_S = AV_R + BI_R \, [V] \] (3.1)

\[I_S = CV_R + DI_R \, [A] \] (3.2)

\[Z = zl = (R + j\omega L) * l \] (3.3)

\[Y = yl = (G + j\omega C) * l \] (3.4)

Líkönum fyrir háspennulínur er gjarnan skipt upp í þrjá flokka og ráðast þeir af lengd þeirra. Stuttar línur eru styttri en 80 km., meðal langar línur eru frá 80 - 250 km., og langar línur eru frá 250 km og upp úr.

Í töflu 3.1 má sjá samantekt á ABCD breytum fyrir flutningslínur. Lengsta línan á Íslandi er um 171 km, nálga má þá spennu- og straum gildi fyrir allar línur á Íslandi með π líkani fyrir stuttar eða meðal langar línur.

<table>
<thead>
<tr>
<th>Breytur</th>
<th>A=D</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einingar</td>
<td>per Unit</td>
<td>Ω</td>
<td>S</td>
</tr>
<tr>
<td>Stuttar línur(styttri en 80 km)</td>
<td>1</td>
<td>Z</td>
<td>0</td>
</tr>
</tbody>
</table>
| Meðal langar línur (80 til 250 km) | \(1 + \frac{YZ}{2}\) | Z | \(Y\left(1 + \frac{YZ}{4}\right)\)

3.3 Per Unit kerfið

Gildi í raforkukerfum eins og spenna, straumur, afl og viðnám eru oft táknuð í per unit (pu) eða sem prósentta af ákveðinni grunnstærð. Kostur þess að nota per unit kerfið er sá að hægt er að einfalda jafngildismyndir fyrir raforkukerfi til muna, þá sérstaklega kerfi sem inniheldur mörg spennustig. Per unit gildin fyrir spennu, straum, afl og viðnám breytast ekki þó svo þau séu færð á milli for- og eftirvafs spenna. Þetta einfaldar mjög útreikninga á stórum kerfum og minnkar einnig líkurnar á reiknisskekkjum. Til þess að reikna per unit gildi er notuð eftirfarandi jafna:

\[\text{per – unit} = \frac{\text{Raungildi}}{\text{Grunngildi}} \] (3.5)

Þar sem actual quantity er raungildið og base value of quantity er grunngildið. Per unit er einingarlaus stærð þar sem bæði raun- og grunngildin hafa sömu einingar.
Þegar grunngildi eru reiknuð út er yfirleitt notast við ákveðin grunngildi fyrir spennu í kV og málafl í MVA, algengt viðmið er 100 MVA fyrir málafl. Algengt er að notast við grunngildi spennu út frá ákveðnum tein í raforkukerfinu, og reiknast þá aðrar spennur í kerfinu sem hlutfall af spennu þessa teins. Grunngildin eru reiknuð með eftirfarandi jöfnunum [4]:

\[
I_{\text{base}} = \frac{S_{\text{base}1\phi}}{V_{\text{base}LN}}
\]
\[\text{(3.6)}\]

\[
Z_{\text{base}} = R_{\text{base}} = X_{\text{base}} = \frac{V_{\text{base}LN}}{I_{\text{base}}} = \frac{V_{\text{base}LN}^2}{S_{\text{base}1\phi}}
\]
\[\text{(3.7)}\]

\[
Y_{\text{base}} = G_{\text{base}} = B_{\text{base}} = \frac{1}{Z_{\text{base}}}
\]
\[\text{(3.8)}\]

\[
S_{\text{base}1\phi} = \frac{S_{\text{base}3\phi}}{3}
\]
\[\text{(3.9)}\]

\[
V_{\text{base}LN} = \frac{V_{\text{base}LL}}{\sqrt{3}}
\]
\[\text{(3.10)}\]

Þar sem \(V_{\text{base}LN}\) er fasaspennan og \(V_{\text{base}LL}\) er línuspennan.

3.4 Styrkur kerfis

3.5 Aflflæði

3.5.1 Raunafl

Raunafl er það afl sem eyðist í raunviðnámi R. Raunafl flæðir allt af rafala til álags og umbreytist þar í aðra orku til dæmis hita. Raunafl er táknað með P og hefur einguna watt [W]. Þegar raunafl er reiknað er jafna 3.11 notuð, þar sem V er rms gildi spennu yfir álag og I er rms gildi straums í gegnum álagið, δ er horn spennunar og β er horn straussins [4].

$$P = VI_R = V I cos(\delta - \beta) \ [W] \ (3.11)$$

Þegar um hreint raúnálag er að ræða er mismunur hornanna δ og β enginn og er aflíð því reiknað með jöfnu 3.12.

$$P = VI_R = \frac{V^2}{R} = I_R^2R \ (3.12)$$

3.5.2 Launafl

Launafl er það afl sem eyðist í spanviðnámi X_L eða rýmdarviðnámi X_C. Launafl flæðir fram og til baka frá rafala til álags. Jákvætt gildi bylgjunar er það afl sem flæðir til rafala, neikvæða gildið er það afl sem flæðir frá álagi til rafals [5]. Launafl er táknað með Q og hefur einguna volts ampere reactive [Var]. Til þess að reikna launafl er notuð jafna 3.13 [4].

$$Q = VI_X = VI sin(\delta - \beta) \ [var] \ (3.13)$$

3.5.3 Sýndarafl

Sýndarafl er heildarafl í kerfi sem inniheldur álag sem tekur bæði raun- og launafl. Sýndarafl er táknað með S og hefur einguna volts ampere [VA]. Þegar sýndarafl er reiknað er jafna 3.14 notuð, þar sem V er rms gildi spennu yfir álagið og I^* er rms gildi samoka straums sem rennur í gegnum álagið [4].

$$S = VI^* = [V \angle \delta][I \angle - \beta] \ (3.14)$$

Tvinngilda framsetningu sýndarafls má sjá á jöfnu 3.15.

$$S = VI^* = VI cos(\delta - \beta) + jVI sin(\delta - \beta) \ [VA] \ (3.15)$$
3.5.4 Aflstuðull
Aflstuðull, AS eða PF \(^3\) er hlutfall raunafls af sýndarafli. Hægt er að reikna stærð aflstuðulins út frá mynd 3.3. Í þríhyrningnum er launaflið \([Q]\) þverhluti, en það getur bæði tekið tillit til spólu- \([Q_L]\) og þetta áhrifa \([Q_C]\). Raunaflið \([P]\) er raunhluti og sýndaraflið \([S]\) er langhliðin [5].

![Diagram](image)

Mynd 3.3: Afl þríhyrningurinn [5].

Hægt er að reikna aflstuðulinn út með jöfnu 3.16.

\[
PF = \cos(\phi) = \frac{P}{S} \tag{3.16}
\]

\[
S = \sqrt{P^2 + Q^2} \tag{3.17}
\]

3.6 Spennufrep
Samkvæmt reglugerð um gæði raforku og afhendingaröryggi skal spennufrep við inn- eða útleysingu ekki vera meira en eftirfarandi:

- Prep sem geta orðið á klukktíma fresti eða oftar skulu ekki vera meira en nemur 2, 0% fyrir 35 kV eða hærre, og 3, 5% fyrir minna eða jafnt og 35 kV.

- Prep sem geta komið allt að fjórum sinnum á sólahring mega vera allt að 5, 0% fyrir 35 kV eða hærre, og 5, 0% fyrir minna eða jafnt og 35 kV.

- Árstíðabundin þrep skulu ekki vera meiri en sem nemur 5, 0% fyrir 35 kV eða hærre, og 8, 0% fyrir minna eða jafnt og 35 kV [6].

\(^3\)e. Power Factor
Til að reikna spennþrepið við innsetningu strengs eða spólu/þéttis er jafna 3.18 not-uð.

\[\Delta U(\%) \simeq \frac{\Delta Q}{S_{cc}} \times 100\% \]

(3.18)

Þar sem \(Q_L \) er stærð spólu og \(S_{cc} \) er skammhlaupsaflíð á þeim stað sem inn- eða út-leysing fer fram. Ef að um þétti væri að ræða væri \(Q_L \) skipt út fyrir \(Q_C \).
Kafli 4

Jarðstrengir

4.1 Leiðarar

Leiðarinn í kapalkjarnanum getur haft mismunandi uppbyggingu og lögun. Hver gerð hefur mismunandi eiginleikar, til dæmis þyngd, beygjuradíus og flutningsgetu, allt eru þetta eginleikar sem taka þarf tillit til við val á leiðara. Efni leiðarans er alltaf kopar eða ál. Valið milli kopars og ál veltur á nokkrum atriðum, þar má helst nefna þörfina fyrir flutningsgetu, kostnað við leiðaraval, töp vegna AC viðnáms, styrk efnis og þyngd osfrv. Eitthvað eitt atriði er þar með ekki nóg til að ákvarða hvort velja á kopar eða ál, það fer eftir aðstæðum hverju sinni, en það er metið í hvert sinn sem leggja á jarðstreng [7].

4.1.1 Kopar

Kopar er tiltölulega þungur málmur með eðlismassa 8,94 g/cm3. Þetta þyðir að strengir með koparleiðara eru mjög þungir, sem er ókostur þegar kemur að því að útvega strenginn í ákveðnum lengdum. Kopar hefur hins vegar lágt eðlisviðnám eða 0,0175 $\mu\Omega*m$ sem leiðir til hærri flutningsgetu vegna minni tapa í leiðarum sé miðað við álleiðara í sömu stærð. Koparleiðari getur verið gegnheill upp að 300 – 400 mm2. Verðið á kopar hefur aukast mikið á undanförnum 7-8 árum og er það mjög breytilegt, sem þyðir að það geta orðið miklar breytingar á verði frá söluaðilum [7].

4.1.2 Ál

Ál hefur hærra eðlisviðnám en kopar eða 0,0282 $\mu\Omega*m$ og þar af leiðandi hærri töp en kopar. Vegna þess hvert mikill verðmunur er á kopar og áli, eru flestir nýir jarðstrengir sem lagðir eru með álleiðara. Ál hefur einnig þann kost fram yfir kopar að það er mun léttara, með eðlismassann aðeins 2,70 g/cm3. Sökum þess hversu álið er létt, er auðveldara að koma því í meiri lengdir á þar til gerðum kapal keflum, sem er kostur
þegar leggja þarf langan streng. Áleðarárinn getur verið gegnheill leiðari allt upp að 2000 mm² [7].

4.1.3 Uppbygging og lögun

Kjarni jarðstrengs er í grunninn byggður úr ál- eða koparþráðum, fjöldi, stærð og lögun getur verið mismunandi frá streng til strengs. Leiðurunum getur verið skipt niður í fjóra flokka; gegnheill leiðari ¹, leiðari sem byggður er upp á mörgum þráðum ², prófil leiðari ³ og sneið leiðari ⁴. Sjá má þessar útfærslur á mynd 4.1 [7].

Mynd 4.1: Mismunandi uppbygging leiðara [7].

¹.e.Round conductor single strand
².e.Stranded round conductor
³.e.Profile wire conductor
⁴.e.Segmental conductor
4.2 Uppbygging háspennustrengs

Háspennustrengur sem lagður er í jörðu getur innihaldið þrjá einangraða leiðara sem pakkaðir eru saman í strengjakápu, eða strengurinn getur verið þrýr óháðir strengir með einum leiðara hver, svokallaður einleiðari. Uppbygging strengjanna er sú sama. Nokkrar gerðir af einangrun háspennustrengja hafa verið notaðar í gegnum tíöina og ber þar helst að nefna:

- **Vökvaflyttir strengir:** Slíkir strengir eru einangraðir með pappír sem er gegnbleyttur með olíu og er vafinn utan um koparleiðarann. Stál eða kopar bandi er vafið utan um einangrunina til að styrkja pappírinn og viðhalda þráðingum á vökvanum. Blý- eða álskerming er utan við þetta og þar á eftir er ytra lag úr plasti sem kemur í veg fyrir tæringu.

- **Plasteinangrun (XLPE):** Próunin í jarðstrengjamállum hefur gert það að verkum að vökvaflyttir strengir eru nú að víkja fyrir XLPE einangruðum strengjum. Í þessum núþíma strengjum er leiðarin einangraður með pólýetýlen efni, en það er sterkt gerviefni sem notað er t.d í röralagn og umbúóir. Með því að fjarlægja vökvan ûr einangrun strengja er verið að auðvelda alhliða smíði á jarðstrengjum. XLPE strengir krefjast minna viðhalds og það er enginn auka vökuvánaður sem þarf að vakta og stýra. XLPE einangraðir strengir hafa verið notaðir frá árinu 1960 og eru slíkir strengir lang mest notaðir í núþíma jarðstrengslögnum.

- **Gas einangraðar línur/strengir:** Annar möguleiki við einangrun á strengjum er sá að nota gaseinangrun(GIL)⁵. Áleiðari er styrktur og einangraður í þéttum rörum. Hægt er að leggja slik rör ofanjarðar, í lagnaskurði og þar til gerð lagnagöng. Nitrógen / Brennisteins hexafluórið (SF6) gas undir þríthingi, er notað til að viðhalda einangrun í rörunum. Kosturinn við að nota gas til einangrunar er sá að flutningsgeta strengja verður meiri og kostnaðurinn við tengibánað(tengimúffur) á enda strengs verður lægri, sé miða við önnur einangrunarefni [8].

4.3 Jarðvegur

Raforkan sem tapast í jarðstrengjum($T^2 \ast R$) breytist í varmaorku sem hitar upp strenginn. Varminn sem myndast í strengnum fer í gegnum einangrun og kapu strengsins út í jarðveginn. Jafnvægi myndast í varmaflutningi við stöðugar flutning í strengnum, við þetta streymir varminn í gegnum jarðveginn umhverfis strenginn. Algengt hitastig á leiðara jarðstrengs er 65°C og er hitastig kapu strengsins um 15 – 20°C lægra. Flutningsgeta strengja er yfirleitt miðuð við að flutningurinn leiði til þess að hitastigið sé, xxx

⁵Gas Insulated Lines
eins og áður var nefnt 65°C. Staðreynind er sú að ef jarðvegurinn umhverfis strenginn hefur lélega varmaleiðni sem leiðir til aukinnar hitamyndunar þá lækkar það flutningsgetu strengsins, og að sama skapi ef varmaleiðnin í Jarðstrengin er góð, hækkar það flutningsgetu strengins. Hitamyndun eða ofþornun strengja getur ýtt af stað keðjuverkun sem í versta falli getur endað í skemmdum á einangrun strengsins.

4.3.1 Varmaviðnám jarðvegs

Varmaleiðni jarðvegs og fyllingarefna umhverfis strenginn er mjög mikilvægur þáttur við ákvörðun á flutningsgetu strengsins. Hitamyndun í jarðstreng er veruleg og því er mikilvægt að ná náasta umhverfi við strenginn leiði hitann vel í burtu. Gerð þess efnis sem lagt er með strengnum þarf að hafa rétt rakainnihald, rétt kornastærð og dreifing kornastæðar er mikilvæg. Sandur er í flestum tilfellum notaður til að leggja meðframt strengnum. Til að meta eiginleika jarðvegs á að leiða varma er notað svokallaða varmaviðnám, en það segir til um móti þóðu jarðvegsins gagnvart varmaflæði. Mjög algengt er að miða við að varmaviðnám sandsins eða jarðvegsins sem lagður er umhverfis strengi sé 1,2 Km/W (Kelvin metrar / Watt). Á Íslandi hafa verið gerðar mælingar og rannsóknir á jarðveginum og benda þær til að hér á landi séu aðstæður töluvvert lakari en í öðrum löndum, en varmaviðnámíði sem mælir hefur í jarðvegnum á Íslandi er um 1,5 Km/W. Sé horft til annara landa varðandi varmaviðnám í jarðvegi, má náfr að í Danmörku er varmaviðnám sandsins þar 0,7 Km/W sem telst vera mjög gott. Mikilvægt er því að kanna þann jarðveg sem fyrir er á því svæði þar sem fyrirhugað er að leggja jarðstreng. Ef þörf er að skipa um jarðveg er mikilvægt að bera saman kostnaðinn við að flytja nýjan jarðveg á staðinn, að móti því að stækka strenginn til að forðast ofhitun. Með því að nota stærri streng, því minni hitamyndun verður í honum [9].

4.4 Lagning háspennustrengs

4.4.1 Fyrirkomulag strengja í skurði

Í þriggja fasa kerfi er möguleiki á að leggja jarðstreng á mismunandi hátt. Dæmigerðar uppstillingar eru, strengir lagðir í þréhyrning (e.trefoil) og strengir lagðir í plan (e.flat formation).

- Strengir lagðir í plan (e.flat formation): Þetta er algengasta aðferðin við lagningu á háspennustrengjum. Hún hentar vel þar sem hitalosun er mjög góð, sem gerir það að verkum að flutningsgeta strengjanna eykst. Þegar strengir eru lagðir í plan, eru þeir lagðir í skurð, ofan á sírka 10 cm þykkta lag af sandi, strengirnar liggja á bilinu 1,2 – 1,4 metra dýpi. Með því að lengja bilið milli strengja
eykur það varmaflutning, en það hefur einnig í för með sér að spanaði straumur-inn í kapalskermingunni hækkar, sem gerir það svo að verkur að flutningsgeta strengsins minnkar. Strengir sem eru 220 og 400 kV leggjast með 0,075 – 0,4 metra millibili. Þeir strengir sem lagðir eru í plan, eru annaðhvort með skerminguna krosstengda eða tengda í annann endann, en nánar er farið í víxlanir á skermingu í næsta kafla [7].

Mynd 4.2: Skurður fyrir strengi sem lagðir eru í plan [10].

- Strengir lagðir í þríhyrning (e.trefoil): Strengir sem lagðir eru í þríhyrning hafa þrigga fasa samhverfa uppbyggingu með líttillí fjarlægð á milli hvers og eins leiðara. Með þríhyrningslagningu er verið að lágmarka spanaða strauminn eða spennuna í kapalskermingunni. Þétt þríhyrningsuppstilling þýðir að hitalosun strengjana verður stóri, þar sem hitinn sem myndast í strengjunum leiðir út í hvern annan og með því takmarkast flutningsgeta strengjanna. Til að draga úr hitaáhrifum milli strengjanna er fjarlægðin milli þeirra aukin, en við það spanast upp straumur og spenna í kapalskermingunni sem sömuleiðis eykst í takt við aukna fjarlægð milli strengja. Þríhyrningsuppstilling með auka bili í miðju strengjana gerir það að verkur að vinnuaðstæður við lagningu strengsins verða erfiðari og flóknari, einnig eykur það óvissu um bil milli strengja. Leggja á strengina þétta saman og á bottninn í skurðinum ofan á sírka 10 cm þykkan sand, þar að segja, strengirnir liggja á um það bil 1,2 metra dýpi. Kostur þess að leggja strengina saman í þéttan þríhyrning er sá að segulsviðið minnkar. Þessi uppsetning er aðallega notuð fyrir 33 til 132 kV strengi og er að mestu leyti notuð í þéttbyli. Ókostirnir eru þeir að uppsetningin er flóknari og dýrari [7].
4.4.2 Tengimúffur

Sérstakar tengimúffur eru notaðar við samsetningu strengja. Strengir geta verið afgreiddir í lóngum lengdum, en leitast er eftir því að hafa samtengingar með múffum eins fáar og mögulegt er sökum þess hversu há bilanatíðnin er í þeim. Þegar strengur er tengdur saman með tengimúffu eru leiðararnir bræddir saman með því að kveikja í blöndu af málmi og púðri. Samtenging leiðaranna er síðan pússuð níður þannig að hún passi við þvermál leiðaranna, mjög mikilvægt er að samtengingin sé nákvæmlega eins að þvermáli og leiðararmir því annars er hætta á mikill hitamyndun þegar strengurinn er rekinn á miklu álægri. Mjög mikilvægt er að samtengingarnar séu gerðar undir ströngu eftirliti og í þurru og ryklausu umhverfi.
4.4.3 Víxlanir leiðara og skerma

Þegar ákvörðun um það hvort strengur sé lagður í plan eða þríhyrning veltur á nokkrum atriðum, eins og hvernig skermingin er tengd saman, stærð strengja og hversu mikró pláss er við lagningu strengjanna í jörðu. Tap mun myndast í strengnum og skiptir þá máli hvernig skerming strengsins er tengd. Tapið veltur medal annars á straumnum sem flædir í álskermingu kapalsins. Með því að minnka eða eyða þessum straum í skermingunni með mismunandi tengingum, er hægt að auka álagstrauminn sem er hámarksstraumurinn sem kerfið getur flutt. Tengibox ⁶, er rafmagnsfæðilega eitt af nauðsynlegustu hlutunum þegar kemur að víxltengingu háspennustrengja. Tengiboxin eru notuð í tengibrunnnum til að veita auðveldan aðgang að skermnum með það að markmióð að framkvæma prófanir. Tengikerfið ⁷ í háspennukerfi er hannað þannig að skermingar strengjanna eru tengdar og jarðbundnar með yfirspennuvara ⁸ með það að markmióð að eyða eða minnka hringstrauma sem myndast í skermingu strengsins.

Tengingarnar á skermingu strengsins eru mismunandi og má sjá hverjar þær eru hér fyrir neðan:

• Annar endinn tengdur (e.Single-point bonding): Skermur er einungis tengdur í annan endann ef aðstæður eru þannig að kápa strengsins útvegar enga leið fyrir hringstrauminn né skammhlaupsstrauminn. Í þessu tilfelli mun spenna spanað milli skerminga aðliggjandi fasa, einnig spanast spenna milli kápunnar og jarðar en enginn straumur mun flæða. Spennan sem spanast er í hlutfalli við lengd strengsins og straum hans. Kostir við að nota þessa aðferð eru þeir að enginn hringstraumur myndast og engin hitamyndun verður í strengnum vegna straums í skermi, en það verður allt af hitamyndun vegna straumsins í leiðaráram. Helstu ókostir við þessa aðferð eru þeir að stöðug spenna er á endanum sem er ójarðtengdur. Þessi aðferð er hentug fyrir strengi sem eru styttri en 500 m. Tengimynd má sjá á mynd 4.4 [8].

⁶e.link box
⁷e.bonding system
⁸e.sheath voltage limiters
Kafli 4. Jarðstrengir

4.4. Lagning háspennustrengs

Mynd 4.4: Tengimynd þar sem annar endi skermsins er tengdur til jarðar, hinn tengdur við yfirspennuvara [8].

- Báðir endar tengdir *(e. Both-ends bonding)*: Skermur er tengdur í báða enda ef aðstæður eru þannig að kápa kapalsins greiðir leið fyrir hringstrauminn við eðlileg- ar aðstæður. Þetta er einfaldasta og mest notaða aðferðin. Skerming strengsins er jarðbundin í báða enda til að eyða spönuðu spennunni. Kostir við þessa aðferð eru þeir að stöðuga spennan er mjög lág, aðeins örfá volt á endanum. Einnig er þessi aðferð hagkvæmust ef hitamyndun í strengnum er ekki aðalatriðið, en segja má að það sé líka galli við þessa aðferð að ef hitamyndun strengsins er of mikil getur það haft áhrif á flutningsgetu hans og töpin í honum verða meiri. Skipta þýrfi því strengnum út fyrir stærri streng eða minnka flutningsgetu hans. Þetta er hentug aðferð fyrir strengi sem eru lengri en 500 m. Tengimynd má sjá á mynd 4.5 [8].

Mynd 4.5: Tengimynd þar sem báðir endar skerms eru tengdir til jarðar [8].

![Mynd 4.6: Krossbinding skerma](image-url)
4.4.4 Samanburður á loftlínu og jarðstreng

Launaflsframleiðslan sem fram fer í jarðstreng telst til ókosta, í loftlínu er þetta ekki vandamál. Loftlínan framleiðir að vísu launafl, en það er svo lítið að það hefur ekki áhrif á flutningsgetu kerfisins. Jarðstrengurinn framleiðir um 20-50 sinnum meira launafl heldur en loftlínan.

Til að átta sig betur á muninum á loftlínu og jarðstreng verður tekið stutt sýnídæmi um launaflsframleiðslu strengs miðað við línu, en sjá má dæmið í kafla 6.5.
Kafli 5

Launaflsúttjöfnun

Jarðstrengur er í raun eins og stór þéttir, þar sem líta má á skermingu og leiðarann sem tvö rafskaut sem aðskilin eru með einangrun strengsins. Vegna hærri rafstuðuls í einangruninni er rýmdin mun meiri í jarðstreng en í loftlínu. Þiðstraumskerfi sem inniheldur jarðstreng, hefur í för með sér mikla framleiðslu á launafli sem getur orsakað fjölda tæknilegra viðfangsefna [7].

5.1 Strengur í tómgangi

Á mynd 5.1 má sjá jafngildismynd fyrir strenginn, en honum er lýst með svokölluðu pi-módeli (π-model) [7] sbr. kafla 3.2.

\[
V_r = \frac{V_s}{1 - \frac{\omega^2 LC}{2}}
\]

(5.1)

Spennuhækkun í streng er mest þegar strengurinn er álaglas, þar að segja í tómgangi. Þessi áhrif eru köllað Ferranti áhrifin. Ferranti áhrifunum er lýst með jöfnu 5.1.

1 e_permittivity
endans og ω er tíðni kerfisins í rad/sek. Ef teiknuð er vísumynd til að lýsa jöfnu 5.1 verður hún eins og sjá má á mynd 5.2.

Mynd 5.2: Vísumynd út frá jöfnu 5.1.

Gildi spennunar sem hækkar í strengnum er í hlutfalli við lengd strengsins sem og stærð rýmdar- og launviðnáms hans.

Með jafngildismynd 5.1 má útkráta spennurisið í strengnum vegna launstraumsins með aðstoð vísumyndar. Sjá mynd 5.3. Jafna 5.1 sleppir R, þess vegna er mynd 5.2 frábrugöin mynd 5.3.

Mynd 5.3: Vísumynd [7].

Gera má ráð fyrir að strengnum sé séð fyrir spennu frá spennustöð með fóstu spennugildi og gert er ráð fyrir að ekkert álag sé til staðar. Við þessar aðstæður er hámarks leyfilega spennurisið í strengnum skilgreint með eftirfarandi jöfnu.

$$\Delta U = U_{\text{max}} - U_{\text{efra}}$$ (5.2)

Þar sem U_{max} er mesta leyfilega spenna, $+10\%$ og U_{efra} væntigildi efra spennugildis, eða rekstrarspenna kerfis á sendienda strengsins (1.0 p.u.).

5.1.1 Hvenær er þörf á útjöfnun?

er að setja inn í kerfi áður en þörf er á launaflsútljófnun. Þegar kritísku lengdinni er náð er spennan komin að þeim mörkum sem reglugerðin um gæði og afhendingu raforku kveður á um. Hægt er að útskyra þessa kritísku lengd að nokkur leyti með mynd 5.4. En þar sést hvernig spennan ráð við aukna lengd strengs. Þegar spennan hefur náð \(U_{\text{max}}\) er hún komin að 10% mörkunum og gripa þarf inn í með útljófnun.

Mynd 5.4: Spennusnið fyrir jarðstreng [7].

Hægt er að reikna út kritísku lengdina með jöfnu 5.3. Þar sem \(X_{\text{km}}\) er launviðnám strengsins á kilómeter og \(B_{\text{km}}\) er launleiðni strengsins á kilómeter.

\[
l_{\text{kritisk}} = \sqrt{\frac{2}{X_{\text{km}} \cdot B_{\text{km}}} \cdot \left(1 - \frac{1}{\Delta U}\right)}
\]

(5.3)

Þar sem \(\Delta U\) er fengið úr jöfnu 5.2.

Í töflu 5.1 má sjá dæmi um notkun á jöfnu 5.3. Kritísk lengd er þá fræðileg hámarks lengd á strengnum miða við spennugildin á \(U_{\text{efra}}\) sem eru frá 0,9 p.u. - 1,05 p.u.

Tafla 5.1: Útreiknuð gildi fyrir fræðilega kritísk lengd.

<table>
<thead>
<tr>
<th>(U_{T2}) [p.u.]</th>
<th>Kritísk lengd [km]</th>
<th>(U_{T2}) [p.u.]</th>
<th>Kritísk lengd [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,90</td>
<td>177,0</td>
<td>1,00</td>
<td>125,1</td>
</tr>
<tr>
<td>0,91</td>
<td>172,5</td>
<td>1,01</td>
<td>118,7</td>
</tr>
<tr>
<td>0,92</td>
<td>167,9</td>
<td>1,02</td>
<td>111,9</td>
</tr>
<tr>
<td>0,93</td>
<td>163,2</td>
<td>1,03</td>
<td>104,7</td>
</tr>
<tr>
<td>0,94</td>
<td>158,3</td>
<td>1,04</td>
<td>96,9</td>
</tr>
<tr>
<td>0,95</td>
<td>153,3</td>
<td>1,05</td>
<td>88,5</td>
</tr>
</tbody>
</table>
Kafli 6

Val á leiðurum

6.1 Álag á kerfið

Í þessu verkefni var ákveðið að kerfið væri tengt við mismunandi álóg: Fullt álag [375 MVA], meðal álag [200 MVA], lítið álag [50 MVA] og svo opinn enda [0 MVA].

6.1.1 Aflstuðull, Raunafl og Launafl

\[PF = \cos\phi = \frac{P}{S} \] (6.1)

\[P = \cos\phi \cdot S \] (6.2)

\[Q = \sqrt{S^2 - P^2} \] (6.3)

- Fullt álag \(S = 375 \text{ MVA} \):

\[P = 0,98 \cdot 375 \text{ MVA} = 367,5 \text{ MW} \] (6.4)

\[Q = \sqrt{375^2 - 367,5^2} = 74,62 \text{ Mvar} \] (6.5)

- Meðal álag \(S = 200 \text{ MVA} \)

\[P = 0,98 \cdot 200 \text{ MVA} = 196 \text{ MW} \] (6.6)

\[Q = \sqrt{200^2 - 196^2} = 39,8 \text{ Mvar} \] (6.7)
6.2 Flutningsgeta kerfis

Til að áætla stærð strengs og línu þarf að reikna út flutningsgetu kerfisins. Byrjað er á því að finna hámarksstrauminn í hverjum fasa og er hann reiknaður með jöfnu 6.10. Þar sem S er hámarks álag sem sett er á kerfið.

$$I_{max} = \frac{S}{\sqrt{3} * U} = \frac{375 \text{ MVA}}{\sqrt{3} * 220.000 \text{ V}} = 984,12 \text{ A}$$ (6.10)

6.3 Jarðstrengur

Á Íslandi eru ákveðin skilyrði sem miðað er við þegar flutningsgeta strengs er reiknuð út. Hitastig jarðvegs á Íslandi er um $10^\circ C$, dýpt strengja er 1,2 m, skerming er 95 mm^2, rekstrarhitastig strengsins er $65^\circ C$ og varmaviðnámið er 1,5 Km/W. Gert er ráð fyrir að fjarlægð milli leiðara sé 250 mm, en mynd 6.1 sýnir hvernig fjarlægðin milli leiðara er. Ákveðnir stuðlar fylgja þessum skilyrðum sem sjá má í töflu 6.1.

<table>
<thead>
<tr>
<th>Skilyrði</th>
<th>Stuðull</th>
<th>Tafla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skerming</td>
<td>95 mm^2</td>
<td>1,00</td>
</tr>
<tr>
<td>Rekstrarhiti</td>
<td>$65^\circ C$</td>
<td>1,11</td>
</tr>
<tr>
<td>Varmaviðnám</td>
<td>1,5 Km/W</td>
<td>0,84</td>
</tr>
<tr>
<td>Dýpt</td>
<td>1,2 m</td>
<td>0,98</td>
</tr>
<tr>
<td>Fjarlægð milli leiðara</td>
<td>250 mm</td>
<td>1,03</td>
</tr>
</tbody>
</table>

Mynd 6.1: Fjarlægð milli leiðara [8].

\[I = 1,00 \times 1,10 \times 0,85 \times 0,98 \times 1,03 \times 1050 A = 988,223 A \] (6.11)

Með þessar upplýsingar um strenginn er hægt að reikna út flutningsgetu strengsins og er það gert með jöfnu 6.12.

\[S = U \times I \times \sqrt{3} = 220,000\,V \times 988,223\,A \times \sqrt{3} = 376,564\,MVA \] (6.12)

Í töflu 6.2 má svo sjá helstu grunnupplýsingar um strenginn sem var valinn [8].

Tafla 6.2: Grunnupplýsingar um streng

<table>
<thead>
<tr>
<th>Staður[m(m^2)]</th>
<th>Þvermál[m(m)]</th>
<th>C[(\mu F/Km)]</th>
<th>L[(mH/Km)]</th>
<th>Samviðnám[(\Omega)]</th>
<th>(R_{DC,20})[(\Omega/Km)]</th>
<th>S[(mm)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>54,4</td>
<td>0,24</td>
<td>0,49</td>
<td>24,5</td>
<td>0,0149</td>
<td>250</td>
</tr>
</tbody>
</table>

Útreikningar á viðnámi[\(R\)], spani[\(L\)] og rýmd[\(C\)] eru framkvæmdir til að hægt sé að reikna út per − unit gildi fyrir strenginn. Allar jöfnur má sjá í viðauka A en niðurstöðurnar má sjá í töflu 6.3.

Tafla 6.3: Niðurstöður viðnámsútreikninga.

<table>
<thead>
<tr>
<th>(X_S)</th>
<th>(X_P)</th>
<th>(y_S)</th>
<th>(y_P)</th>
<th>(R_{dc,65})[(\Omega/Km)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,091836</td>
<td>0,091836</td>
<td>3,7046(x10^{-7})</td>
<td>0,055745</td>
<td>0,018584</td>
</tr>
</tbody>
</table>
6.4 Loftlína

Tafla 6.4: Grunnupplýsingar um línu

<table>
<thead>
<tr>
<th>Designation Eq copper area</th>
<th>Overall diameter</th>
<th>Total area</th>
<th>Weight</th>
<th>DC resistance at 20°C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>774 mm²</td>
<td>459, 51 mm²</td>
<td>36, 18 mm</td>
<td>774, 24 mm²</td>
<td>2140 kg/km</td>
</tr>
</tbody>
</table>

Í töflu 6.4 er DC viðnám leiðarans gefið upp við 20°C en rekstrarhitastigið við fullt álag er áætlað að sé 50°C, því þarf að umreikna viðnámið á rétt hitastig með jöfnu 6.13 [4].

\[
R_{DC,50^\circ} = R_{DC,20^\circ} \left(\frac{T_2 + T}{T_1 + T} \right) \quad (6.13)
\]

\[
R_{DC,50^\circ} = 0.384 \Omega/Km \left(\frac{50^\circ C + 228, 1^\circ C}{20^\circ C + 228, 1^\circ C} \right) = 0.040984 \Omega/Km \quad (6.14)
\]

Til að finna AC viðnám línunnar er jafna 6.15 notuð, þar sem gert er ráð fyrir að skin effect \(y_s = 4\% \) og spiral effect \(y_p = 2\% \).

\[
R_{AC,50^\circ} = R_{DC,50^\circ} \times (1 + y_s + y_p) \quad (6.15)
\]

\[
R_{AC,50^\circ} = 0.040984 \Omega/Km \times (1 + 0.04 + 0.02) = 0.04344 \Omega/Km \quad (6.16)
\]

Tafla 6.5: Niðurstöður RLC útreikninga fyrir loftlínu.

<table>
<thead>
<tr>
<th>(\rho) [Ωm]</th>
<th>(R_{dc,50}) [Ω]</th>
<th>(R_{ac,50}) [Ω]</th>
<th>(D_{eq}) [m]</th>
<th>(C_{an}) [F/km]</th>
<th>(r') [mm]</th>
<th>(L_o) [H/km]</th>
<th>(X_L) [Ω/km]</th>
<th>(B) [S/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1722 × 10^{-8}</td>
<td>0.0040973</td>
<td>0.043431</td>
<td>12.5992</td>
<td>8.4985 × 10^{-9}</td>
<td>14.0885</td>
<td>0.00136</td>
<td>0.42725</td>
<td>2.6698 × 10^{-6}</td>
</tr>
</tbody>
</table>
6.5 Dæmi

Til að sjá helsta muninn á jarðstreng og loftlínu, var ákveðið að taka litið dæmi þar sem skoðaðir eru helstu eiginleikar línu og strengs. Ákveðið var að bera saman 25 km jarðstreng við 25 km loftlínu. Í þessu dæmi er álagið á kerfinu litið eða 50 MVA. Míðað er við veikt kerfi með skammhlaupsaflið 1000 MVA.

Til að hægt sé að setja upp kerfi sem samanstendur af einungis jarðstreng eða loftlínu í forritinu Power World, þarf að byrja á því að reikna út R,L og C parametra fyrr hvort um sig. Síðan þarf að finna A B C D parametra fyrr línu og streng og að lokum þarf að reikna per unit gildin svo hægt sé að setja kerfið upp í Power World. Allar jöfnur sem notaðar eru við þessa útreikninga má finna í viðauka A. Niðurstöður p.u. útreikninga fyrir 25 km loftlínu og jarðstreng eru settar inn í PowerWorld og er niðurstaðan sýnd hér fyrir neðan. Aflstuðullinn \(PF = \cos \phi = \frac{P}{S} = \frac{49}{50} = 0.98 \)

Sjá má uppstillinguna á kerfinu í powerworld á myndum 6.2 og 6.3.

Mynd 6.2: Uppsetning á kerfinu - Jarðstrengur.

Mynd 6.3: Uppsetning á kerfinu - Loftlína.
6.5.1 Niðurstöður

Þegar borin er saman launaflsframleiðsla jarðstrengs á móti línu sést að hún er margfalt meiri í jarðstrengnum, eins og sjá má í töflu 6.6. Einnig má sjá að spennan á teinum 2–3 er hærri í tilviki jarðstrengsins, eins og sjá má í töflu 6.7. Það er því ljóst að þegar um lengri streng er að ræða að spennan mun rjúka upp ásamt því að launaflsframleiðslan verður töluvert meiri.

Tafla 6.6: Samanburðurður á launaflsframleiðslu.

\[
\begin{array}{c|c|c}
\text{ } & Q [M var] & \\
\hline
\text{Lína} & 2,61 & \\
\text{Strengur} & 108,21 & \\
\hline
\end{array}
\]

Tafla 6.7: Samanburður á spennugildum.

\[
\begin{array}{c|c|c|c}
\text{Teinn 1[V.p.u.]} & \text{Teinn 2[V.p.u.]} & \text{Teinn 3[V.p.u.]} & \\
\hline
\text{Lína} & 1,00000 & 0,98827 & 0,99132 \\
\text{Strengur} & 1,00000 & 1,09197 & 1,08918 \\
\hline
\end{array}
\]
Kafli 7

Hermun og Útreikningar

7.1 Hermun

Öll hermun í þessu verkefni fer fram í Power World. Á mynd 7.1 má sjá hvernig kerfunum er stillt upp í forritinu.

Til þess að hægt sé að setja kerfið upp í forritinu þarf að reikna út p.u. gildi fyrir loftlínu og jarðstreng. Eftirfarandi jöfnur og aðferðir voru notaðar til að reikna gildin út. Notast var við gildin $S_{\text{base}} = 100 \, \text{MVA}$ og $V_{\text{base}} = 220 \, \text{kV}$.

$$Z_{\text{base}} = \frac{S_{\text{base}}}{V_{\text{base}}} \tag{7.1}$$

$$R_{\text{p.u.}} = \frac{R}{Z_{\text{base}}} \tag{7.2}$$

$$X_{\text{p.u.}} = \frac{X}{Z_{\text{base}}} \tag{7.3}$$

$$B_{\text{base}} = \frac{1}{Z_{\text{base}}} \tag{7.4}$$

$$B_{\text{p.u.}} = \frac{B}{B_{\text{base}}} \tag{7.5}$$

7.1.1 Jarðstrengur

Með upplýsingar úr töflu 6.3 er hægt að reikna út samleiðnina B og launviðnámioð X_L með jöfnunum 7.6 og 7.7.

$$B = jC \ast \omega = j0, 24 \mu F/Km \ast 2 \ast \pi \ast 50 Hz = j7, 5398 \times 10^{-5} S/Km \tag{7.6}$$

$$X_L = 2 \ast \pi \ast L = 2 \ast \pi \ast 0, 49mH/Km = 0, 153938 \, \Omega/Km \tag{7.7}$$

Viðnámioð $R = 0, 018584 \, \Omega$ er svo fengið úr töflu 6.3. Niðurstöður p.u. reikninga fyrir jarðstrenginn má sjá í töflu 7.1.

Tafla 7.1: Upplýsingar um p.u. gildi jarðstrengs.

<table>
<thead>
<tr>
<th>Lengd [km]</th>
<th>$R_{\text{p.u.}}$</th>
<th>$X_{\text{p.u.}}$</th>
<th>$B_{\text{p.u.}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0,0019198</td>
<td>0,0159026</td>
<td>1,8246278</td>
</tr>
<tr>
<td>60</td>
<td>0,0023038</td>
<td>0,0190832</td>
<td>2,1895513</td>
</tr>
<tr>
<td>70</td>
<td>0,0026878</td>
<td>0,0222638</td>
<td>2,5544789</td>
</tr>
<tr>
<td>80</td>
<td>0,0030717</td>
<td>0,0254443</td>
<td>2,9194045</td>
</tr>
<tr>
<td>90</td>
<td>0,0034557</td>
<td>0,0286248</td>
<td>3,2843300</td>
</tr>
</tbody>
</table>
7.1.2 Loftlína

Með upplýsingar úr töflu A.1 er hægt að reikna p.u. gildin fyrir loftlínuna, notast var við AC viðnám loftlínunar við 50°C. Niðurstöðuna má sjá í töflu 7.2.

Tafla 7.2: Upplýsingar um p.u. gildi loftlínu.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,00044867</td>
<td>0,00441121</td>
<td>0,00646090</td>
</tr>
<tr>
<td>10</td>
<td>0,00089733</td>
<td>0,00882242</td>
<td>0,01292181</td>
</tr>
<tr>
<td>15</td>
<td>0,00134600</td>
<td>0,01323363</td>
<td>0,01938271</td>
</tr>
<tr>
<td>20</td>
<td>0,00179467</td>
<td>0,01764483</td>
<td>0,02584361</td>
</tr>
<tr>
<td>25</td>
<td>0,00224334</td>
<td>0,02205604</td>
<td>0,03230451</td>
</tr>
</tbody>
</table>

7.2 Thevenin

Svo hægt sé að herma skammhlaupsaflið þarf að finna Thevenin viðnámið. Thevenin viðnám er samanlagt viðnám kerfis séð frá þeim stað sem skammhlaup á sér stað. Thevenin viðnámið er reiknað með eftirfarandi jöfnum [4].

Veikt kerfi - 1000 MVA

\[I_{th} = \frac{S}{U} = \frac{1000 \text{ MVA}}{220 \text{ kV}} = 4545,45 \text{ A} \]
(7.8)

\[R = \frac{U}{I_{th}} = \frac{220 \text{ kV}}{4545,45 \text{ A}} = 48,4 \text{ Ω} \]
(7.9)

\[R_{p.u.} = \frac{R}{Z_{base}} = \frac{48,4 \text{ Ω}}{484} = 0,1 \text{ p.u.} \]
(7.10)

Sterkt kerfi - 3500 MVA

\[I_{th} = \frac{S}{U} = \frac{3500 \text{ MVA}}{220 \text{ kV}} = 15909,1 \text{ A} \]
(7.11)

\[R = \frac{U}{I_{th}} = \frac{220 \text{ kV}}{15909,1 \text{ A}} = 13,8286 \text{ Ω} \]
(7.12)

\[R_{p.u.} = \frac{R}{Z_{base}} = \frac{13,8286 \text{ Ω}}{484} = 0,28571 \text{ p.u.} \]
(7.13)

Til að staðfesta þessa útreikninga var stillt upp veiku kerfi í Power World og sett var þriggja fasa jafnlæg bilun á tein 2. Sjá myndir 7.3 og 7.2.
Mynd 7.2: Bilun sett á tein 2.

Mynd 7.3: Straumur reiknaður með Fault Analysis.

Straumurinn sem kemur fram á mynd 7.3 er á einn fasa í kerfinu. Reikna þarf því þriggja fasa bilanstrauminn út og er það gert með jöfnu 7.14.

\[I_{th} = 2624,060 \times \sqrt{3} = 4545,01 \text{ A} \]

(7.14)

Með þessu er verið að staðfesta að reikningar fyrir Thevenin viðnám séu réttir. Sama var gert þegar um sterk kerfi er að ræða og voru niðurstöðurnar þær sömu.
7.3 Spennuþrep

Eins og fram kom í kafla 3.6 má spennuþrep við inn- eða útleysingu ekki fara yfir 5%, og er þar átt við þrep sem geta komið allt að fjórum sinnum á sólahring. Spennuþrepið er reiknað með þrep 7.15. Alla útreikninga fyrir spennuþrepið í hverju tilfelli fyrir sig má sjá í viðauka D.

\[\Delta U(\%) \simeq \frac{Q}{S_{cc}} \times 100\% \]
(7.15)

Þar sem \(Q \) er sú spóla eða þéttir sem settur er inn eða tekinn út og \(S_{cc} \) er skammhlaup-saflíð á þeim stað í kerfinu sem inn- eða útleysing á sér stað.

Sjá má betur hvað átt er við með spennuþrepinu í dæminu hér fyrir nedan:

Mynd 7.4: Spennuþrep.

Á mynd 7.4 má sjá þar sem spóla er sett inn á T2. Spannan á T2 áður en spólan er sett inn er 220 kV. Spólan er 50 Mvar og er spennugildið á T2 eftir að spólan er sett inn 209,524 kV. Skammhlaupsaflíð er 1000 MVA. Spennuþrepið er reiknað með þrep 7.16.

\[\Delta U(\%) \simeq \frac{50}{1000} \times 100\% = 5\% \]
(7.16)

1 e.Series reactance
2 e.Slack bus
7.3. Spennuþrep

Spennuþrepið er reiknað á þeim stöðum í kerfinu þar sem spólur eða þéttar eru tengdir inn á kerfið. Sé spóla eða þéttir tengd inn á kerfið á möttökuenda þarf að reikna skammhlaupsaflíð á þeim stað og er það gert með því að setja inn þriggja fasa jafnlæga bilun á tein 4 og sama aðferð og í kafla 7.2 er notuð til að reikna skammhlaupsaflíð. Í undirköflum 7.3.1 - 7.3.5 er skammhlaupsafl á möttökuenda kerfis reiknað, en kerfið samanstendur af línu+streng+línu. Skammhlaupsaflíð er reiknað með jöfnu 7.17.

\[S = U \times I \times \sqrt{3} \]
(7.17)

Þar sem \(I \) er skammhlaupsstraumurinn fenginn úr Power World, þar sem þriggja fasa jafnlæg bilun er sett á tein 4, eða þann tein sem tengir kerfið við álægið.

Þegar skammhlaupsaflíð er fundið er hægt að reikna út hversu stóra spólu er hægt að setja inn á möttökuendann áður en spennuþrepið fer yfir 5% og er það gert með jöfnu 7.18

\[Q_{L,max} = S_{cc} \times 5\% \]
(7.18)

7.3.1 25Km - 50Km - 25Km

- Veikt kerfi:

\[S = 220 \, kV \times 1927, \, 250 \, A \times \sqrt{3} = 734, \, 381 \, MVA \]
(7.19)

\[Q_{L,max} = 734, \, 381 \, MVA \times 0, \, 05 = 37 \, Mvar \]
(7.20)

- Sterkt kerfi:

\[S = 220 \, kV \times 3981, \, 950 \, A \times \sqrt{3} = 1517, \, 330 \, MVA \]
(7.21)

\[Q_{L,max} = 1517, \, 330 \, MVA \times 0, \, 05 = 76 \, Mvar \]
(7.22)
7.3.2 20Km - 60Km - 20Km

- Veikt kerfi:

\[S = 220 \, kV \times 1954,540 \, A \times \sqrt{3} = 744,780 \, MVA \] \hspace{1cm} (7.23)

\[Q_{L,max} = 744,780 \, MVA \times 0,05 = 37 \, Mvar \] \hspace{1cm} (7.24)

- Sterkt kerfi:

\[S = 220 \, kV \times 4072,170 \, A \times \sqrt{3} = 1551,710 \, MVA \] \hspace{1cm} (7.25)

\[Q_{L,max} = 1551,710 \, MVA \times 0,05 = 78 \, Mvar \] \hspace{1cm} (7.26)

7.3.3 15Km - 70Km - 15Km

- Veikt kerfi:

\[S = 220 \, kV \times 1983,760 \, A \times \sqrt{3} = 755,914 \, MVA \] \hspace{1cm} (7.27)

\[Q_{L,max} = 755,914 \, MVA \times 0,05 = 38 \, Mvar \] \hspace{1cm} (7.28)

- Sterkt kerfi:

\[S = 220 \, kV \times 4165,930 \, A \times \sqrt{3} = 1587,43 \, MVA \] \hspace{1cm} (7.29)

\[Q_{L,max} = 1587,43 \, MVA \times 0,05 = 79 \, Mvar \] \hspace{1cm} (7.30)

7.3.4 10Km - 80Km - 10Km

- Veikt kerfi:

\[S = 220 \, kV \times 2014,85 \, A \times \sqrt{3} = 767,761 \, MVA \] \hspace{1cm} (7.31)

\[Q_{L,max} = 767,761 \, MVA \times 0,05 = 38 \, Mvar \] \hspace{1cm} (7.32)

- Sterkt kerfi:

\[S = 220 \, kV \times 4262,420 \, A \times \sqrt{3} = 1624,2 \, MVA \] \hspace{1cm} (7.33)

\[Q_{L,max} = 1624,2 \, MVA \times 0,05 = 81 \, Mvar \] \hspace{1cm} (7.34)
7.3.5 5Km - 90Km - 5Km

• Veikt kerfi:

\[S = 220 \, kV \times 2047,58 \, A \times \sqrt{3} = 780,233 \, MVA \]
\[Q_{L,\text{max}} = 780,233 \, MVA \times 0,05 = 39 \, Mvar \]

• Sterkt kerfi:

\[S = 220 \, kV \times 4360,91 \, A \times \sqrt{3} = 1661,73 \, MVA \]
\[Q_{L,\text{max}} = 1661,73 \, MVA \times 0,05 = 83 \, Mvar \]

7.4 Launaflsframleiðsla strengs

Samkvæmt jöfnum 6.12 er flutningsgeta jarðstrengsins 376,564 \ MVA. Ætlast er til að raunafl sé að minnsta kosti 75% af flutningsgetunni. Raunaflíð er fundið með jöfnum 7.39.

\[P = S \times \cos \phi = S \times 0,75 = 376,564 \times 10^6 \times 0,75 = 282,423 \, MW \]

Til að finna það raunafl sem flæðir í strengnum er launaflsframleiðslan, \(Q_{\text{strengur}} \) er fengin úr Power World.

\[\sin \phi = \frac{Q_{\text{strengur}}}{S} \]

\[\cos \phi = \cos \left(\arcsin \left(\frac{Q_{\text{strengur}}}{S} \right) \right) \]

\(\cos \phi \) úr jöfnum 7.41 er svo stungið inn í jöfnum 7.39 til að reikna út raunfalið.

Í kafla 7.4.1 má sjá hversu mikil launaflsframleiðsla er í strengnum áður en útjöfnum á sér stað. Í kafla 7.5.6 er svo launaflsframleiðsla strengs þegar búið að er að launaflsút-jafna.
7.4.1 Fyrir launaflsútjöfnun

Í töflum 7.3 - 7.9 eru niðurstöður á launaflsframleiðslu og raunaflsframleiðslu jarðstrengs í samsettu flutningskerfi áður en launaflsútjöfnun á sér stað. Einnig kemur fram hversu stórt hlutfall raunaflið er af heildar flutningsgetu strengsins í %.

Tafla 7.3: Veikt kerfi - Fullt álag [375 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [Km]</th>
<th>$Q_{Streng}[Mvar]$</th>
<th>$\sin \phi$</th>
<th>$\cos \phi$</th>
<th>$P[MW]$</th>
<th>Raunafl [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>119,06</td>
<td>0,3217</td>
<td>0,9487</td>
<td>357,25</td>
<td>94,9%</td>
</tr>
<tr>
<td>60</td>
<td>192,65</td>
<td>0,5370</td>
<td>0,8592</td>
<td>323,55</td>
<td>85,9%</td>
</tr>
<tr>
<td>70</td>
<td>319,97</td>
<td>1,0154</td>
<td>0,5273</td>
<td>198,54</td>
<td>52,7%</td>
</tr>
<tr>
<td>80</td>
<td>447,83</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>90</td>
<td>589,58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
</tbody>
</table>

Í töflu 7.3 má sjá að þegar strengurinn er orðinn lengri en 70 Km er launaflsframleiðsla hans orðin meiri en flutningsgetan 376,564 MVA þannig ekki er mögulegt að hafa strenginn lengri án þess að gripa þurfi inn með launaflsútjöfnun.

Tafla 7.4: Veikt kerfi - Meðal álag [200 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [km]</th>
<th>$Q_{Streng}[Mvar]$</th>
<th>$\sin \phi$</th>
<th>$\cos \phi$</th>
<th>$P[MW]$</th>
<th>Raunafl [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>260,32</td>
<td>0,7633</td>
<td>0,7226</td>
<td>272,09</td>
<td>72,3%</td>
</tr>
<tr>
<td>60</td>
<td>352,30</td>
<td>1,2099</td>
<td>0,3532</td>
<td>132,99</td>
<td>35,3%</td>
</tr>
<tr>
<td>70</td>
<td>459,99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>80</td>
<td>584,23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>90</td>
<td>725,39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
</tbody>
</table>

Í töflu 7.4 má sjá að þegar strengurinn er orðinn lengri en 60 Km er launaflsframleiðsla hans orðin meiri en flutningsgetan 376,564 MVA þannig ekki er mögulegt að hafa strenginn lengri án þess að gripa þurfi inn með launaflsútjöfnun.

Tafla 7.5: Veikt kerfi - Lítið álag [50 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [km]</th>
<th>$Q_{Streng}[Mvar]$</th>
<th>$\sin \phi$</th>
<th>$\cos \phi$</th>
<th>$P[MW]$</th>
<th>Raunafl [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>303,48</td>
<td>0,9372</td>
<td>0,5920</td>
<td>222,94</td>
<td>59,2%</td>
</tr>
<tr>
<td>60</td>
<td>401,37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>70</td>
<td>514,47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>80</td>
<td>643,62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>90</td>
<td>789,22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
</tbody>
</table>

Í töflu 7.5 má sjá að þegar strengurinn er orðinn lengri en 50 Km er launaflsframleiðsla hans orðin meiri en flutningsgetan 376,564 MVA þannig ekki er mögulegt að hafa strenginn lengri án þess að gripa þurfi inn með launaflsútjöfnun.
Í töflu 7.6 má sjá að þegar strengurinn er oröinn lengri en 50 km er launaflsframleiðsla hans oröin meiri en flutningsgetan 376,564 MVA þannig ekki er mögulegt að hafa strenginn lengri án þess að gripa þurfi inn með launaflsútjöfnun.

Tafla 7.6: Veikt kerfi - Opinn endi [0 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>Q\textsubscript{Strengur}[Mvar]</th>
<th>\sin\phi</th>
<th>\cos\phi</th>
<th>P[MW]</th>
<th>Raunafl[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>311,55</td>
<td>0,9744</td>
<td>0,5617</td>
<td>211,51</td>
<td>56,2%</td>
</tr>
<tr>
<td>60</td>
<td>411,02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>70</td>
<td>525,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>80</td>
<td>656,32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>90</td>
<td>803,34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
</tbody>
</table>

Tafla 7.7: Sterkt kerfi - Fullt álag [375 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>Q\textsubscript{Strengur}[Mvar]</th>
<th>\sin\phi</th>
<th>\cos\phi</th>
<th>P[MW]</th>
<th>Raunafl[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>158,6</td>
<td>0,4347</td>
<td>0,9070</td>
<td>341,54</td>
<td>90,7%</td>
</tr>
<tr>
<td>60</td>
<td>204,72</td>
<td>0,5748</td>
<td>0,8393</td>
<td>316,05</td>
<td>83,9%</td>
</tr>
<tr>
<td>70</td>
<td>252,45</td>
<td>0,7348</td>
<td>0,7420</td>
<td>279,41</td>
<td>74,2%</td>
</tr>
<tr>
<td>80</td>
<td>300,63</td>
<td>0,9246</td>
<td>0,6022</td>
<td>226,76</td>
<td>60,2%</td>
</tr>
<tr>
<td>90</td>
<td>348,13</td>
<td>1,1797</td>
<td>0,3812</td>
<td>143,55</td>
<td>38,1%</td>
</tr>
</tbody>
</table>

Tafla 7.8: Sterkt kerfi - Meðal álag [200 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>Q\textsubscript{Strengur}[Mvar]</th>
<th>\sin\phi</th>
<th>\cos\phi</th>
<th>P[MW]</th>
<th>Raunafl[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>203,21</td>
<td>0,5700</td>
<td>0,8419</td>
<td>317,03</td>
<td>84,2%</td>
</tr>
<tr>
<td>60</td>
<td>251,99</td>
<td>0,7331</td>
<td>0,7431</td>
<td>279,82</td>
<td>74,3%</td>
</tr>
<tr>
<td>70</td>
<td>301,55</td>
<td>0,9286</td>
<td>0,5989</td>
<td>225,54</td>
<td>59,9%</td>
</tr>
<tr>
<td>80</td>
<td>350,90</td>
<td>1,1995</td>
<td>0,3629</td>
<td>136,64</td>
<td>36,3%</td>
</tr>
<tr>
<td>90</td>
<td>399,03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
</tbody>
</table>

Í töflu 7.8 má sjá að þegar strengurinn er oröinn lengri en 80 km er launaflsframleiðsla hans oröin meiri en flutningsgetan 376,564 MVA þannig ekki er mögulegt að hafa strenginn lengri án þess að gripa þurfi inn með launaflsútjöfnun.

Tafla 7.9: Sterkt kerfi - Lítið álag [50 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>Q\textsubscript{Strengur}[Mvar]</th>
<th>\sin\phi</th>
<th>\cos\phi</th>
<th>P[MW]</th>
<th>Raunafl[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>221,55</td>
<td>0,6290</td>
<td>0,8086</td>
<td>304,49</td>
<td>80,9%</td>
</tr>
<tr>
<td>60</td>
<td>272,19</td>
<td>0,8079</td>
<td>0,6910</td>
<td>260,22</td>
<td>69,1%</td>
</tr>
<tr>
<td>70</td>
<td>323,11</td>
<td>1,0315</td>
<td>0,5136</td>
<td>193,39</td>
<td>51,4%</td>
</tr>
<tr>
<td>80</td>
<td>373,38</td>
<td>1,4407</td>
<td>0,1298</td>
<td>48,87</td>
<td>13,0%</td>
</tr>
<tr>
<td>90</td>
<td>422,01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
</tbody>
</table>
Í töflu 7.9 má sjá að þegar strengurinn er orðinn lengri en 80 km er launaflsframleiðsla hans orðin meiri en flutningsgetan 376,564 MVA þannig ekki er mögulegt að hafa strenginn lengri án þess að grípa þurfi inn með launaflsútjöfnun.

Í töflu 7.10 má sjá að þegar strengurinn er orðinn lengri en 70 km er launaflsframleiðsla hans orðin meiri en flutningsgetan 376,564 MVA þannig ekki er mögulegt að hafa strenginn lengri án þess að grípa þurfi inn með launaflsútjöfnun.

Hægt er að átta sig betur á niðurstöðunum á mynd 7.5 þar sem búið er að draga upp hlutfall raunafls af flutningsgetunni á móti klómetralengd. Búið er að merkja inn á myndina línu sem markar 75% mörkin.

<table>
<thead>
<tr>
<th>Lengd strengs [km]</th>
<th>Q_{Streng} [Mvar]</th>
<th>sinφ</th>
<th>cosφ</th>
<th>P [MW]</th>
<th>Raunafl [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>224,91</td>
<td>0,6401</td>
<td>0,8020</td>
<td>302,02</td>
<td>80,2%</td>
</tr>
<tr>
<td>60</td>
<td>275,92</td>
<td>0,8223</td>
<td>0,6805</td>
<td>256,26</td>
<td>68,1%</td>
</tr>
<tr>
<td>70</td>
<td>327,11</td>
<td>1,0525</td>
<td>0,4954</td>
<td>186,55</td>
<td>49,5%</td>
</tr>
<tr>
<td>80</td>
<td>377,54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
<tr>
<td>90</td>
<td>426,21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-%</td>
</tr>
</tbody>
</table>

Mynd 7.5: Hlutfall raunafls af heildar flutningsgetu strengs.
7.5 Launaflsútfjöfnun kerfis

Í undirköflum 7.5.1 - 7.5.5 er gert grein fyrir hvernig launaflsútfjöfnuninni var háttad í hverju tilfelli fyrir sig. Einnig eru spennugildin á T2-T5 (teinum 2 til 5) dregin upp á graf til að sýna betur fram á þörfina á launaflsútfjöfnun og er hægt að sjá þau gröf í viðauka B. Í þeim tilfellum sem þörf er á mikilli útjöfnun eru þessi gröf sýnd, fyrir og eftir útjöfnun.

Reynt var að uppfylla eftirfarandi skilyrði við launaflsútfjöfnunina:

- Spenna á teinum sé innan 0,9 p.u – 1,1 p.u.
- Spennulífr á þeim stað sem spóla/þéttir er sett inn sé ekki meira en sem nemur 5% breytingu á spennugildum.
- Raunaflsflutningur í streng skal ná amk. 75% af flutningsgetu. Miðast við að launaflsframleiðsla strengsins sé ekki meira en 249 Mvar.
- Niðurstaða á staðsetningu og stærð spólu/þéttis skilgreind.

7.5.1 25Km-50Km-25Km

Mynd 7.6: Uppsetning á kerfinu í Power World - 50Km strengur.
Fyllt álagn - Veikt [367,5 MW + 75 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn þétt af stærðinni 37 Mvar á T5. Sé þéttirinn færður á T2 þarf hann að vera 50 Mvar.

- **Spennuþrep**: Ekki mögulegt að hafa þéttinn stærri á T5 en 37 Mvar eins og kom fram í kafla 7.3.1. Þéttirinn á T2 má ekki vera stærri en 50 Mvar, annars fer spennuþrepið yfir 5% mörkin.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 136 Mvar sé þéttirinn staðsettur á T5. Ef þéttirinn er staðsettur á T2 er launaflsframleiðsla strengsins 159, 10 Mvar. Hlutfall raunafls í strengnum er því vel yfir 75% mörkum.

- **Niðurstaða**: Reikningar miðast við að þéttirinn sé af stærðinni 37 Mvar og sé staðsettur á T5.

Meðal álagn - Veikt [196 MW + 40 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn spólu af stærðinni 68 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 50 Mvar.

- **Spennuþrep**: Ekki mögulegt að setja 68 Mvar spólu á T2, spennuþrepið fer yfir 5%. Sama á við um 50 Mvar spólu á T5.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 212, 39 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 214, 85 Mvar.

- **Niðurstaða**: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum voru settar spólur, 50 Mvar á T2 og 37 Mvar á T5 og eru útreikningar miðaðir við þessar stærðir og staðsetningar.
Lítið álag - Veikt [49 MW + 10 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn spólu af stærðinni 150 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 100 Mvar.

- **Spennuþrep**: Ekki mögulegt að setja 150 Mvar spólu á T2, spennuþrepið fer yfir 5%. Sama á við um 100 Mvar spólu á T5.

- **Hlutfall raunafls**: Launaflsframleiðslastrengsins er 213, 64 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 223, 28 Mvar.

- **Niðurstaða**: Þar sem skilyrðum um spennuþrep er ekki fullnægt er ekki hægt að setja inn þessar spólur á þessum stöðum í kerfinu, því voru settar inn spólur, 50 Mvar + 25 Mvar á T2 og 2 x 30 Mvar á T5. Setja þarf spólurnar á T5 inn hverja fyrir sig svo spennuþrepið fari ekki yfir 5%.

Ekkert álag - Veikt [0 MW + 0 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn spólu af stærðinni 170 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 120 Mvar.

- **Spennuþrep**: Ekki mögulegt að setja 170 Mvar spólu á T2, spennuþrepið fer yfir 5%. Sama á við um 120 Mvar á T5.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 212, 05 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 218, 26 Mvar.

- **Niðurstaða**: Þar sem skilyrðum um spennuþrep er ekki fullnægt er ekki hægt að setja þessar spólur innt á þessum stöðum í kerfinu, því voru settar inn spólur, 50 Mvar + 30 Mvar á T2 og 2 x 30 Mvar á T5. Setja þarf spólurnar inn hverja fyrir sig svo spennuþrepið fari ekki yfir 5%.
Fúllt álag - Sterkt [367,5 MW + 75 Mvar]:

Hér er spennan innan viðeigandi marka svo ekki er þörf á að lækka spennugildin á T2-T5. Launaflsframleiðslan er 159,1 Mvar, ekki er þörf á að lækka hana.

Meðal álag - Sterkt [196 MW + 40 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn spólu af stærðinni 50 Mvar á T2 eða á T5.
- **Spennuþrep:** Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepið fara yfir 5%.
- **Hlutfall raunafls:** Launaflsframleiðslu strengsins er 196,32 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslu strengsins 171,82 Mvar.
- **Niðurstaða:** Öllum ofangreindum skilyrðum er fullnægt. Ákveðið var að staðsetja spóluna, 50 Mvar á T2 og miðast allir reikningar við þá staðsetningu.

Lítið álag - Sterkt [49 MW + 10 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn spólu af stærðinni 50 Mvar á T2 eða á T5.
- **Spennuþrep:** Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepið fara yfir 5%.
- **Hlutfall raunafls:** Launaflsframleiðslu strengsins er 214,89 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslu strengsins 192,08 Mvar.
- **Niðurstaða:** Öllum ofangreindum skilyrðum er fullnægt. Ákveðið var að staðsetja spóluna, 50 Mvar á T5 vegna þess að bæði spennugildin á T2-T5 voru lægri sem og launaflsframleiðslu strengsins, og miðast allir reikningar við þá staðsetningu.
Ekkert álag - Sterkt [0 MW + 0 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn spólu af stærðinni 90 Mvar á T2. Sé spólan fær á T5 þarf hún að vera 40 Mvar.

- **Spennuþrep**: Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepin fari yfir 5%.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 213, 13 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 214, 76 Mvar.

- **Niðurstaða**: Öllum ofangreindum skilyrðum er fullnægt. Ákveðið var að staðsetja spólu, 40 Mvar á T5 og eru allir reikningar miðaðir við þessa stærð og staðsetningu.

Til að skoða betur hvað er að gerast í strengnum var honum skipt upp í tvo jafn stóra hluta og auka teinn settur í miðjuna. Spennan á þeim teini var skoðuð sérstaklega. Sjá má mynd af uppsetningunni í Power World á mynd 7.7. Kerfið sem sýnt er á myndinni er veikt og álagið er 200 MVA.

![Mynd 7.7: Uppsetning á kerfinu í Power World - 50Km strengur með auka teinn.](image)

Mynd 7.8: Spennugildi á teinum - Veikt kerfi með auka tein.

Mynd 7.9: Spennugildi á teinum - Sterkt kerfi með auka tein.
7.5.2 20Km-60Km-20Km

Mynd 7.10: Uppsetning á kerfinu í Power World - 60Km strengur.

Fullt álag - Veikt [367,5 MW + 75 Mvar]:

Hér er spenna innan viðeigandi marka svo ekki er þörf á að lækka spennugildin á T2-T5. Launaflsframleiðsla strengsins er 192, 65 Mvar svo ekki er þörf á að lækka hana.

Meðal álag - Veikt [196 MW + 40 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn spólu af stærðinni 120 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 85 Mvar.

- **Spennuþrepi**: Ekki mögulegt að setja 120 Mvar spólu á T2, spennuþrepið fer yfir 5%. Sama á við um 85 Mvar á T5.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 246, 83 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 256, 66 Mvar.

- **Niðurstæða**: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 50 Mvar + 30 Mvar á T2 og 37 Mvar á T5. Setja þarf spólurnar á T2 inn hverja fyrir sig svo spennuþrepið fari ekki yfir 5%.
Lítið álag - Veikt [49 MW + 10 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn spólu af stærðinni 190 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 140 Mvar.

- **Spennuþrep:** Ekki mögulegt að setja 190 Mvar spólu á T2, spennuþrepíð fer yfir 5%. Sama á við um 140 Mvar á T5.

- **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 255,06 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 262,15 Mvar. Hér er launaflid orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

- **Niðurstæða:** Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 2 x 50 Mvar á T2 og 3 x 37 Mvar á T5. Setja þarf spólurnar inn í sitthvoru lagi til að spennuþrepíð fari ekki yfir 5%.

Ekkert álag - Veikt [0 MW + 0 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja inn spólu af stærðinni 210 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 155 Mvar.

- **Spennuþrep:** Ekki mögulegt að setja 210 Mvar á T2, spennuþrepíð fer yfir 5%. Sama á við um 155 Mvar á T5.

- **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 252,91 Mvar sé spólan á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 259,93 Mvar.

- **Niðurstæða:** Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 2 x 50 Mvar á T2 og 3 x 37 Mvar á T5. Setja þarf spólurnar inn í sitthvoru lagi til að spennuþrepíð fari ekki yfir 5%.
Fullt álag - Sterkt [367,5 MW + 75 Mvar]:
Hér er spenna innan viðeigandi marka svo ekki er þörf á að lækka spennugildin á T2-T5. Launaflsframleiðsla strengsins er 204, 72 Mvar svo ekki er þörf á að lækka hana.

Meðal álag - Sterkt [196 MW + 40 Mvar]:

- **Spenna á teinum**: Hér er spennan innan viðeigandi marka, svo ekki er þörf á að setja spólu til að lækka spennuna.

- **Spennuþrep**: Ekki er mögulegt að setja stærri spólu en 175 Mvar á T2 og 78 Mvar á T5, áður en spennuþrepinn fær yfir 5%.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 251, 99 Mvar.

- **Niðurstaða**: Til að ná launaflsframleiðslunni niður var sett inn spólur, 50 Mvar á T2 og 50 Mvar á T5 og miðast allir reikningar við þessar stærðir og staðsetningar.

Lítið álag - Sterkt [49 MW + 10 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 95 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 50 Mvar.

- **Spennuþrep**: Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepinn fari yfir 5%.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 256, 81 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 257, 53 Mvar. Hér er launaflsframleiðsla 257, 53 Mvar. Hér er launaflsframleiðsla orðin og mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

- **Niðurstaða**: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 2 x 50 Mvar á T5. Setja þarf spólnar inn í sitthvoru lagi til að spennuþrepinn fari ekki yfir 5%.
Ekkert álag - Sterkt [0 MW + 0 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 125 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 55 Mvar.

- **Spennuþrep**: Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepið fari yfir 5%.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 255,94 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 259,94 Mvar. Hér er launafl fræið orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

- **Niðurstæða**: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólanum, voru settar spólar, 50 Mvar á T2 og 2 x 50 Mvar á T5. Setja þarf spólnar á T5 inn í笄hvervor lagi til að spennuþrepið fari ekki yfir 5%.

Til að skoða betur hvað er að gerast í strengnum var honum skipt upp í tvo jafn stóra hluta og auka teinn settur í miðjuna. Spennan á þeim teini var skoðuð sérstaklega. Sjá má mynd af uppsetningunni í Power World á mynd 7.11.

Mynd 7.11: Uppsetning á kerfinu í Power World - 60Km strengur með auka tein.

Mynd 7.12: Spennugildi á teinum - Veikt kerfi með auka tein.

7.5.3 15Km-70Km-15Km

Fullt álag - Veikt [367,5 MW + 75 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 50 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 38 Mvar.

- **Spennuþrep:** Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepíað fari yfir 5%.

- **Hlutfall raunafls:** Launaflsframleiðslu strengsins er 221,85 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 232,87 Mvar.

- **Niðurstáða:** Öllum ofangreindum skilyrðum er fullnægt. Ákveðið var að hafa spóluna 50 Mvar á T2 vegna þess að launaflsframleiðsla strengsins er lægri og eru allir reikningar miðaðir við þessa stærð og staðsetningu.

Medal álag - Veikt [196 MW + 40 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 150 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 120 Mvar.

- **Spennuþrep:** Ekkær mögulegt að setja 150 Mvar á T2, spennuþrepið fer yfir 5%. Sama á við um 120 Mvar á T5.
7.5. Launaflsútjöfnun kerfis

- **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 294, 85 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðsla 297, 374 Mvar. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

- **Niðurstæða:** Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 2 x 50 Mvar á T2 og 3 x 38 Mvar + 10 Mvar á T5. Setja þarf spólurnar á T5 inn í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.

Lítið álag - Veikt [49 MW + 10 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 230 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 175 Mvar.

- **Spenuþrep:** Ekki er mögulegt að setja 230 Mvar á T2, spenuþrepið fer yfir 5%. Sama á við um 175 Mvar á T5.

- **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 293, 85 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðsla 302, 72 Mvar. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

- **Niðurstæða:** Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 3 x 50 Mvar á T2 og 4 x 38 Mvar á T5. Setja þarf spólurnar á T5 inn í sitthvoru lagi til að spenuþrepið fari ekki yfir 5%.

Ekkert álag - Veikt [0 MW + 0 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 250 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 185 Mvar.

- **Spenuþrep:** Ekki er mögulegt að setja 250 Mvar á T2, spenuþrepið fer yfir 5%. Sama á við um 185 Mvar á T5.

- **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 291, 15 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðsla 304, 09 Mvar. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.
- **Niðurstæða**: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, $3 \times 50 \text{ Mvar}$ á T2 og $4 \times 38 \text{ Mvar}$ á T5. Setja þarf spólurnar á T5 inn í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.

Fullt álag - Sterkt [367,5 MW + 75 Mvar]:

- **Spenna á teinum**: Hér er spennan innan viðeigandi marka, svo ekki er þörf á að setja spólu til að lækka spennuna.

- **Spennuþrepi**: Ekki er mögulegt að setja stærri spólu en 175 Mvar á T2 og 79 Mvar á T5, áldur en spennuþrepið fer yfir 5%.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 252, 45 Mvar.

- **Niðurstæða**: Til að ná launaflsframleiðslunni niður voru sett inn spóla á T2 af stærðinni 50 Mvar og eru allir reikningar miðaðir við þessa stærð og staðsetningu.

Meðal álag - Sterkt [196 MW + 40 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 50 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 30 Mvar.

- **Spennuþrepi**: Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepið fari yfir 5%.

- **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 291, 41 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 291, 15 Mvar. Hér er launaflsfrum leið orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

- **Niðurstæða**: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 50 Mvar á T2 og 2 x 78 Mvar á T5. Setja þarf spólurnar á T5 inn í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.

Lítið álag - Sterkt [49 MW + 10 Mvar]:

- **Spenna á teinum**: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 140 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 70 Mvar.
• **Spennuþrep:** Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepið fari yfir 5%.

• **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 296, 50 $Mvar$ sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðsla 300, 51 $Mvar$. Hér er launaflöð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

• **Niðurstæða:** Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, $2 \times 50 \ Mvar$ á T2 og $2 \times 78 \ Mvar$ + 50 $Mvar$ á T5. Setja þarf spólurnar inn í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.

Ekkert álag - Sterkt [0 MW + 0 Mvar]:

• **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 170 $Mvar$ á T2. Sé spólan færð á T5 þarf hún að vera 79 $Mvar$.

• **Spennuþrep:** Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepið fari yfir 5%.

• **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 295, 20 $Mvar$ sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðsla 301, 86 $Mvar$. Hér er launaflöð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

• **Niðurstæða:** Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, $2 \times 50 \ Mvar$ á T2 og $2 \times 78 \ Mvar$ + 50 $Mvar$ á T5. Setja þarf spólurnar inn í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.
Til að skoða betur hvað er að gerast í strengnum var honum skipt upp í tvo jafn stóra hluta og auka teinn settur í miðjuna. Spennan á þeim teini var skoðuð sérstaklega. Sjá má mynd af upphafsetningunni í Power World á mynd 7.15.

Mynd 7.15: Uppsetning á kerfinu í Power World - 70Km strengur með auka tein.

Mynd 7.16: Spennugildi á teinum - Veikt kerfi með auka tein.
7.5.4 10Km-80Km-10Km

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 65 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 55 Mvar.

- **Spennþrep:** Ekki er mögulegt að setja 65 Mvar á T2, spennþrepið fer yfir 5%. Sama á við um 55 Mvar á T5.
Hlutfall raunafls: Launaflsframleiðsla strengsins er 318, 32 $Mvar$ sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 318, 58 $Mvar$. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

Niðurstáða: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 50 $Mvar$ á T2 og 38 $Mvar$ + 10 $Mvar$ á T5. Setja þarf spólurnar á T5 inn í sitthvoru lagi til að spennuprepið fari ekki yfir 5%.

Meðal álag - Veikt [196 MW + 40 Mvar]:

- Spenna á teinum: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 190 $Mvar$ á T2. Sé spólan færð á T5 þarf hún að vera 155 $Mvar$.

- Spennuprep: Ekki er mögulegt að setja 190 $Mvar$ á T2, spennuprepið fer yfir 5%. Sama á við um 155 $Mvar$ á T5.

- Hlutfall raunafls: Launaflsframleiðsla strengsins er 332, 162 $Mvar$ sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 336, 43 $Mvar$. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

- Niðurstáða: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 2 x 50 $Mvar$ á T2 og 3 x 38 $Mvar$ + 10 $Mvar$ á T5. Setja þarf spólurnar inn í sitthvoru lagi til að spennuprepið fari ekki yfir 5%.

Lítið álag - Veikt [49 MW + 10 Mvar]:

- Spenna á teinum: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 265 $Mvar$ á T2. Sé spólan færð á T5 þarf hún að vera 210 $Mvar$.

- Spennuprep: Ekki er mögulegt að setja 265 $Mvar$ á T2, spennuprepið fer yfir 5%. Sama á við um 210 $Mvar$ á T5.

- Hlutfall raunafls: Launaflsframleiðsla strengsins er 332, 64 $Mvar$ sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 341, 32 $Mvar$. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.
• Niðurstaða: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 4 x 50 Mvar á T2 og 4 x 38 Mvar + 20 Mvar á T5. Setja þarf spólurnar inn í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.

Ekkert álag - Veikt [0 MW + 0 Mvar]:

• Spenna á teinum: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 280 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 220 Mvar.

• Spennuþrep: Ekki er mögulegt að setja 280 Mvar á T2, spennuþrepið fer yfir 5%. Sama á við um 220 Mvar á T5.

• Hlutfall raunafls: Launaflsframleiðsla strengsins er 332,55 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 342,77 Mvar. Hér er launaflöð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mórkunum.

• Niðurstaða: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 4 x 50 Mvar á T2 og 4 x 38 Mvar + 15 Mvar á T5. Setja þarf spólurnar inn í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.

Fullt álag - Sterkt [367,5 MW + 75 Mvar]:

• Spenna á teinum: Hér er spennan innan viðeigandi marka, svo ekki er þörf á að setja spólu til að lækka spennuna.

• Spennuþrep: Ekki er mögulegt að setja stærri spólu en 175 Mvar á T2 og 81 Mvar á T5, áður en spennuþrepið fer yfir 5%.

• Hlutfall raunafls: Launaflsframleiðsla strengsins er 300,63 Mvar.

• Niðurstaða: Til að ná launaflsframleiðslunni niður voru settar inn spólur, 100 Mvar á T2 og 65 Mvar á T5 og eru allir reikningar miðaðir við þessar stærðir og staðsetningar.

Meðal álag - Sterkt [196 MW + 40 Mvar]:

• Spenna á teinum: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 75 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 40 Mvar.
• **Spennuþrep:** Báðar stærðir og staðsetningar ganga upp án þess að spennurepið fari yfir 5%.

• **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 333, 40 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 336, 12 Mvar. Hér er launaflið orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

• **Niðurstaða:** Til að ná launaflsframleiðslunni niður voru settar inn spólur, 150 Mvar á T2 og 2 x 80 Mvar + 50 Mvar á T5. Setja þarf spólurnar á T5 inn í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.

Litið álag - Sterkt [49 MW + 10 Mvar]:

• **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 180 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 40 Mvar.

• **Spennuþrep:** Ekki er mögulegt að setja 180 Mvar á T2, spennuþrepið fer yfir 5%. Á T5 er spólan 80 Mvar og gengur það upp, spennuþrepið er innan marka.

• **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 334, 18 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 345, 77 Mvar. Hér er launaflið orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

• **Niðurstaða:** Til að ná launaflsframleiðslunni niður voru settar inn spólur, 100 Mvar + 115 Mvar á T2 og 3 x 80 Mvar + 20 Mvar á T5. Setja þarf spólurnar á T5 inn í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%. Ekki reyndist mögulegt að ná launaflsframleiðslunni niður en í 252, 80 Mvar án þess að spennan á T5 færi niður fyrir 0,9 p.u.

Ekkert álag - Sterkt [0 MW + 0 Mvar]:

• **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 210 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 90 Mvar.

• **Spennuþrep:** Ekki er mögulegt að setja 210 Mvar á T2, spennuþrepið fer yfir 5%. Sama á við um 90 Mvar á T5.
• **Hlutfall raunafls**: Launaflsframleiðsla strengsins er 332,36 $M\text{var}$ sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 346,82 $M\text{var}$. Hér er launafl ördið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

• **Niðurstaða**: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, $2 \times 120 M\text{var}$ á T2 og $3 \times 80 M\text{var} + 25 M\text{var}$ á T5. Setja þarf spólurnar inn í sitthvoru lagi til að spennuprepíð fari ekki yfir 5%. Ekki reyndist mögulegt að ná launaflsframleiðslunni neðar en í 252,94 $M\text{var}$ án þess að spennan á T5 færi niður fyrir 0,9 p.u.

Á myndum 7.19 og 7.20 má sjá hvernig spennan á T2 - T5 er leiðrétt með innsetningu á ofangreindum spólum í veiku kerfi.

Mynd 7.23: Spennugildi á teinum - Sterkt kerfi með auka tein.
7.5.5 5Km-90Km-5Km

Fullt álag - Veikt [367,5 MW + 75 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 110 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 95 Mvar.

- **Spennuþrep:** Ekki er mögulegt að setja 110 Mvar á T2, spennuþrepið fer yfir 5%. Sama á við um 95 Mvar á T5.

- **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 347, 56 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 348, 54 Mvar. Hér er launaflöð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

- **Niðurstæða:** Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólar, 50 Mvar á T2 og 2 x 39 Mvar + 15 Mvar á T5. Setja þarf spólnurnar inn á T5 í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.

Meðal álag - Veikt [196 MW + 40 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 230 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 190 Mvar.

- **Spennuþrep:** Ekki er mögulegt að setja 230 Mvar á T2, spennuþrepið fer yfir 5%. Sama á við um 190 Mvar á T5.
Hlutfall raunafls: Launaflsframleiðsla strengsins er 364, 90 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 373, 16 Mvar.
Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

Niðurstaða: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 3 x 50 Mvar + 10 Mvar á T2 og 4 x 39 Mvar á T5. Setja þarf spólurnar inn á T5 í sitt þreipum lagi til að spennuþrepið fari ekki yfir 5%. Ekki reyndist mögulegt að ná launaflsframleiðslunní neðar en í 266, 04 Mvar án þess að spennan á T5 færi niður fyrir 0,9 p.u.

Lítið álag - Veikt [49 MW + 10 Mvar]:

Spenna á teinum: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 300 Mvar á T2. Sé spólan færð að T5 þarf hún að vera 240 Mvar.

Spennuþrep: Ekki er mögulegt að setja 300 Mvar á T2, spennuþrepið fer yfir 5%. Sama á við um 240 Mvar á T5.

Hlutfall raunafls: Launaflsframleiðsla strengsins er 367, 58 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 382, 33 Mvar.
Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mörkunum.

Niðurstaða: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 4 x 50 Mvar á T2 og 5 x 39 Mvar + 10 Mvar á T5. Setja þarf spólurnar inn á T5 í sitt þreipum lagi til að spennuþrepið fari ekki yfir 5%. Ekki reyndist mögulegt að ná launaflsframleiðslunní neðar en í 274, 75 Mvar án þess að spennan á T5 færi niður fyrir 0,9 p.u.

Ekkert álag - Veikt [0 MW + 0 Mvar]:

Spenna á teinum: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 320 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 250 Mvar.

Spennuþrep: Ekki er mögulegt að setja 320 Mvar á T2, spennuþrepið fer yfir 5%. Sama á við um 250 Mvar á T5.
Hlutfall raunafls: Launaflsframleiðsla strengsins er 363, 28 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 383, 68 Mvar. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengum nær ekki 75% mörkunum.

Niðurstaða: Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólur, 4 x 50 Mvar + 35 Mvar á T2 og 5 x 39 Mvar á T5. Setja þarf spólurnar inn á T5 í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%. Ekki reyndist mögulegt að ná launaflsframleiðslunni neðar en í 273, 53 Mvar án þess að spennan á T5 færi niður fyrir 0, 9 p.u.

Fullt álag - Sterkt [367,5 MW + 75 Mvar]:

- Spenna á teinum: Hér er spennan innan viðeigandi marka, svo ekki er þörf á að setja spólu til að lækka spennuna.
- Spennuþrep: Ekki er mögulegt að setja stærri spólu en 175 Mvar á T2 og 83 Mvar á T5, áður en spennuþrepið fer yfir 5%.
- Hlutfall raunafls: Launaflsframleiðsla strengsins er 348, 13 Mvar.
- Niðurstaða: Til að ná launaflsframleiðslunni niður voru settar spólur, 175 Mvar á T2 og 80 Mvar + 50 Mvar á T5. Setja þarf spólurnar inn á T5 í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%.

Meðal álag - Sterkt [196 MW + 40 Mvar]:

- Spenna á teinum: Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 120 Mvar á T2. Sé spólán færð á T5 þarf hún að vera 55 Mvar.
- Spennuþrep: Báðar stærðir og staðsetningar ganga upp án þess að spennuþrepið fari yfir 5%.
- Hlutfall raunafls: Launaflsframleiðsla strengsins er 367, 81 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 378, 0 Mvar. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengum nær ekki 75% mörkunum.
- Niðurstaða: Til að ná launaflsframleiðslunni niður voru settar spólur, 150 Mvar á T2 og 3 x 80 Mvar + 20 Mvar á T5. Setja þarf spólurnar inn á T5 í sitthvoru lagi til að spennuþrepið fari ekki yfir 5%. Ekki reyndist mögulegt að ná launaflsframleiðslunni neðar en í 270, 86 Mvar án þess að spennan á T5 færi niður fyrir 0, 9 p.u.
Lítið álag - Sterkt [49 MW + 10 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 210 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 100 Mvar.
- **Spennuþrep:** Ekki er mögulegt að setja 210 Mvar á T2, spennuþrepíð fer yfir 5%. Sama á við um 100 Mvar á T5.
- **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 370, 55 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 386, 22 Mvar. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mórkunum.
- **Niðurstáða:** Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólar, 160 Mvar á T2 og 4 x 80 Mvar á T5. Setja þarf spólurnar inn á T5 í sitthvoru lagi til að spennuþrepíð fari ekki yfir 5%. Ekki reyndist mögulegt að ná launaflsframleiðslunni neðar en í 281, 01 Mvar án þess að spennan á T5 færi niður fyrir 0, 9 p.u.

Ekkert álag - Sterkt [0 MW + 0 Mvar]:

- **Spenna á teinum:** Til að spennan á teinum T2-T5 sé innan viðeigandi marka þarf að setja spólu af stærðinni 240 Mvar á T2. Sé spólan færð á T5 þarf hún að vera 110 Mvar.
- **Spennuþrep:** Ekki er mögulegt að setja 240 Mvar á T2, spennuþrepíð fer yfir 5%. Sama á við um 110 Mvar á T5.
- **Hlutfall raunafls:** Launaflsframleiðsla strengsins er 368, 12 Mvar sé spólan staðsett á T2. Ef spólan er staðsett á T5 verður launaflsframleiðslan 387, 28 Mvar. Hér er launaflíð orðið of mikið, svo hlutfall raunafls í strengnum nær ekki 75% mórkunum.
- **Niðurstáða:** Þar sem ofangreindum atriðum er ekki fullnægt með þessum stærðum og staðsetningum á spólunum, voru settar spólar, 175 Mvar á T2 og 4 x 80 Mvar + 10 Mvar á T5. Setja þarf spólurnar inn á T5 í sitthvoru lagi til að spennuþrepíð fari ekki yfir 5%. Ekki reyndist mögulegt að ná launaflsframleiðslunni neðar en í 281, 03 Mvar án þess að spennan á T5 færi niður fyrir 0, 9 p.u.
Á myndum 7.25 og 7.26 má sjá hvernig spennan á T2 - T5 er leiðrétt með innsetningu á ofangreindum spólum í veiku kerfi.

Mynd 7.25: Spennugildi á teinum - Veikt kerfi - Óleiðrétt.

Mynd 7.26: Spennugildi á teinum - Veikt kerfi - Leiðrétt.

Til að skoða betur hvað er að gerast í strengnum var honum skipt upp í tvo jafn stóra hluta og auka teinn settur í miðjuna. Spennan á þeim teini var skoðuð sérstaklega. Sjá má mynd af uppsetningunni í Power World á mynd 7.27.
Mynd 7.27: Uppsetning á kerfinu í Power World - 90Km strengur með auka tein.

Mynd 7.28: Spennugildi á teinum - Veikt kerfi með auka tein.

Á mynd 7.28 sést að þegar ekkert álag er á kerfinu fer spennan í miðjunum strengnum(T6) yfir 1,1 p.u mörkin. Til að leysa það var sett inn auka spóla á T5 að stærðinn 39 Mvar. En það tilfelli er merkt inn á myndina með bleikri línu.
Mynd 7.29: Spennugildi á teinum - Sterkt kerfi með auka tein.
7.5.6 Eftir launaflsútjöfnum

Í töflum 7.11 - 7.18 eru niðurstöður á launaflsframleiðslu og raunaflsframleiðslu jarðstrengs í samsettu flutningskerfi eftir að launaflsútjöfnum hefur farið fram. Einnig kemur fram hversu stórt hlutfall raunaflið er af heildar flutningsgetu strengsins í %.

Tafla 7.11: Veikt kerfi - Fullt álag [375 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>QStrengur [Mvar]</th>
<th>sinφ</th>
<th>cosφ</th>
<th>P [MW]</th>
<th>Raunafl [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>159,1</td>
<td>0,4362</td>
<td>0,9064</td>
<td>341,30</td>
<td>90,6%</td>
</tr>
<tr>
<td>60</td>
<td>192,65</td>
<td>0,5370</td>
<td>0,8592</td>
<td>323,55</td>
<td>85,9%</td>
</tr>
<tr>
<td>70</td>
<td>221,85</td>
<td>0,6300</td>
<td>0,8080</td>
<td>304,27</td>
<td>80,8%</td>
</tr>
<tr>
<td>80</td>
<td>230,88</td>
<td>0,6600</td>
<td>0,7900</td>
<td>297,48</td>
<td>79,0%</td>
</tr>
<tr>
<td>90</td>
<td>249,3</td>
<td>0,7235</td>
<td>0,7495</td>
<td>282,22</td>
<td>75,0%</td>
</tr>
</tbody>
</table>

Tafla 7.12: Veikt kerfi - Meðal álag [200 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>QStrengur [Mvar]</th>
<th>sinφ</th>
<th>cosφ</th>
<th>P [MW]</th>
<th>Raunafl [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>194,35</td>
<td>0,5423</td>
<td>0,8565</td>
<td>322,53</td>
<td>85,7%</td>
</tr>
<tr>
<td>60</td>
<td>241,75</td>
<td>0,6971</td>
<td>0,7667</td>
<td>288,72</td>
<td>76,7%</td>
</tr>
<tr>
<td>70</td>
<td>242,02</td>
<td>0,6980</td>
<td>0,7661</td>
<td>288,49</td>
<td>76,6%</td>
</tr>
<tr>
<td>80</td>
<td>243,51</td>
<td>0,7032</td>
<td>0,7628</td>
<td>287,23</td>
<td>76,3%</td>
</tr>
<tr>
<td>90</td>
<td>266,04</td>
<td>0,7845</td>
<td>0,7077</td>
<td>266,50</td>
<td>70,8%</td>
</tr>
</tbody>
</table>

Tafla 7.13: Veikt kerfi - Lítið álag [50 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>QStrengur [Mvar]</th>
<th>sinφ</th>
<th>cosφ</th>
<th>P [MW]</th>
<th>Raunafl [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>211,71</td>
<td>0,5971</td>
<td>0,8270</td>
<td>311,42</td>
<td>82,7%</td>
</tr>
<tr>
<td>60</td>
<td>227,51</td>
<td>0,6487</td>
<td>0,7969</td>
<td>300,07</td>
<td>79,7%</td>
</tr>
<tr>
<td>70</td>
<td>233,88</td>
<td>0,6701</td>
<td>0,7837</td>
<td>295,13</td>
<td>78,4%</td>
</tr>
<tr>
<td>80</td>
<td>247,61</td>
<td>0,7176</td>
<td>0,7534</td>
<td>283,71</td>
<td>75,3%</td>
</tr>
<tr>
<td>90</td>
<td>274,75</td>
<td>0,8178</td>
<td>0,6838</td>
<td>257,51</td>
<td>68,4%</td>
</tr>
</tbody>
</table>

Í töflu 7.13 má sjá að þegar strengurinn er orðinn 90 K.m er launaflsframleiðsla hans orðin það mikil að hlutfall raunaflið í strengnum nær ekki 75% mörkunum.

Tafla 7.14: Veikt kerfi - Opinn endi [0 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>QStrengur [Mvar]</th>
<th>sinφ</th>
<th>cosφ</th>
<th>P [MW]</th>
<th>Raunafl [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>219,03</td>
<td>0,6208</td>
<td>0,8134</td>
<td>306,31</td>
<td>81,3%</td>
</tr>
<tr>
<td>60</td>
<td>235,78</td>
<td>0,6766</td>
<td>0,7797</td>
<td>293,61</td>
<td>78,0%</td>
</tr>
<tr>
<td>70</td>
<td>242,96</td>
<td>0,7013</td>
<td>0,7640</td>
<td>287,70</td>
<td>76,4%</td>
</tr>
<tr>
<td>80</td>
<td>248,86</td>
<td>0,7220</td>
<td>0,7505</td>
<td>282,61</td>
<td>75,1%</td>
</tr>
<tr>
<td>90</td>
<td>373,53</td>
<td>0,8130</td>
<td>0,6873</td>
<td>258,81</td>
<td>68,7%</td>
</tr>
</tbody>
</table>
Í töflu 7.14 má sjá að þegar strengurinn er orðinn 90 km er launaflsframleiðsla hans orðin það mikil að hlutfall raunafls í strengnum nær ekki 75% mörkunum.

Tafla 7.15: Sterkt kerfi - Fullt álag [375 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>$Q_{Strengur}[Mvar]$</th>
<th>$\sin\phi$</th>
<th>$\cos\phi$</th>
<th>$P[MW]$</th>
<th>Raunafl[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>158,6</td>
<td>0,4347</td>
<td>0,9070</td>
<td>341,54</td>
<td>90,7%</td>
</tr>
<tr>
<td>60</td>
<td>204,72</td>
<td>0,5748</td>
<td>0,8393</td>
<td>316,05</td>
<td>83,9%</td>
</tr>
<tr>
<td>70</td>
<td>240,99</td>
<td>0,6945</td>
<td>0,7684</td>
<td>289,35</td>
<td>76,8%</td>
</tr>
<tr>
<td>80</td>
<td>247,98</td>
<td>0,7189</td>
<td>0,7526</td>
<td>283,38</td>
<td>75,3%</td>
</tr>
<tr>
<td>90</td>
<td>245,31</td>
<td>0,7095</td>
<td>0,7587</td>
<td>285,70</td>
<td>75,9%</td>
</tr>
</tbody>
</table>

Í töflu 7.16 má sjá að þegar strengurinn er orðinn 90 km er launaflsframleiðsla hans orðin það mikil að hlutfall raunafls í strengnum nær ekki 75% mörkunum.

Tafla 7.16: Sterkt kerfi - Meðal álag [200 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>$Q_{Strengur}[Mvar]$</th>
<th>$\sin\phi$</th>
<th>$\cos\phi$</th>
<th>$P[MW]$</th>
<th>Raunafl[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>189,72</td>
<td>0,5280</td>
<td>0,8638</td>
<td>325,28</td>
<td>86,4%</td>
</tr>
<tr>
<td>60</td>
<td>228,44</td>
<td>0,6518</td>
<td>0,7950</td>
<td>299,36</td>
<td>79,5%</td>
</tr>
<tr>
<td>70</td>
<td>240,68</td>
<td>0,6934</td>
<td>0,7691</td>
<td>289,61</td>
<td>76,9%</td>
</tr>
<tr>
<td>80</td>
<td>248,41</td>
<td>0,7204</td>
<td>0,7516</td>
<td>283,01</td>
<td>75,2%</td>
</tr>
<tr>
<td>90</td>
<td>270,86</td>
<td>0,8028</td>
<td>0,6947</td>
<td>261,60</td>
<td>69,5%</td>
</tr>
</tbody>
</table>

Í töflu 7.17 má sjá að þegar strengurinn er orðinn 80 km eða legnri, er launaflsframleiðsla hans orðin það mikil að hlutfall raunafls í strengnum nær ekki 75% mörkunum.

Tafla 7.17: Sterkt kerfi - Lítið álag [50 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>$Q_{Strengur}[Mvar]$</th>
<th>$\sin\phi$</th>
<th>$\cos\phi$</th>
<th>$P[MW]$</th>
<th>Raunafl[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>192,08</td>
<td>0,5353</td>
<td>0,8601</td>
<td>323,89</td>
<td>86,0%</td>
</tr>
<tr>
<td>60</td>
<td>243,39</td>
<td>0,7028</td>
<td>0,7630</td>
<td>287,34</td>
<td>76,3%</td>
</tr>
<tr>
<td>70</td>
<td>244,19</td>
<td>0,7056</td>
<td>0,7612</td>
<td>286,66</td>
<td>76,1%</td>
</tr>
<tr>
<td>80</td>
<td>252,8</td>
<td>0,7360</td>
<td>0,7412</td>
<td>279,09</td>
<td>74,1%</td>
</tr>
<tr>
<td>90</td>
<td>281,01</td>
<td>0,8424</td>
<td>0,6657</td>
<td>250,67</td>
<td>66,6%</td>
</tr>
</tbody>
</table>

Í töflu 7.18 má sjá að þegar strengurinn er orðinn 0 MVA eða legnri, er launaflsframleiðsla hans orðin það mikil að hlutfall raunafls í strengnum nær ekki 75% mörkunum.

Tafla 7.18: Sterkt kerfi - Opinn endi [0 MVA]

<table>
<thead>
<tr>
<th>Lengd strengs [kM]</th>
<th>$Q_{Strengur}[Mvar]$</th>
<th>$\sin\phi$</th>
<th>$\cos\phi$</th>
<th>$P[MW]$</th>
<th>Raunafl[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>214,76</td>
<td>0,6069</td>
<td>0,8214</td>
<td>309,32</td>
<td>82,1%</td>
</tr>
<tr>
<td>60</td>
<td>240,14</td>
<td>0,6915</td>
<td>0,7703</td>
<td>290,06</td>
<td>77,0%</td>
</tr>
<tr>
<td>70</td>
<td>248,69</td>
<td>0,7214</td>
<td>0,7509</td>
<td>282,76</td>
<td>75,1%</td>
</tr>
<tr>
<td>80</td>
<td>299,26</td>
<td>0,9185</td>
<td>0,6070</td>
<td>228,57</td>
<td>60,7%</td>
</tr>
<tr>
<td>90</td>
<td>281,03</td>
<td>0,8425</td>
<td>0,6656</td>
<td>250,64</td>
<td>66,6%</td>
</tr>
</tbody>
</table>
Í töflu 7.17 má sjá að þegar strengurinn er orðinn 80 km eða legnri, er launaflsframleiðsla hans orðin það mikil að hlutfall raunafls í strengnum nær ekki 75% mörkunum.

Hægt er að átta sig betur á niðurstöðunum á mynd 7.30 þar sem búið er að draga upp hlutfall raunafls af flutningsgetunni á móti kilómetralengd. Búið er að merkja inn á myndina línu sem markar 75% mörkin.

Mynd 7.30: Hlutfall raunafls af heildar flutningsgetu strengs.

Eins og sést á mynd 7.30 fer hlutfall raunafls í strengnum lækkandi því lengri sem strengurinn er.
7.6 Spennugildi á teinum

Eins og fram kom í kafla 5.1.1 skal afhendingarspenna vera innan skilgreindra vikmarka, eða +10% – 10%. Í töflum 7.19 og 7.20 má sjá spennugildi á öllum teinum í kerfinu við mikið álag [375 MVA], meðal álag [200 MVA], litið álag [50 MVA] og ekkert álag/opinn enda [0 MVA]. Einnig voru mælingar miðaðar við bæði sterkt [3500 MVA] og veikt [1000 MVA] kerfi. Í töflunum eru dálkar sem merktri eru með –, en það tæknar að ekki var þörf á sérstakri útjöfnun við það tilfell og eru spennugildin því þau sömu og án útjöfnunar. Í töflunum má sjá spennugildi á teinum án launaflsúťjöfnunar og með launaflsúťjöfnun.

Tafla 7.19: Veikt kerfi - $U_{p.u.}$ á teinum T2-T5 við mismunandi álag.

<table>
<thead>
<tr>
<th></th>
<th>375 MVA</th>
<th>200 MVA</th>
<th>50 MVA</th>
<th>0 MVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>25Km-50Km-25Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0,90833</td>
<td>0,94347</td>
<td>1,16558</td>
<td>1,02959</td>
</tr>
<tr>
<td>T3</td>
<td>0,90288</td>
<td>0,94433</td>
<td>1,20180</td>
<td>1,04788</td>
</tr>
<tr>
<td>T4</td>
<td>0,89028</td>
<td>0,93493</td>
<td>1,21050</td>
<td>1,04613</td>
</tr>
<tr>
<td>T5</td>
<td>0,86467</td>
<td>0,91138</td>
<td>1,19939</td>
<td>1,02445</td>
</tr>
<tr>
<td>20Km-60Km-20Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0,99700</td>
<td>–</td>
<td>1,23155</td>
<td>1,04193</td>
</tr>
<tr>
<td>T3</td>
<td>1,00479</td>
<td>–</td>
<td>1,29616</td>
<td>1,06423</td>
</tr>
<tr>
<td>T4</td>
<td>0,99559</td>
<td>–</td>
<td>1,28907</td>
<td>1,06644</td>
</tr>
<tr>
<td>T5</td>
<td>0,97330</td>
<td>–</td>
<td>1,28083</td>
<td>1,04928</td>
</tr>
<tr>
<td>15Km-70Km-15Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1,13532</td>
<td>0,98731</td>
<td>1,30178</td>
<td>0,98731</td>
</tr>
<tr>
<td>T3</td>
<td>1,15694</td>
<td>0,99821</td>
<td>1,34127</td>
<td>0,99549</td>
</tr>
<tr>
<td>T4</td>
<td>1,16263</td>
<td>0,99209</td>
<td>1,36951</td>
<td>0,98663</td>
</tr>
<tr>
<td>T5</td>
<td>1,14910</td>
<td>0,97577</td>
<td>1,36374</td>
<td>0,96595</td>
</tr>
<tr>
<td>10Km-80Km-10Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1,23945</td>
<td>0,96333</td>
<td>1,37651</td>
<td>0,93495</td>
</tr>
<tr>
<td>T3</td>
<td>1,26222</td>
<td>0,96839</td>
<td>1,40938</td>
<td>0,94184</td>
</tr>
<tr>
<td>T4</td>
<td>1,28273</td>
<td>0,95179</td>
<td>1,45175</td>
<td>0,92763</td>
</tr>
<tr>
<td>T5</td>
<td>1,27479</td>
<td>0,93671</td>
<td>1,44813</td>
<td>0,91174</td>
</tr>
<tr>
<td>5Km-90Km-5Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1,33741</td>
<td>0,95696</td>
<td>1,45576</td>
<td>0,92917</td>
</tr>
<tr>
<td>T3</td>
<td>1,35284</td>
<td>0,95099</td>
<td>1,47566</td>
<td>0,93270</td>
</tr>
<tr>
<td>T4</td>
<td>1,39076</td>
<td>0,93303</td>
<td>1,53545</td>
<td>0,91278</td>
</tr>
<tr>
<td>T5</td>
<td>1,38716</td>
<td>0,92374</td>
<td>1,53374</td>
<td>0,90361</td>
</tr>
</tbody>
</table>
Tafla 7.20: **Sterkt kerfi** - $U_{p.u.}$ á teinum T2-T5 við mismunandi álag.

<table>
<thead>
<tr>
<th></th>
<th>375 MVA</th>
<th>200 MVA</th>
<th>50 MVA</th>
<th>0 MVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>án útj.</td>
<td>með útj.</td>
<td>án útj.</td>
<td>með útj.</td>
</tr>
<tr>
<td>25Km-50Km-25Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1,00137</td>
<td>–</td>
<td>1,03975</td>
<td>1,02243</td>
</tr>
<tr>
<td>T3</td>
<td>1,00159</td>
<td>–</td>
<td>1,06790</td>
<td>1,03717</td>
</tr>
<tr>
<td>T4</td>
<td>0,99008</td>
<td>–</td>
<td>1,07297</td>
<td>1,03304</td>
</tr>
<tr>
<td>T5</td>
<td>0,96119</td>
<td>–</td>
<td>1,06013</td>
<td>1,00836</td>
</tr>
<tr>
<td>20Km-60Km-20Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1,01830</td>
<td>–</td>
<td>1,05268</td>
<td>1,01893</td>
</tr>
<tr>
<td>T3</td>
<td>1,02834</td>
<td>–</td>
<td>1,08311</td>
<td>1,03749</td>
</tr>
<tr>
<td>T4</td>
<td>1,02080</td>
<td>–</td>
<td>1,09372</td>
<td>1,03627</td>
</tr>
<tr>
<td>T5</td>
<td>0,99920</td>
<td>–</td>
<td>1,08377</td>
<td>1,01662</td>
</tr>
<tr>
<td>15Km-70Km-15Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1,03448</td>
<td>1,01690</td>
<td>1,06562</td>
<td>0,99765</td>
</tr>
<tr>
<td>T3</td>
<td>1,04911</td>
<td>1,03019</td>
<td>1,09437</td>
<td>1,00147</td>
</tr>
<tr>
<td>T4</td>
<td>1,04716</td>
<td>1,02674</td>
<td>1,11204</td>
<td>0,97987</td>
</tr>
<tr>
<td>T5</td>
<td>1,03186</td>
<td>1,01108</td>
<td>1,10476</td>
<td>0,95170</td>
</tr>
<tr>
<td>10Km-80Km-10Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1,05005</td>
<td>0,99106</td>
<td>1,07847</td>
<td>0,96425</td>
</tr>
<tr>
<td>T3</td>
<td>1,06437</td>
<td>0,99599</td>
<td>1,10157</td>
<td>0,96478</td>
</tr>
<tr>
<td>T4</td>
<td>1,06958</td>
<td>0,97743</td>
<td>1,12777</td>
<td>0,93110</td>
</tr>
<tr>
<td>T5</td>
<td>1,05986</td>
<td>0,96112</td>
<td>1,12302</td>
<td>0,90835</td>
</tr>
<tr>
<td>5Km-90Km-5Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1,06507</td>
<td>0,95984</td>
<td>1,09114</td>
<td>0,96106</td>
</tr>
<tr>
<td>T3</td>
<td>1,07443</td>
<td>0,96041</td>
<td>1,10462</td>
<td>0,96077</td>
</tr>
<tr>
<td>T4</td>
<td>1,08828</td>
<td>0,92408</td>
<td>1,14080</td>
<td>0,91447</td>
</tr>
<tr>
<td>T5</td>
<td>1,08362</td>
<td>0,91328</td>
<td>1,08362</td>
<td>0,90117</td>
</tr>
</tbody>
</table>
Kafli 8

Samantekt

Þegar höfundur hóf vinnu við þetta verkefni hafði hann ákveðna þekkingu á efninu, verkefni sem unnið var í þriggja vikna hagnýtu námskeiði reyndist góður grunnur áður en lagt var af stað í þetta verkefni. Höfundur hafði því nokkuð skýra og góða sýn á þær niðurstöður sem hann vonaðist til að fá.

Þegar vinna við verkefnið var langt á veg komin og flestar hermanir búnar, áttaði höfundur sig á því að hann hafði gleymt að taka tillit til spennuþreps við inn- eða útleysingu á spóllum í kerfinu. Við tók mikil endurvinna, því allar forsendur höfðu breyst, en sem betur fer náðist að klára allar leiðréttingar á réttum tíma.

Niðurstöður hermunar sýna að eftir því sem strengur í samsettu flutningskerfi lengist, því erfiðara er að eiga við launaflíð sem myndast í honum. Í töflu 8.1 má sjá hversu mikil útjöfnun þarf að eiga sér stað í hverju tilfelli fyrir sig. Einnig sést að með lengri streng er meiri þörf á útjöfnun í sterku kerfi til að ná launaflinu niður, svo hlutfall raunafís sér að minnsta kosti 75% af flutningsgetu strengsins. Í töflu 8.2 má svo sjá launaflisframleiðslu strengsins við hvert tilfelli fyrir sig tekna saman. Heildar launaflíð í veiku og sterku kerfi við hverja lengd á strengnum er síðan lagt saman.

Í sterku kerfi er minni þörf á útjöfnun þegar horft er einungis til spennu á teinum. Hins vegar er meiri þörf á slíkri útjöfnun í veiku kerfi. Það er nokkuð ljóst að eftir því sem jarðstrengur í flutningskerfi verður lengri, því hærri spenna verður í honum sem gerir það að verkum að launaflisframleiðsla strengsins eykst.
Tafla 8.1: Heildar launaflsútjöfnun við hvert tilfelli.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>37</td>
<td>87</td>
<td>135</td>
<td>140</td>
<td>399</td>
</tr>
<tr>
<td>Sterkt</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>140</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>0</td>
<td>117</td>
<td>211</td>
<td>211</td>
<td>539</td>
</tr>
<tr>
<td>Sterkt</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>350</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>50</td>
<td>151</td>
<td>302</td>
<td>302</td>
<td>805</td>
</tr>
<tr>
<td>Sterkt</td>
<td>50</td>
<td>206</td>
<td>306</td>
<td>306</td>
<td>868</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>98</td>
<td>224</td>
<td>372</td>
<td>367</td>
<td>822</td>
</tr>
<tr>
<td>Sterkt</td>
<td>165</td>
<td>360</td>
<td>475</td>
<td>505</td>
<td>1505</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>143</td>
<td>316</td>
<td>405</td>
<td>430</td>
<td>1294</td>
</tr>
<tr>
<td>Sterkt</td>
<td>305</td>
<td>410</td>
<td>480</td>
<td>505</td>
<td>1700</td>
</tr>
</tbody>
</table>

Tafla 8.2: Launaflsframleiðsla strengs.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>159,1</td>
<td>194,35</td>
<td>211,71</td>
<td>219,03</td>
<td>784,19</td>
</tr>
<tr>
<td>Sterkt</td>
<td>158,6</td>
<td>189,72</td>
<td>192,08</td>
<td>214,76</td>
<td>755,16</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>192,65</td>
<td>241,75</td>
<td>227,51</td>
<td>235,78</td>
<td>897,69</td>
</tr>
<tr>
<td>Sterkt</td>
<td>204,72</td>
<td>228,44</td>
<td>243,39</td>
<td>240,14</td>
<td>916,69</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>221,85</td>
<td>242,02</td>
<td>233,88</td>
<td>242,96</td>
<td>940,71</td>
</tr>
<tr>
<td>Sterkt</td>
<td>240,99</td>
<td>240,68</td>
<td>244,19</td>
<td>248,69</td>
<td>974,55</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>230,88</td>
<td>243,51</td>
<td>247,61</td>
<td>248,86</td>
<td>970,86</td>
</tr>
<tr>
<td>Sterkt</td>
<td>247,98</td>
<td>248,41</td>
<td>252,8</td>
<td>299,26</td>
<td>1048,45</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veikt</td>
<td>249,3</td>
<td>266,04</td>
<td>274,75</td>
<td>273,53</td>
<td>1063,62</td>
</tr>
<tr>
<td>Sterkt</td>
<td>245,31</td>
<td>270,86</td>
<td>281,01</td>
<td>281,03</td>
<td>1078,21</td>
</tr>
</tbody>
</table>
Á mynd 8.1 má sjá hvernig launaflsframleiðslan eykst með aukinni lengd á streng. Inn á myndinni er punktalína sem markar það gildi sem launaflíð má ekki fara yfir áður en hlutfall raunafls í strengnum fer að verða of lítið.

Mynd 8.1: Launaflsframleiðsla í streng.

Kostnaðarhlíðin á lagningujarðstrengs og uppsetningu á þeim búnaði sem þörfr er á til að framkvæma launaflsútjöfnunina var ekki skoðaður í þessu verkefni. Gaman væri hins vegur að skoða þá hlið málsins, þar sem höfundur væri mikið til í að vita hversu mikill kostnaður er á því að tengja t.d. 50 Mvar spólu við svona kerfi. Það hefði verið háegt að vinna áfram í þessu verkefni þar sem þetta viðfangsefni er flókið á mærgan hátt. En höfundur ákvæði að útfæra lausnina á þennan hátt, en eflautst er möguleiki á að útfæra þetta á ýmsa aðra vegu. Nokkrar hugmyndir eru um það hvernig háegt væri að taka þetta verkefni lengra, en þar má nefna að skoða kerfið á lægri spennum, t.d. 132 kV og 66 kV. Einnig væri áhugavert að bera saman kostnað á öllum þeim tilfellum sem komu fram í verkefninu.
Heimildir

Viðauki A

R, L, C - Útreikningar

A.1 R, L, C - Loftlína

Þegar viðnámíð R er reiknað er miðast við rekstrar hitastigið 65°C. Til að finna eðlisviðnám leiðarans við 65°C er jafna A.1 notuð. Eðlisviðnám áls við 20°C er 2, 83 \(\times 10^{-8} \) Ωm samkvæmt töflu 4.3, bls 175 í [4] og fastinn T er 228, 1°C.

\[
\rho_{T2} = \rho_{T1} \times \left(\frac{T_2 + T}{T_1 + T} \right) \quad (A.1)
\]

Næst er dc viðnám leiðarans fundið með jöfnu A.2. Þar sem l er lengd leiðarans, hér er miðast við 1 km langa línu, þar sem þetta eru grunn reikningar, auðvelt er því að reikna út gildi fyrir lengri línur. A er þverskurðarflatarmál strengsins og er það gildi fengið úr töflu 6.4.

\[
R_{dc,T} = \frac{\rho_{T1} \times l}{A} \quad (A.2)
\]

Þegar búið er að finna dc viðnámíð er hægt að reikna út ac viðnám línunnar og er það gert með jöfnu A.3. Þegar ac viðnámíð er fundið eru tekin inn tvö gildi, skin effect \((y_s)\) og spiral effect \((y_p)\). Upplýsingar um stærðir þessara gilda eru fengnar frá umsjónakennara verkefninsins [13].

\[y_s = 4\%\] og \[y_p = 2\%\]

\[
R_{ac} = R_{dc}(1 + y_s + y_p) \quad (A.3)
\]

Næst er rýmd leiðarans fundin með jöfnu A.4. Til að geta reiknað rýmdina út þarf að finna rúmfæðilegt hlutfall milli fasa línunnar. Fjarlægðin \(D\) milli fasa er 10 metrar svo að \(D_{AB} = 10m\), \(D_{BC} = 10m\) og \(D_{CA} = 20m\). \(D_{eq}\) er þriðja rótin af margfeldi bilsins milli fasa í þriggja fasa línu.

\[
D_{eq} = \sqrt[3]{D_{AB} \times D_{BC} \times D_{CA}} \quad (A.4)
\]
Rýmdin er svo reiknuð út með jöfnu A.5, þar sem $r = 18,09 \ mm$ sem fengið er úr töflu 6.4 og $\epsilon = 8.854 \times 10^{-12}$

$$C_{an} = \frac{2 \pi \epsilon}{\ln \left(\frac{D_{eq}}{r} \right)} \quad (A.5)$$

Spanið, L er svo fundið með jöfnu A.6. En áður en hægt er að nota þá jöfnu þarf að finna r'. En $r' = e^{-1/4r}$ þar sem r er radius leiðarans.

$$L_a = 2 \times 10^{-7} \times \ln \left(\frac{D_{eq}}{r'} \right) \quad (A.6)$$

Spanviðnámið er svo fundið með jöfnu A.7, þar sem miðast er við að tóðin, f sé 50 Hz.

$$X_L = 2 \pi f L_a \quad (A.7)$$

Að lokum er shuntadmittance – to – neutral reiknuð með jöfnu A.8.

$$B = j C_{an} \omega \quad (A.8)$$

Niðurstöður úr fyrrnefndum reikningum má sjá í töflu A.1.

| Tafla A.1: Niðurstaða RLC útreikninga fyrir loftlínu. |
|---------------------------------|----------------|----------------|------------|-----------|-------|---------|---------------|
| $\rho_{50}[\Omega/m]$ | $R_{dc,50}[\Omega]$ | $R_{ac,50}[\Omega]$ | $D_{eq}[m]$ | $C_{an}[F/km]$ | $r'[mm]$ | $L_a[H/km]$ | $X_L[\Omega/km]$ | $B[S/km]$ |
| 3.1722 \times 10^{-8} | 0.0040973 | 0.043431 | 12.5992 | 8.4985 \times 10^{-9} | 14.0885 | 0.00136 | 0.42725 | 2.6698 \times 10^{-6} |

A.2 R,L,C - Jarðstrengur

Til að hægt sé að reikna út viðnám[R], span[L] og rýmd[C] fyrir jarðstreng þarf að finna dc viðnám leiðarans, skin effect (y_s) og proximity effect (y_p). Rekstrar hitastig jarðstrengsins er 65°C. Jafna A.9 er notuð til að reikna út ac viðnám jarðstrengsins. R' er dc viðnám leiðarans. En samkvæmt gagnablado frá ABB [8] er dc viðnámið, $R'_{dc} = 0.0149 \ \Omega/Km$ við 20°C.
\[R = R' \left(1 + y_s + y_p \right) \] \hspace{1cm} (A.9)

Skin effect \((y_s)\) er fundið á eftirfarandi hátt [12].

\[X_S = \sqrt{\frac{8 \cdot \pi \cdot f}{R'} \cdot 10^{-7} \cdot K_S} \] \hspace{1cm} (A.10)

Vænt sem \(K_S = 1\)

Skin effect er svo reiknað út með jöfnu A.11.

\[y_s = \frac{X_S^4}{192 + 0.8 \cdot X_S^4} \] \hspace{1cm} (A.11)

Proximity effect er svo fundinn á eftirfarandi hátt [12].

\[X_P = \sqrt{\frac{8 \cdot \pi \cdot f}{R'} \cdot 10^{-7} \cdot K_P} \] \hspace{1cm} (A.12)

Vækt sem gildið á \(K_P = 1\)

Proximity effect er svo reiknað út með jöfnu A.13. Vænt sem \(d_c\) er þvermál leiðarans og \(S\) er fjarlægð milli leiðara.

\[y_P = \frac{X_P^4}{192 + 0.8 \cdot X_P^4} \cdot \left(\frac{d_c}{S}\right)^2 \cdot \left[0.312 \cdot \left(\frac{d_c}{S}\right)^2 + \frac{1.18}{X_P^4} \cdot \frac{192 + 0.8 \cdot X_P^4 + 0.27}{192 + 0.8 \cdot X_P^4 + 0.27}\right] \] \hspace{1cm} (A.13)

Niðurstöður úr fyrnefndum reikningum má sjá í töflu A.2.

<table>
<thead>
<tr>
<th>(X_S)</th>
<th>(X_P)</th>
<th>(y_S)</th>
<th>(y_P)</th>
<th>(R_{m, 65} [\Omega/Km])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.091836</td>
<td>0.091836</td>
<td>3.7046 \times 10^{-7}</td>
<td>0.055745</td>
<td>0.018584</td>
</tr>
</tbody>
</table>

Með upplýsingarnar úr töflu A.2 er því hægt að reikna út stuðlana \(B\) og \(X_L\), og má sjá þá útreikninga hér fyrir neðan.

\[B = jC \cdot \omega = j0.24 \mu F/Km \cdot 2 \cdot \pi \cdot 50Hz = j7.5398 \times 10^{-5} S/Km \] \hspace{1cm} (A.14)

\[X_L = 2 \cdot \pi \cdot f \cdot L = 2 \cdot \pi \cdot 50Hz \cdot 0.49mH/Km = 0.153938 \Omega/Km \] \hspace{1cm} (A.15)
A.3 A B C D Parametrar

A B C D parametrar fyrir línuna og strenginn eru reiknadi með eftirfarandi jöfnum [4].

\[z = R + j\omega L \quad [\Omega/m] \quad (A.16) \]

\[y = G + j\omega C \quad [S/m] \quad (A.17) \]

\[Y = y \ast l \quad (A.18) \]

\[Z = z \ast l \quad (A.19) \]

\[A = D = \left(1 + \frac{YZ}{2} \right) \quad (A.20) \]

\[B = Z = z \ast l \quad (A.21) \]

\[C = Y \ast \left(1 + \frac{YZ}{4} \right) \quad (A.22) \]
Viðauki B

Spennugildi á teinum

B.1 Lína 25 Km - Strengur 50 Km - Lína 25 Km

Á myndum B.1 - B.4 má sjá þegar spennan á T2-T5 er dregin upp á graf. Inn á gráfinu eru vikmörkin $+10\% / -10\%$ eða 0.9 p.u. og 1.1 p.u. sett inn með punktalínun.

Mynd B.1: Spennugildi á teinum - Veikt kerfi - Óleiðrétt.
Viðauki B. Spennugildi á teinum B.1. Lína 25 Km - Strengur 50 Km - Lína 25 Km

Mynd B.2: Spennugildi á teinum - Veikt kerfi - Leiðrétt.

Mynd B.3: Spennugildi á teinum - Sterkt kerfi - Óleiðrétt.
B.2 Lína 20 Km - Strengur 60 Km - Lína 20 Km

Á myndum B.5 - B.8 má sjá þegar spennan á T2-T5 er dregin upp á graf. Inn á grafinu eru vikmörkin $+10\%$ / -10% eða 0.9 p.u. og 1.1 p.u. sett inn með punktalínunum.

Mynd B.4: Spennugildi á teinum - Sterkt kerfi - Leiðrétt.

Mynd B.5: Spennugildi á teinum - Veikt kerfi - Óleiðrétt.
Viðauki B. Spennugildi á teinum B.2. Lína 20 Km - Strengur 60 Km - Lína 20 Km

Mynd B.7: Spennugildi á teinum - Sterkt kerfi - Óleiðrétt.
Viðauki B. Spennugildi á teininum B.3. Lína 15 Km - Strengur 70 Km - Lína 15 Km

Mynd B.8: Spennugildi á teininum - Sterkt kerfi - Leiðrétt.

Mynd B.9: Spennugildi á teininum - Veikt kerfi - Óleiðrétt.

B.3 Lína 15 Km - Strengur 70 Km - Lína 15 Km

Á myndum B.9 - B.12 má sjá þegar spennan á T2-T5 er dregin upp á graf. Inn á grafinu eru vikmörkin $+10\%/-10\%$ eða 0.9 p.u. og 1.1 p.u. sett inn með punktalínunum.

Mynd B.9: Spennugildi á teininum - Veikt kerfi - Óleiðrétt.

Mynd B.11: Spennugildi á teinum - Sterkt kerfi - Óleiðrétt.
Viðauki B. Spennugildi á teinum B.4. Lína 10 Km - Strengur 80 Km - Lína 10 Km

B.4 Lína 10 Km - Strengur 80 Km - Lína 10 Km

Á myndum B.13 - B.16 má sjá þegar spennan á T2-T5 er dregin upp á graf. Inn á grafinu eru vikmörkin $+10\% / -10\%$ eða 0.9 p.u. og 1.1 p.u. sett inn með punktalínum.

Mynd B.14: Spennugildi á teinum - Veikt kerfi - Leiðrét.

Mynd B.15: Spennugildi á teinum - Sterkt kerfi - Óleiðrét.
B.5 Lína 5 Km - Strengur 90 Km - Lína 5 Km

Á myndum B.17 - B.20 má sjá þegar spennan á T2-T5 er dregin upp á graf. Inn á grafinu eru vikmörkin $+10\%/ -10\%$ eða 0.9 p.u. og 1.1 p.u. sett inn með punktalínum.

Mynd B.16: Spennugildi á teinum - Sterkt kerfi - Leiðrétt.

Mynd B.17: Spennugildi á teinum - Veikt kerfi - Óleiðrétt.
Mynd B.18: Spennugildi á teinum - Veikt kerfi - Leiðrétt.

Mynd B.19: Spennugildi á teinum - Sterkt kerfi - Óleiðrétt.
Leidrett - Sterkt kerfi. 5Km - 90Km - 5Km.

Mynd B.20: Spennugildi á teinum - Sterkt kerfi - Leiðrét.
Viðauki C

Spennuris í streng

C.1 Lína 25 Km - Strengur 50 Km - Lína 25 Km

Myndir C.1 og C.2 sýna spennugildin á teinunum T4-T6 þegar engin launaflsúttjófnun á sér stað í kerfinu.

Mynd C.1: Spennugildi á teinum - Veikt kerfi með auka tein - Óleiðrétta.
Viðauki C. Spennuris í streng C.2. Lína 20 Km - Strengur 60 Km - Lína 20 Km

Mynd C.2: Spennugildi á teinum - Sterkt kerfi með auka tein - Óleiðrétt.

C.2 Lína 20 Km - Strengur 60 Km - Lína 20 Km

Myndir C.3 og C.4 sýna spennugildin á teinunum T4-T6 þegar engin launaflsúttjófnun
á sér stað í kerfinu.

Mynd C.3: Spennugildi á teinum - Veikt kerfi með auka tein - Óleiðrétt.
C.3 Lína 15 Km - Strengur 70 Km - Lína 15 Km

Myndir C.5 og C.6 sýna spennugildin á teinunum T4-T6 þegar engin launaflsútnjófnun á sér stað í kerfinu.

Mynd C.5: Spennugildi á teinum - Veikt kerfi með auka tein - Óleiðrétt.
C.4 Lína 10 Km - Strengur 80 Km - Lína 10 Km

Myndir C.7 og C.8 sýna spennugildin á teinunum T4-T6 þegar engin launaflsútfjöfnun á sér stað í kerfinu.

Mynd C.7: Spennugildi á teinum - Veikt kerfi með auka tein - Óleiðrétt.
C.5 Lína 5 Km - Strengur 90 Km - Lína 5 Km

Myndir C.9 og C.10 sýna spennugildin á teinunum T4-T6 þegar engin launaflsútljófnun á sér stað í kerfinu.
Mynd C.10: Spennugildi á teinum - Sterkt kerfi með auka tein - Óleiðrétt.
Viðauki D

Spennuþrep

Spennuþrepið í hverju tilfelli var reiknað með jöfnu D.1.

\[\Delta U(\%) \simeq \frac{Q}{S_{cc}} \times 100\% \quad (D.1) \]

Þar sem \(Q \) er stærð spólu/þéttirs sem settur er inn á þeim stað í kerfinu sem reikna á spennuþrepið. \(S_{cc} \) er það skammhlaupsafl á þeim stað í kerfinu sem setja á spólu/þétti inn.

D.1 25Km - 50Km - 25Km

- Veikt kerfi:

Fullt álag:

\[\Delta U(\%) \simeq \frac{37}{734,381} \times 100\% = 5,03\% \quad (D.2) \]

Meðal álag:

\[\Delta U(\%) \simeq \frac{37}{734,381} \times 100\% = 5,03\% \quad (D.3) \]

Litið álag:

\[\Delta U(\%) \simeq \frac{30}{734,381} \times 100\% = 4,08\% \quad (D.4) \]

Opinn endi:

\[\Delta U(\%) \simeq \frac{30}{734,381} \times 100\% = 4,08\% \quad (D.5) \]
• Sterkt kerfi:

Fullt álag:
\[
\Delta U(\%) \simeq \frac{0}{1517,330} \times 100\% = 0\%
\]
(D.6)

Meðal álag:
\[
\Delta U(\%) \simeq \frac{0}{1517,330} \times 100\% = 0\%
\]
(D.7)

Lítið álag:
\[
\Delta U(\%) \simeq \frac{50}{1517,330} \times 100\% = 3,29\%
\]
(D.8)

Opinn endi:
\[
\Delta U(\%) \simeq \frac{40}{1517,330} \times 100\% = 2,63\%
\]
(D.9)

D.2 20Km - 60Km - 20Km

• Veikt kerfi:

Fullt álag:
\[
\Delta U(\%) \simeq \frac{0}{744,780} \times 100\% = 0\%
\]
(D.10)

Meðal álag:
\[
\Delta U(\%) \simeq \frac{37}{744,780} \times 100\% = 4,96\%
\]
(D.11)

Lítið álag:
\[
\Delta U(\%) \simeq \frac{37}{744,780} \times 100\% = 4,96\%
\]
(D.12)

Opinn endi:
\[
\Delta U(\%) \simeq \frac{37}{744,780} \times 100\% = 4,96\%
\]
(D.13)
Viðauki D. Spennuþrep

D.3. 15Km - 70Km - 15Km

- Sterkt kerfi:

 Fullt álag:
 \[\Delta U(\%) \simeq \frac{0}{1551,710} \times 100\% = 0\% \]
 (D.14)

 Meðal álag:
 \[\Delta U(\%) \simeq \frac{50}{1551,710} \times 100\% = 3,22\% \]
 (D.15)

 Lítið álag:
 \[\Delta U(\%) \simeq \frac{50}{1551,710} \times 100\% = 3,22\% \]
 (D.16)

 Opinn endi:
 \[\Delta U(\%) \simeq \frac{50}{1551,710} \times 100\% = 3,22\% \]
 (D.17)

D.3 15Km - 70Km - 15Km

- Veikt kerfi:

 Fullt álag:
 \[\Delta U(\%) \simeq \frac{0}{755,914} \times 100\% = 0\% \]
 (D.18)

 Meðal álag:
 \[\Delta U(\%) \simeq \frac{38}{755,914} \times 100\% = 5,02\% \]
 (D.19)

 Lítið álag:
 \[\Delta U(\%) \simeq \frac{38}{755,914} \times 100\% = 5,02\% \]
 (D.20)

 Opinn endi:
 \[\Delta U(\%) \simeq \frac{38}{755,914} \times 100\% = 5,02\% \]
 (D.21)
• Sterkt kerfi:

Fullt álag:
\[\Delta U(\%) \simeq \frac{0}{1587,43} \times 100\% = 0\% \]
(D.22)

Meðal álag:
\[\Delta U(\%) \simeq \frac{78}{1587,43} \times 100\% = 4,91\% \]
(D.23)

Lítið álag:
\[\Delta U(\%) \simeq \frac{78}{1587,43} \times 100\% = 4,91\% \]
(D.24)

Opinn endi:
\[\Delta U(\%) \simeq \frac{78}{1587,43} \times 100\% = 4,91\% \]
(D.25)

D.4 10Km - 80Km - 10Km

• Veikt kerfi:

Fullt álag:
\[\Delta U(\%) \simeq \frac{38}{767,761} \times 100\% = 4,95\% \]
(D.26)

Meðal álag:
\[\Delta U(\%) \simeq \frac{38}{767,761} \times 100\% = 4,95\% \]
(D.27)

Lítið álag:
\[\Delta U(\%) \simeq \frac{38}{767,761} \times 100\% = 4,95\% \]
(D.28)

Opinn endi:
\[\Delta U(\%) \simeq \frac{38}{767,761} \times 100\% = 4,95\% \]
(D.29)
Viðauki D. Spennuþrep D.5. 5Km - 90Km - 5Km

- Sterkt kerfi:

Fullt álag:
\[\Delta U(\%) \simeq \frac{65}{1624,2} \times 100\% = 4,0\% \] \hspace{1cm} (D.30)

Meðal álag:
\[\Delta U(\%) \simeq \frac{80}{1624,2} \times 100\% = 4,92\% \] \hspace{1cm} (D.31)

Lítið álag:
\[\Delta U(\%) \simeq \frac{80}{1624,2} \times 100\% = 4,92\% \] \hspace{1cm} (D.32)

Opinn endi:
\[\Delta U(\%) \simeq \frac{80}{1624,2} \times 100\% = 4,92\% \] \hspace{1cm} (D.33)

D.5 5Km - 90Km - 5Km

- Veikt kerfi:

Fullt álag:
\[\Delta U(\%) \simeq \frac{39}{780,233} \times 100\% = 4,99\% \] \hspace{1cm} (D.34)

Meðal álag:
\[\Delta U(\%) \simeq \frac{39}{780,233} \times 100\% = 4,99\% \] \hspace{1cm} (D.35)

Lítið álag:
\[\Delta U(\%) \simeq \frac{39}{780,233} \times 100\% = 4,99\% \] \hspace{1cm} (D.36)

Opinn endi:
\[\Delta U(\%) \simeq \frac{39}{780,233} \times 100\% = 4,99\% \] \hspace{1cm} (D.37)
• Sterkt kerfi:

Fullt álag:
\[\Delta U(\%) \simeq \frac{80}{1661,73} \times 100\% = 4,81\% \] \hspace{1cm} (D.38)

Meðal álag:
\[\Delta U(\%) \simeq \frac{80}{1661,73} \times 100\% = 4,81\% \] \hspace{1cm} (D.39)

Lítið álag:
\[\Delta U(\%) \simeq \frac{80}{1661,73} \times 100\% = 4,81\% \] \hspace{1cm} (D.40)

Opinn endi:
\[\Delta U(\%) \simeq \frac{80}{1661,73} \times 100\% = 4,81\% \] \hspace{1cm} (D.41)