BREIKKUN VEGBRÚAR YFIR LAXÁ Á BREID FYRIR GANGANDI OG HJÓLANDI VEGFARENDUR MED FRP
Hilmar Ástþórsson

Lokaverkefni í byggingartæknifraði BSc

2015

Höfundur: Hilmar Ástþórsson
Kennitala: 3103912639
Leiðbeinandi: Fjalar Hauksson

Tækn- og verkfæðideild
School of Science and Engineering
Tækni- og verkfræðideild

Heiti verkefnis:
Breikkun vegbrúar yfir Laxá á Breið fyrir gangandi og hjólandi vegfarendur með FRP

Námsbraut:
Byggingartæknifræði BSc

Tegund verkefnis:
Lokaverkefní í tæknifræði BSc

Önn:
Haustönn 2015

Námskeið:
BT
LOK1012

Höfundur:
Hilmar Ástþórsson

Ágríp:
Markmið þessa verkefnis er að hanna breikkun á vegbrú yfir Laxá á Breið fyrir gangandi og hjólandi vegfarendur með FRP. Samhliða hönnuninni verður gert grein fyrir FRP almennt og uppvöxt þeirra til notkunar í burðavirkjum. Hönnun brúarinnar byggir á upplýsingum og hönnunarbæklingi frá Fiberline Composites, einum fremsta framleiðanda FRP prófíla í heiminni.

Umsjónarkennari:
Guðbrandur Steinþórsson

Leiðbeinandi:
Fjalar Hauksson

Fyrirtæki/stofnun:

Dagsetning:
03.12.2015

Lykilorð íslensk:
Trefjastyrktar fjölliður, göngubrú

Lykilorð ensk:
Fiber reinforced polymers, footbridge

Dreifing:
- opin □
- lokuð □

- til:
Formáli

Þónokkrar hugmyndir skutust upp á yfirborðið við leið af viðfangsefni fyrir lokaverkefni mitt í byggingartæknið á Háskólann í Reykjavík, sumar verri en aðrar. Það var hins vegar eitt viðfangsefni sem heillaði mikið alveg frá byrjun. Ækveðið var að skoða möguleika á hónnun göngubrúar fyrir gangandi og hjólandi vegfarendur úr FRP, trefjastyrktum plastfjölóðum. Notkun FRP í burðarvíkri hefur færst í aukanna án síðustu árum og hafa þau til að mynda verið notuð í brúarsmiði í Evrópu og víðar.

Sjálfur hef ég starfað hjá Trefjum ehf undanfarin ár þar sem bátasmíði úr trefjaplasti er aðalsmerki fyrirtækisins. Því fannst mér spennandi að kynna enn betur efninu og möguleikum þeirra þegar kemur að hónnun burðarvirkja. Í verkefnið verður sett fram hónnun á breikkun núverandi vegbrúar við Laxá á Breið úr FRP fyrir gangandi og hjólandi vegfarendur.

Einnig vil ég koma fram þökkum til fjölskyldu minnar sem ávallt hafur verið til staðar í gegnum námið, sama má segja um þann þetta kjarna sem myndast hefur í nemendahópnum sem fylgst hefur í gegnum námið. Þar eru menn alltaf tilbúnir að líta upp úr sínum verkefnum til að hjálpa náunganum við hliðiná. Að lokum vil ég koma fram kærum þökkum til unnustu minnar Önnu Maríu Jónsdóttur sem ávallt hefur staðið við bakið og mér og sýnt mikinn skilning á þeim tíum sem undirlægunaðir hafa verið við lærdóm.
Efnisyfirlit

Formáli ... 1
1. Inngangur .. 3
1. Freðileg umfjöllun ... 4
 2.1 Hvað er FRP ... 4
 2.2 Almennt um trefjaplast .. 6
 2.3 Framleiðsla .. 7
 2.4 Efnsiseiginleikar og styrkgildi ... 9
2. Almennt um verkefnið .. 12
3. Hönnunarforsendur ... 13
 4.1 Staðlar, leiðbeiningar og hönnunarbæklingar ... 13
 4.2 Álag ... 14
 4.3 Álagsfélétur .. 16
4. Hönnun brúar .. 18
 5.1 Knekti .. 19
6. Samtengingar .. 23
 6.1 Boltaðar tengingar .. 23
7. Niðurstöður .. 33
 7.1 SAP2000 .. 33
 7.2 Spennur í þversniðum ... 35
 7.3 Niðurbeygjur ... 36
 7.4 Skerþol .. 37
 7.5 Prýstispennur í steypu ... 37
 7.6 Samtengingar ... 38
 7.7 Þyngd brúarvirkis ... 40
 7.8 Samantekt ... 41
8. Kostnaður ... 42
9. Lokaorð ... 45
10. Heimildaskrá ... 46
11. Myndaskrá ... 48
12. Töfluskrá ... 50
Viðauki I –Snjó og vindálag ... 51
Viðauki II – Niðurbeygjur- og spennumeiningar .. 55
Viðauki III - Samtengingar ... 67
Viðauki III - Boltafesting vinkils við steyptan brúarkant .. 105
Viðauki IV - Teikningar ... 109
1. Inngangur

Notkun trefjastyrktra fjöllíða (FRP) í burðarvirki hefur verið að førast í aukanna í Evrópu og víðar, þó ber afskaplega lítið af því hér á landi. Hér landi er trefjaplast aðallega notað í bátaframleiðslu. Á því sviði hafa menn öðlast mikla þekkingu og reynslu og þeir bátar sem framleiddir hafa verið hér á landi getið sér góðs orðstýrs víða um heim. Í þessu verkefni verður skoðaður sát möguleiki að hanna göngubrú sem eingöngu er framleidd úr FRP. Á Íslandi standa menn frammir fyrir aukinni umferð gangandi og hjólandi vegfarenda á þjóðvegum. Þetta hefur sérstaklega verið að skapa vandamál á þjóðvegabrúm þar sem ekki eru til staðar sérstakar göngu- og hjólareinar. Ekki er nægilega mikið pláss fyrir bæði akandi umferð og gangandi og hjólandi vegfarendur sem getur bæði skapað hættu og tafið umferð. Til að leysa úr þessu hafa menn skoðað þann möguleika að breikka núverandi brýr. Við slíkar pælingar velta menn fyrir sér hvaða byggingarefni skal nota.

Brúarvirki úr FRP er talinn mjög álitlegur kostur þar sem FRP býr yfir miklum styrk en er um leið létt efni. Til eru fjölmörg dæmi í Evrópu þar sem byggðar hafa verið bæði göngu- og vegbrýr úr FRP. Í þessu verkefni verður rýnt í þá kosti og galla við breikku vegbrúa með FRP. Tekin er sérstaklega fyrir vegbrúinn yfir Laxá á Breið og hönnuð breikkun á þeirri brú með FRP.

Fiberline Composites er fyrirtæki staðsett í Danmörku sem er mjög framarlega í framleiðslu á FRP prófflum til notkunar í burðarvirki. Við hönnun brúarinnar er notast við vörur frá þeim. Þeir hafa gefið út hönnunarbæklinginn Fiberline Design Manual sem stuðst er við í útreikningum og hönnun brúarinnar. Í honum má finna allar nauðsynlegar tæknupplýsingar og efnisgæði FRP prófila sem þeir framleiða.
1. Fræðileg umfjöllun

2.1 Hvað er FRP

Trefjaplast er líklega víðara hugtak en almenning gerir sér grein fyrir. Til eru ótal aðferðir við framleiðslu og útlögn trefjaplasts. Trefjaplast er í raun samsett efni úr bæði plastfjölliðum og trefjum. Þessi tvö efni hafa ekki miðið fram að færa ein og sér, en þegar þau vinna saman verður til gríðarlega öflugt efni sem trefjaplastið er. Plastfjölliðurnar sem um ræðir eru í raun og veru límið sem bindur saman trefjarnar, verndar þær og færir krafta út í trefjarnar. Oftast er talað um resin þegar rætt er um það efni sem bindur trefjarnar saman. Þó er aragrúi til af mismunandi útfærslum og gerðum af límefnum. Trefjarnar sem límið umlykur eru notaðar til styrkingar, algengu gestur trefja eru koltrefjar, plasttrefjar og glertrefjar.[2]

Fiberline Composites er fyrirtæki staðsett í Danmörku sem er einn stærsti og virtasti framleiðandi á prófílum úr trefjastyrktum fjölliðum til notkunar í burðarvirkjum. Við hónnun brúarinnar í þessu verkefni verður notast við hónnunarbæklung, tæknupplýsingar og annað gagnlegt frá þeim, notaðar var við prófíla frá þeim í hónnun á brúarvirkinu. Í þeirra framleiðslu er notast við glertrefjar sem styrkingarefni.[1] Misjafnt getur verið hvað trefjaplast er kallað þar sem glertrefjar eru notaðar sem styrkingarefni. Sumstaðar er talað um „FRP“ á meðan aðrir talur um „GRP“. Til að draga út öllum misskilningi er þetta í raun og veru alveg sami hluturinn nema orðaður á mismunandi hátt. Skilgreiningin á FRP er plastefni styrkt með trefjagleri (e. Fibre (glass) Reinforced Plastics) á meðan að GRP umorðar það með skilgreiningunni plastefni styrkt með glertrefjum (e. Glass (fibre) Reinforced Plastics). Héðan í frá þegar verið er að ræða trefjastyrktar fjölliður, til að mynda þegar verið er að vísa í það efni sem notað er í prófíla sem Fiberline Composites framleiðir verður alltaf talað um FRP.[16]

2.1.1 Kostir og gallar

Prófílar framleiddir úr FRP hafa verið að ryðja sér til rúms meira og meira á síðustu árum. Framleiðslunni og geðunum í heild hefur auðvitað farið fram frá því í upphafi þegar framleiðsla var hafin á þeim. Nú í dag er öhætt að segja að prófílar framleiddir úr FRP séu komnir meira inn í myndina þegar hónnun var standa frammi fyrir vali á byggingarefni fyrir burðarvirki. Hingað til hefur valið yfirleitt staðið á milli þrigga algengu byggingarefnnann, það er að segja steypu, stálki og tímbri. Auðvitað hefur viðfangsefnið og verkefnið sem unnið er að hverju sini mikil áhrif á það hvaða byggingarefni verður fyrir valinu. Sundum kemur FRP einfaldlega ekki til greina, en þar sem að þyngd burðarvirkis hefur mikið að segja er margt sem ætti að ýta hónnunum í átt að FRP. Burðarvirkir úr FRP hefur fram að færa mikinn styrkleika, tog- og
Þrýstistyrk, en um leið litla eiginþyngd. Ofaná þessa eiginleika eru þeir tæringafólnir og eiginleikar þeirra gera það að verkum að þeir eru einangrandi fyrir hita og rafmagn. Þá verða þeir ekki fyrir áhrifum útfjölublárra geisla, seltuáhrið og eru efnaþolnir. Stór kostur er líka að hægt er að stjórna framleiðslunni að miklu leyti, að því sögðu er vísað til útlits og lögun. Með þessu er hægt að framleiða prófíla/burðarvirki fyrir mjög sérstakar aðstæður/álög. [14]

Auðveldara getur verið að átta sig á helstu kostum og göllum burðarvirkja úr FRP með því að stilla þeim upp á töfluformi. Menn geta svo haft misjafnar skoðanir á því hvort kostnir sér fleiri en gallarnir, en auðvitað er það verkefnad og forsendubundið, eftir því við hvað menn fást við í hönnun burðarvirkisins.
Tafla 1 – Samanteknir helstu kostir og gallar burðarvirkja framleiðum úr FRP

<table>
<thead>
<tr>
<th>Kostir</th>
<th>Gallar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eðlismassí lagur</td>
<td>Lágur fjáðurstuðull</td>
</tr>
<tr>
<td>Styrkur mikill</td>
<td>Hár efniskostnaður</td>
</tr>
<tr>
<td>Tæringarþolið</td>
<td>Brotstreita lág – stökkt brot</td>
</tr>
<tr>
<td>Efna – og veðrunarþolið</td>
<td>Hugsanleg alkalívirkni</td>
</tr>
<tr>
<td>Ekki áhrif frá seltu og útfjólubláum geislum</td>
<td>Reynslueysi hönnuða</td>
</tr>
<tr>
<td>Lítill sem engin yfirbordsmedhöndlun</td>
<td>Skortur á hönnunarstöðlum</td>
</tr>
</tbody>
</table>

2.2 Almennt um trefjaplast

Trefjaplast er notað í víðu samhengi eins og til að mynda í bátasmíði, flugvélasmíði og bíla svo eitthvað sé nefnt. Með tímanum hafa menn öðlast betri þekkingu og reynslu á efnin og í framhaldinu fór notkun trefjaplasts og trefjastyrktra fjöllíða að ryðja sér enn frekar til rúms í byggingariðnaði.

Trefjaplast hefur fram að føra mikið svigrúm þegar kemur að hönnun og framleiðslu hinna ýmsu hluta. Trefjaplast er hægt að leggja ofanf sót og þannig hægt að búa til hlut í nánast hvaða formi og lögun sem er. Þetta gerir mönnum kleift að framleiða burðarvirki eða annað í lögun sem nánast er ógjörningur að framkvæma úr stáli eða steypu til að mynda. Hér á landi búa menn yfir tilturlega mikið reynsla og þekkningu á trefjoplastframleiðslu í bátasmíði. Reynsla og notkun slíkr efna í byggingariðnaðinum er hinsvegar ákaflega lítil.
2.3 Framleiðsla

Við úrlausn verkefnisins verður stuðst við hönnunarbækling og aðrar tækniupplýsingar frá Fiberline Composites. Fyrirtækið er staðsett í bænum Kolding í Danmörku og er framarlega í framleiðslu á FRP prófilum. Fyrirtækið var stofnað árið 1979, og frá því að fyrstu trefjalastéiningarnar voru dregnar með svokallaðri samfelldri framleiðslu (e. pultrusion) í máj 1979 hefur fyrirtækið vaxið gríðarlega á þann stað sem það er stað í dag.[17] Það var einn þátt árið 1997 í heimbænum Kolding sem fyrsta brúinn í Skandinavíu var reist eingöngu gerð úr FRP. Brúin sem hönnuð er fyrir gangandi og hjólandi vegfærandur er í heildina 12 tonn, spannar tvö höf og er í heildina 40 metra lóngr. Athygli vekur að brúin var framleiðið í verksmiðju og svo síðar flutt af staðinn til uppsætningar sem einungis tók um 18 klst, afgreitt á þremur nærverkvættum og því röskun á umferð undir lítil sem engin. Þetta var einn af þeim mörgum þáttum sem ýttu mörnum út í þá lausn að framleiða brúna úr FRP efnum. Brúin nær yfir afar fjölfarna járnbrautartíninga og uppsætningartíini brúarinnar því lykilótíttur því ekki var í boði að raska umferð um teinanana mikið. Í framhaldinu af þessari brú hafa margar brýr úr FRP efnum verið reistar viða um Evrópu, ýmist göngubýrð eða vegbrýr og einnig eru dæmi um að brúargólf úr FRP sé lagt ofan á stálbita.[18]

Þegar FRP prófílarnir eru framleiddir er notast við svokallaða samfelldra framleiðslu aðferð (e. Pultrusion). Í stuttu máli lýsir hún sér þannig að að trefjafráðunum sem nota á í þversniðið er stíll upp fyrir framan framleiðsluvélina, sjá mynd (2). Trefjafræðinir eru svo dregnir í gegnum fyrsta ferli framleiðslunnar þar sem þeir eru lagðir ofan í ákveðið límefti sem notað er og svo dregið í gegnum það þversniðsform sem framleiða á. Eftir að þúið er að forma FRP prófíllinn fer hann í gegnum hitunar og hersluoðn áður en hann er svo kældur niður. Áfram er prófíllinn drenginn áfram þar til hann kemur að sög sem sagar prófílana niður í réttar lengdir. Nafnið samfelld framleiðslu má rekja til þess að í raun og veru yrði prófíllinn öndanlega langur ef ekki kæmi til sögunarinnar. Það er að segja stanslaus og samfelld framleiðsla á sér stað þangað til sög sker á ferlið og tekur prófílana niður í áður ákveðna lengd.[19]
Hægt er að stjórna því hvernig trefjaþræðir eru notaðir og hvar þeir liggja í þversniðiðnu sem framleiða á. Ákvörðun á því fer eftir því hverju er verið að sækjast eftir við framleiðslu þversniða. Oftast liggja trefjaþræðirnir langsum eftir prófilnum, þó er hægt að framleiða prófila á ýmsa vegu og oft einhver blanda af trefjaþráðum og mottum. Eins og áður hefur verið nefnt er mikill styrkleikamunur á því hvort átak verkar þvert eða langsum eftir trefjum. Til að mynda eru prófílar mun veikja fyrir útrifun bolta úr þversniði átak verkar þvert eða langsum eftir trefjum. Til að mynda eru prófílar mun veikja fyrir útrifun bolta úr þversniði átak verkar þvert eða langsum eftir trefjum. Mígulegt er að framleiða prófíla með mottum þar sem trefjaþræðirnir fléttast saman undir 45° - 90° horni. Þessi aðferð gerir það að verkum að prófilinn er sterkari gagnvart boltaútrifun úr þversniði. Einnig er að lagja þunna nóttutæringarþulna mottu utarlega í prófíl til þess að að verja glertrefjarnar fyrir áhrifum ðingr. Með þessum miklu möguleikum í framleiðslu geta Fiberline laðað sig að mismunandi þörfum hvers og eins viðskiptavinar.\[20\\]

Til eru fleiri aðferðir við notkun trefjaplasts, t.d handlögn og loftnæmniaðferð. Ekki verður farið djúpt í þau fræði hér. Handlögn er hinsvegar eitthvað sem mikið er notað til að mynda hér á landi í bátaiðnaði. Þessi aðferð er notuð við framleiðslu bátaskrokka, innréttninga og annarra hluta við bátahjámslu hér á landi. Mottur eru lagðar ofan í límefnablautt móti, motturnar eru svo bleyttar ennfrekar með límefnir og allt loft rúllað út til að ná bindingu milli glertrefjarnamott og límefnis. Algenget er að mottur sem notaðar hér á landi séu með öreglulegri legu trefjaþráða.\[3\]
2.4 Efniseiginleikar og styrkgildi

Hér að neðan má sjá helstu efniseiginleika og gæði fyrir FRP sem notast er við útreikninga og hönnun. Töflur og gildi eru fengin úr hönnunarbæklingi Fiberline Composites. Áður en birtar eru töflur fyrir styrkleika efnis, til að mynda beygju-, tog- og þrýstistyrk efnis er gott að líta á mynd (3) sem skilgreinir stefnur fyrir styrk og stíflleika í framleiddum prófol.

![Diagram of Strength and Stiffness](image)

Mynd 3 – Stefur fyrir styrk og stíflleika prófol

2.4.1 Efniseiginleikar

<table>
<thead>
<tr>
<th>Efniseiginleikar</th>
<th>Gpa</th>
<th>Hlutfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjaðarstuðull</td>
<td>E_{0°</td>
<td>23/28</td>
</tr>
<tr>
<td>Fjaðarstuðull</td>
<td>E_{90°</td>
<td>8.5</td>
</tr>
<tr>
<td>Skerstuðull</td>
<td>G</td>
<td>3</td>
</tr>
<tr>
<td>Poisson's hlutfall</td>
<td>$\nu_{0^\circ,90^\circ}$</td>
<td>-</td>
</tr>
<tr>
<td>Poisson's hlutfall</td>
<td>$\nu_{0^\circ,90^\circ}$</td>
<td>-</td>
</tr>
</tbody>
</table>

Tafli 2 – Efniseiginleikar FRP
2.4.2 Styrkleikatölur

Munurinn á leyfilegum spennum í þversniðum er mikill þegar kraftur verkar þvert á trefjastefnu, samanbörð við jafn stóran kraft sem verkar í sömu átt og trefjastefna þversniðsins. Leyfilegar spennur í prófilum framleiddum úr FRP eru sem segir í töflu (3).

Þar sem að:

- \(f_{t,0°} \): Tog í trefjastefnu
- \(f_{c,0°} \): Þrýstingur í trefjastefnu
- \(f_{t,90°} \): Tog þvert á trefjastefnu
- \(f_{c,90°} \): Þrýstingur þvert á trefjastefnu
- \(f_{b,0°} \): Beygjustyrkur í trefjastefnu
- \(f_{b,90°} \): Beygjustyrkur þvert á trefjastefnu
- \(f_T \): Skerstyrkur

Reikna þarf með öryggisstuðlum á leyfilegar spennur í FRP, samkvæmt hönnunarbæklingi Fiberline Composites skal miðað við \(\gamma_m = 1,3 \) fyrir skammtímaálag en þegar langtímaálag er skoðað skal miða við \(\gamma_m = 3,2 \).

Tafli 3 - Sýnir leyfilegar spennur í FRP efni með og án öryggisstuðla

<table>
<thead>
<tr>
<th>Styrkgildi</th>
<th>Án öryggisstuðla</th>
<th>Með öryggisstuðlum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Með öryggisstuðlum</td>
<td>Skammtíma [ULS]</td>
</tr>
<tr>
<td>(f_{t,0°})</td>
<td>240 Mpa</td>
<td>185 Mpa</td>
</tr>
<tr>
<td>(f_{c,0°})</td>
<td>240 Mpa</td>
<td>185 Mpa</td>
</tr>
<tr>
<td>(f_{t,90°})</td>
<td>50 Mpa</td>
<td>38 Mpa</td>
</tr>
<tr>
<td>(f_{c,90°})</td>
<td>70 Mpa</td>
<td>54 Mpa</td>
</tr>
<tr>
<td>(f_T)</td>
<td>25 Mpa</td>
<td>19 Mpa</td>
</tr>
<tr>
<td>(f_{b,0°})</td>
<td>240 Mpa</td>
<td>185 Mpa</td>
</tr>
<tr>
<td>(f_{b,90°})</td>
<td>100 Mpa</td>
<td>77 Mpa</td>
</tr>
</tbody>
</table>
2.4.3 ÍST EN 13706

Árið 2003 var gefinn út íslenskur staðall sem snýr að FRP prófilum sem framleiddir eru með samfelldri framleiðslu og ætlaðir eru til notkunar í burðarvirki. Staðallinn skiptist í þrjá hluta og skilgreinir helstu lágmarksákvæði er snúa að gæðum, styrk, stifni og vikmörkum í framleiðslu á FRP prófilum.

- ÍST EN 13706 – 1
 - Flokkunarkerfi[10]
- ÍST EN 13706 – 2
 - Almennar kröfur er varða til að mynda útlit, styrk, stifni og vikmörk.[11]
- ÍST EN 13706 – 3
 - Skilgreinir tvo styrkleikaflokka og þær lágmarkskröfur sem gerðar eru til hvers flokks fyrir sig.[12]
2. Almennt um verkefnið

Þegar lagt var af stað í verkefnið var hugmyndin að hanna brú úr FRP efni sem myndi standast þær kröfur og áraun sem verka á göngubrýr. Draumurinn var að hanna brúarvirki sem eingöngu er gert úr prófílum úr FRP. Þar er átt við allar festingar, brúargólf, handrið og knekti. Helsta ástæðan fyrir því að lagt var upp með að hanna brú úr síðu efni er sú að færst hefur í aukana umferð gangandi og hjólandi vegfarenda hér á landi um vegi bæði innan- og utanbæjar.

Vandamálön liggur einna helst á þjóðvegum og öðrum vegum þar sem brýr fyrir vegumferð eru ekki nægilega breiðar til að sinna bæði umferð ökutækja og umferð gangandi og hjólandi vegfaranda á örugg og góðan hátt. Öft á tíðum eru ekki til staðar gangstigar meðfram akreinum á brúm hér á landi, þetta getur stefnt gangandi og hjólandi vegfarendum í mikla hættu og um leið tafið fyrir umferð akandi faratakja. Í þessu samhengi hafa menn velt fyrir sér hvernig best sé að útfæra pláss á brúm hér á landi sem ætlaðar eru fyrir umferð gangandi og hjólandi.

Auðvitað er möguleiki að reisa nýja brú við hlið þeirrar brúar sem sinnir umferð faratakja en kostnaður við þáð er gífurlega milli. Því hefur verið ákveðið skoða möguleikann á að festa utanálíggjandi göngubrú á þær brýr sem fyrir standa.

En aflverju brú úr FRP en ekki stálri til að mynda?

Stór þáttur í því að velja burðarvirki úr FRP fyrir utanálíggjandi göngubrú sem ætlað er að festa utan á nýverandi brú er þyngd FRP efnanna. Ef eðlismassi FRP er borinn saman við til að mynda stál er gríðarlegur munur. Eðlismassi FRP efnis er um 1850 kg/m³ á meðan eðlismassi stáls er um fjörfalt meiri eða um 7850 kg/m³. Þrátt fyrir þennan lága eðlismassa búa burðarvirki úr FRP yfir bæði háum tog- og þrástitial, þau eru einnig tæringar-, efna- og veðrunarpolin og þarfrast ekki yfirborðsmefhöndunar eins fjallað hefur verið um undir kafla FRP hér framar í skýrslu. Þó skal hafa í huga að hugsanlega er nauðsynleg að yfirborðsmefhöndla brúargólf, til að auka viðnám og mynda þannig einskonar háltuvörn. Til eru dæmi um að notað hafi verið malbik eða tveggja þatta epoxy slitlag á brúargólf FRP. Ef svo er gert þarf að vanda vel til verka, því FRP hefur annan hitaþansdun en slitlagið og því hættu á sprungumyndun eða aðskilnaði.[15] Stykur FRP prófíla er hinsvegar mjög háður legu trefjafráða í þversniðið og það getur flekt hönnun og útreikninga við ákveðin tilfelli, og þá sérstaklega samsetningar. Til að draga saman eiginleika FRP er óhætt að segja að hægt er að framleiða mun létta virki en til að mynda úr stálri án þess að lenda í miklum styrkileikavandræðum. Þar liggur meginástæðan fyrir því að göngubrú úr FRP er talinn góður kostur við útfærslu á svona utanálíggjandi göngubrú. Þær brýr sem fyrir standa hér á landi eru ekki hannadur með það að leiðarljósí að hægt sé að festa utan á þær þunnt virki og því mun meiri hættu á þyngd brúarvirkis úr stálri geti
haft mikil áhrif burðarpólshönnun fyrirstandandi brúar. Hins vegar er hægt að gera råð fyrir því að niðurbeygjur og festingautfærslur á brúarvirki úr FRP verði ráðandi við hönnun.[1]

3. Hönnunarforsendur

4.1 Staðlar, leiðbeiningar og hönnunarbæklingar

Ætla má að notkun á FRP prófilum muni aukast til muna í burðarvirki ef á markaðinn kæmi samræmdur evrópskur hönnurstaðall fyrir FRP prófíla. Reyndar er til einn staðall sem fjallar um FRP og tók gildi hér á landi árið 2003. Þessi staðall heitir ÍST EN 13706 og skiptist í þrjá hluta sem taka á mismunandi þáttum er varða notkun FRP prófíla í burðarvirki sem framleiddir eru með samfelldri framleiðslu. Nánar var fjallað um hvern staðlahluta fyrir sig undir kafla 2.4.3 hér ofar í skýrslu.

Auk hönnunarbæklingað frá Fiberline Composites er aðallega stuðst við eftirfarandi rit við úrlausn verkefnsins. Í framhaldinu verður notast við skammstafanirnr sem birtar eru hér ef verði er að vísa í rit.

- ÍST EN 1991-1-3:2003 Snjóálag
- ÍST EN 1991 NA:2010 Íslensk Þjóðarviðaúki við Eurocodes
4.2 Álag

SAP2000 er notað sem hjálpartæki til að teikna upp brú og reikna út þá sniðkrafta sem verka í brúarvirkinu. Áður en hægt er að fara af stað af fullum krafti í hönnun brúar þarf að átta sig á öllu því álæg sem verkar á göngubrú. Í ÍST EN 1991-2:2003 undir kafla 5 er farið í gegnum hvernig nálægast skal hönnun á göngubrú, þau álagstilfelli sem vert er að skoða. Við hönnun á göngubrúnni þarf að skoða, reikna og hanna með tilliti til efirtalda álága:

- Eiginþyngd
- Notálag
- Vindálag
- Snjóálag
- Álag undan létta ökutæki

Álagsfléttum er stillt upp bæði fyrir notmarka- og brotmarkaástand og þær taka fyrir þau tilfelli sem vert er að skoða við hönnun brúarinnar. Nánar er farið í útþyngingar á þeim álagsfléttum sem notaðar voru undir kafla um álagsfléttur hér neðar í skýrslu. Vert er að benda á að oft þarf að reikna út hvort að gegnumskot geti átt stað í brúargólfi ef stakur 10 kN kraftur verka á álagsflót af stærðargráðunni 0,1m x 0,1m. Hins vegar þarf ekki að huga að því ef reiknað er með að létt ökutæki geti ferðast eftir brúnni eins og gert verður í þessu hönnunarverkefni (samanber klausu 5.3.2.2(3) í ÍST EN 1991-2:2003).[4]

4.2.1 Eiginþyngd

4.2.2 Notálag

Samkvæmt Eurocode skal reikna með jafndreifðu notálagi \(q_{d} \) á göngubrú uppá 5 kN/m². Þetta álæg líkir eftir því þegar brúin er í notkun, það er að segja þegar fólk ferðast eftir brúnni hvort sem það er hjólandi eða gangandi.

4.2.3 Vindálag

Vindur blæs auðvitað ekki allt af sömu átt og fyrir því er gert grein í kafla um álagsfléttur. Vindur getur blásið á handrið frá báðum áttum og ýmist getur myndast vindþrýstingur eða vindsg tundir brúargólfi.[7][9]

4.2.4 Snjóálag

4.2.5 Létt ökutæki
Gert er ráð fyrir að létt ökutæki geti ekið yfir brúna. Með svoleiðis ökutæki er átt við til að mynda snjóruðningstæki til þess að möguleiki sé að moka snjó af brúnni ef mikinn snjó gerir. Í álagsfléttum sem farið er ef yfir hér í næsta kafla er snjóruðningstæki táknað með bókstafnum T. Einnig er í kafla um álagsfléttur tekið fyrir álæg frá léttu farartæki táknað með bókstafnum K. Þar er átt við til að mynda sópara eða annað létt ökutæki af svipaðri stærðargráðu og snjóruðningstæki. Hugsunin á bakvið það er að létt ökutæki geti ekið yfir brúna þó svo að snjór hvíli ekki á brúnni og því þarf að búa til álægsfléttu fyrir það líka.

Létt ökutækið er skilgreint sem 1 m á breidd og 2 m á lengd með öxulþunga upp á 20 kN + 20 kN. Reiknað er með að hvert dekk myndi því 10 kN punktkraft á brú þegar léttta ökutækið ekur yfir brú. Gengið er útfrá því í reikningum að 1 m sé á milli framdekkjanna tveggja og ca 2m á milli framdekk og afturdekk. Hafa ber í huga við útreikninga að ekki er hægt að gera ráð fyrir að ökutækið aki alltaf akkurat á miðri brú.[4]
4.3 Álagsfléttur

Settar voru upp bæði álagsfléttur í brotmarkaástand [ULS] og notmarkaástandi [SLS]. Álagsfléttur við brotmarkaástandi eru ráðandi til að mynda þegar skoðaðir eru sniðkraftar í brúarvirkinu, beygjuspennur í prófílum og brúargólfi. Við útreikninga á niðurbeygjum er hinsvegar stuðst við álagsfléttur í notmarkaástandi. Hér að neðan eru birtar þær álagsfléttur sem notast var við, við úrlausn verkefnisins.[8]

Samverkunar stuðlar fyrir vind og snjó þegar hannað er fyrir göngubrú eru eftirfarandi:

- Snjór (ψ_0): 0,8
- Vindur (ψ_0): 0,45

Skýringar á táknun í álagsfléttum:

- G: Eiginþyngd
- T: Snjóruðningstæki
- K: Sópari eða sambærilegt tæki
- V_1: Vindur á handrið (blæs á hlið sem snýr frá brú)
- V_2: Vindur á handrið (blæs á hlið sem snýr að brú)
- Vindsog: Sogar brúarvirki upp á við
- Vindþrýstingur: Þrýstir brú niður á við
Álagsfléttur fyrir brotmarkaástand [ULS]:

- Flétta 1 [ULS]: 1,35G + 1,35N + (1,5V₁ψ₀ + (1,5V₃ψ₀)
- Flétta 2 [ULS]: 1,35G + 1,35N + (1,5V₂ψ₀ + (1,5V₄ψ₀)
- Flétta 3 [ULS]: 1,35G + 1,35T + (1,5V₁ψ₀ + (1,5V₄ψ₀) + (1,5Sψ₀)
- Flétta 4 [ULS]: 1,35G + 1,35T + (1,5V₂ψ₀ + (1,5V₄ψ₀) + (1,5Sψ₀)
- Flétta 5 [ULS]: 1,35G + 1,35N
- Flétta 6 [ULS]: 1,35G + 1,35T + (1,5Sψ₀)
- Flétta 7 [ULS]: 1,35G + 1,35K + (1,5V₁ψ₀ + (1,5V₂ψ₀)
- Flétta 8 [ULS]: 1,35G + 1,35K + (1,5V₂ψ₀ + (1,5V₄ψ₀)
- Flétta 9 [ULS]: 1,35G + (1,5V₁ψ₀)
- Flétta 10 [ULS]: 1,0G + (1,5V₂ψ₀)
- Flétta 11 [ULS]: 1,35G + (1,5Sψ₀) + (1,5V₄ψ₀)
- Flétta 12 [ULS]: 1,35G + (1,5Sψ₀) + (1,5V₄ψ₀)

Álagsfléttur í notmarkaástandi [SLS]:

- Flétta 13 [SLS]: 1,0G + 1,0T + (1,0Sψ₀)
- Flétta 14 [SLS]: 1,0G + 1,0K
- Flétta 15 [SLS]: 1,0G + 1,0N
4. Hönnun brúar

Öll hönnun var byggð á hönnunarbæklingi og tæknupplýsingum frá Fiberline Composites. Í hönnunarbæklingi þeirra og á heimasíðu er hægt að finna þau þversnið sem þeir framleiða og nauðsynlegar tæknupplýsingar fyrir hvert og eitt þeirra.

Brúin er þannig uppbyggð að knekti eru boltuð föst við núverandi brúarkannt með 1,5 m á millibili. Ofan á knektirnar leggst brúargólfi sem einnig er framleitt af Fiberline. Brúín er þannig útfærð að handrið brúarinnar er ekki svokallaður „gitter“ og þjónar í raun engum tilgangi burðarþólslega og er því aðallega til staðar öryggisins og útlitsins vegna. Hér að neðan er farið nánar í hvaða prófílar eru notaðir í hluta brúarinnar.

Mynd 4 – Sýnir hvernig knekti er uppstilt í reiknimódeli SAP2000
5.1 Knekti

5.1.1 Þverbiti

Samanstendur af tvöfaldri U-skúffu [200x60x10] með lengd uppá 2,132 m. Ástæðan er sú að breidd brúargólfs er 2 m og þessir auka 132 mm eru til þess að geta rekið handriðsstoðina á milli U-skúffa. Hér fyrir neðan má sjá mynd af einni skúffu sem notuð er og helstu tæknupplýsingar hennar. [1]

- Tvöföld U-skúffa [200x60x10] – 2,132 m
 - H: 200 mm
 - B: 60 mm
 - T1 & T2: 10 mm

- Helstu eiginleikar:
 - A: 3.043 mm²
 - Ixx: 16.030.763 mm⁴
 - Wxx: 160.308 mm³
 - E₀: 28.000 Mpa
 - Fc,0°: 240 Mpa

- Þyngd: 5.447 kg/m

5.1.2 Skástífa og handriðsstoð

Í bæði skástífu og handriðsstoð er notaður kassaprófill [132x132x10]. [1]

- Lengd handriðsstoð: 1,4 m (hæð 1,2 m+ 0,2 m niður á milli þverbita)
- Lengd skástífa: 2 m

- Kassaprófill [200x60x10]
 - H: 132 mm
 - B: 132 mm
 - T1 & T2: 10 mm

- Helstu eiginleikar:
 - A: 4.730 mm²
 - I: 11.950.000 mm⁴
 - W: 179.000 mm³
 - E₀: 23.000 Mpa

- Þyngd: 8.69 kg/m
5.1.3 Brúargólf
Notað HD40 brúargólf, eins og sést á mynd (8) er brúargólf þið í raun og vera bara eins og margir I-bitar sem liggja þétt upp við hvern annan og mynda þannig sterka brúargólfseiningu. Svona 3 m einingum verður raðað á þverbitana, þannig að hver lengja spannar yfir 2 höf. [1]

- Helstu eiginleikar
 - Haflengd á milli þverbita: 1500 mm
 - Þverskurðarflatarmál [A]: 9.568 mm²/m
 - Tregðuvægi [I]: 2.148.000 mm³/m
 - Mótstöðuvægi [W]: 86.646 mm³/m
 - Skerflatarmál: 3.265 mm²/m
5.1.4 Handrið og frágangur

Ofan á handriðsstóðir kemur handriðskantur sem nær á milli handriðsstóða, sjá mynd (11). Á milli handriðsstóða koma svo flatir 200 mm breiðir og 10 mm þykkir plattar langsum eftir brú sem mynda handrið. Þetta er að einhverju leyti útlitslegs eðlis en þó er þetta aðallega öryggisatriði svo að folk, dýr eða annað hafi ekki möguleikann á að detta út af brú. [1]
6. Samtengingar

6.1 Boltaðar tendingar

Við reikninga á boltuðum teningingum í FRP efnum eru minnstu kanntfjarlæðir fyrir bolta uppgefnar í hónnunarbæklingi Fiberline Design. Þessar grunnforsendur þarf að uppfylla aður en hægt er að fara í dýpri pælingar um spennur sem myndast í FRP prófílum og hugsanlega útrifnum bolta úr þversniði og annað. Gríðarlegur munur er á styrk prófíla úr trefjastyrktum fjölliðum með tilliti til trefjastefnu. Hér að neðan eru tekin fram lágmarks kanntfjarlægðir í boltuðum þversniðum, ýmist þegar átak verkar þvert á trefjastefnu sem og með trefjastefnu prófíla.

![Diagram](image)

Mynnd 12 – Lágmarkskantfjarlægðir, bil á milli bolta, bil á milli boltaraða sem uppfylla þarf[1]

Hugmyndin og markmiðið þegar farið var af stað með verkefnioð var að hann að og reikna brú sem smíðuð yrði eingöngu úr prófílum úr trefjastyrktum fjölliðum. Til að uppfylla skilyrði þeirrar hugmyndar er einnig nauðsynlegt að hafa vinkilfestingar sem festa brúarmanvirkioð við steypta brú úr trefjastyrktum prófílum, og notast þar af leiðandi ekki við til að mynda stálvinkla. Erfitt getur verið að fá allar spennur og kantfjarlægðir til að vera í lagi miðað við reiknaða krafta ef ekki á illa að fara. Eins og aður hefur komið fram liggur stór þáttur vandamálsins í því hvernig prófílarnir eru framleiddir, það er að segja í hvaða átt trefjalpréðirnir liggja. Munurinn á leyfilegum spennum í þversniðum er mikill þegar kraftur verkar þvert á trefjastefnu, samanborið við kraft sem verkar í sömu átt og trefjastefna þversniðsins. Leyfilegar spennur í prófílum framleiddum úr FRP má sjá á töflu (4).

![Table](image)

Slétt 4 – Slétt sem sýnir leyfilegar spennur í FRP efni með og án öryggisstuðla

<table>
<thead>
<tr>
<th>Styrkgildi</th>
<th>Æn öryggisstuðla</th>
<th>Með öryggisstuðla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skamntíma [ULS]</td>
<td>Langtíma [SLS]</td>
</tr>
<tr>
<td>$f_{t,0^\circ}$</td>
<td>240 Mpa</td>
<td>185 Mpa</td>
</tr>
<tr>
<td>$f_{c,0^\circ}$</td>
<td>240 Mpa</td>
<td>185 Mpa</td>
</tr>
<tr>
<td>$f_{t,90^\circ}$</td>
<td>50 Mpa</td>
<td>38 Mpa</td>
</tr>
<tr>
<td>$f_{c,90^\circ}$</td>
<td>70 Mpa</td>
<td>54 Mpa</td>
</tr>
<tr>
<td>f_t</td>
<td>25 Mpa</td>
<td>19 Mpa</td>
</tr>
<tr>
<td>$f_{t,0^\circ}$</td>
<td>240 Mpa</td>
<td>185 Mpa</td>
</tr>
<tr>
<td>$f_{c,0^\circ}$</td>
<td>100 Mpa</td>
<td>77 Mpa</td>
</tr>
</tbody>
</table>
Þegar kemur að hönnun boltatra tenginga í FRP prófilm þarf að ganga úr skugga um að mörg skilyrði séu uppfyllt til að tengingarnar þoli þá áraun sem þær verða fyrir. Prófilmarnir sjálfir og brúargólfið búa yfir miklum styrk, en forsenda fyrir því að þær skili sínu hlutfalli er að sjálfstæðu að þær séu á sinum stað og hryni ekki niður vegna veikra tenginga við nústændandi steypa brú.

Boltir í tengingum verða ýmist fyrir áraun frá skeri eða togi. Styrrkur bolta er misjafn eftir því hvort um er að röða tog, sker þvert á trefjastefnu eða sker áslekt með trefjastefnu. Styrkleikatölflur fyrir þessi þrjú tilfelli má sjá hér að neðan, þar sem inntaksgildin byggjaast á tegund átaks, stærð bolta og þykkt þess þversniðs sem boltri er rekinn í gegnum. Í hönnunarbeikið Fiberline Composites eru gefin gildi fyrir bolttæðir allt að M48 og þversniðþykkt 20mm. Hér verður látíð nægja að birta styrkgildi að bolttæð M20, þar sem ólíklegt er að notaðir verði stærri boltri. [1]

Tafli 5 - Styrkleikagildi bolta með tilliti til krafstefnu miðað við legu trefjóaprása

<table>
<thead>
<tr>
<th>Styrkleiki bolta [P í kN] við sker í trefjastefnu</th>
<th>lyktt þversniðs [t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boltri</td>
<td>5</td>
</tr>
<tr>
<td>M6</td>
<td>3.5</td>
</tr>
<tr>
<td>M8</td>
<td>4.6</td>
</tr>
<tr>
<td>M10</td>
<td>5.8</td>
</tr>
<tr>
<td>M12</td>
<td>6.9</td>
</tr>
<tr>
<td>M14</td>
<td>8.1</td>
</tr>
<tr>
<td>M16</td>
<td>9.2</td>
</tr>
<tr>
<td>M20</td>
<td>11.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Styrkleiki bolta [P í kN] við þvert á trefjastefnu</th>
<th>lyktt þversniðs [t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boltri</td>
<td>5</td>
</tr>
<tr>
<td>M6</td>
<td>1.6</td>
</tr>
<tr>
<td>M8</td>
<td>2.2</td>
</tr>
<tr>
<td>M10</td>
<td>2.7</td>
</tr>
<tr>
<td>M12</td>
<td>3.2</td>
</tr>
<tr>
<td>M14</td>
<td>3.8</td>
</tr>
<tr>
<td>M16</td>
<td>4.2</td>
</tr>
<tr>
<td>M20</td>
<td>5.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Styrkleiki bolta [P í kN] við tog</th>
<th>lyktt þversniðs [t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boltri</td>
<td>5</td>
</tr>
<tr>
<td>M6</td>
<td>3.6</td>
</tr>
<tr>
<td>M8</td>
<td>4.8</td>
</tr>
<tr>
<td>M10</td>
<td>6</td>
</tr>
<tr>
<td>M12</td>
<td>7.2</td>
</tr>
<tr>
<td>M14</td>
<td>8.5</td>
</tr>
<tr>
<td>M16</td>
<td>9.7</td>
</tr>
<tr>
<td>M20</td>
<td>12.1</td>
</tr>
</tbody>
</table>
Styrkleikatöflurnar fyrir bolta er gefin upp sem hönnunargildi fyrir brotmarkaástand [ULS] þannig að ekki er nauðsyn að hafa áhyggjur af öryggisstuðli ofaná uppgefin gildi í töflu. Styrkleikatöflurnar miðast við:

- Öryggisflokk: Hefðbundinn
- Gæði bolta: A4
- Stærð boltagats: \[D_{\text{gal}} = D_{\text{bolta}} + 1\text{mm}\]
- Skinnustærð: \[D_{\text{skinna}} = D_{\text{bolta}} \times 2\]

Einnig er hægt að reikna út styrk bolta útfra eftirfarandi jöfnum:

- Sker í lengdarstefnu trefja:
 \[P_{B,D}[kN] = \frac{t[mm] \times d[mm] \times 150\text{MPa}}{\gamma_m} \quad \rightarrow \quad P_{B,D}[kN] = \frac{(t \times d \times 115,4\text{MPa})}{1000}\]

- Sker þvert á trefjastefnu:
 \[P_{B,D}[kN] = \frac{t[mm] \times d[mm] \times 70\text{MPa}}{\gamma_m} \quad \rightarrow \quad P_{B,D}[kN] = \frac{(t \times d \times 53,8\text{MPa})}{1000}\]

- Tog:
 \[P [kN] = \frac{(t[mm] \times d[mm] \times 120,8\text{MPa})}{1000}\]
Hér að neðan verður farið í gegnum þau skilyrði sem reiknuð verða fyrrir hverja tengingu fyrrir sig. Í grunninn eru 5 tilfelli sem boltuðum tengingum er ætlað að uppfylla þegar boltar verða fyrrir skeráraun. Útreikningar skýra sig svo betur í viðauka III. [1]

6.1.1 Sker í lengdarstefnu trefja (0°)
Við reikninga á útrifnu og öðru er við kemur boltuðum tengingum í FRP efni þarf að notast við nokkrar breytur, grunnformulur og kröfur sem uppfylla þarf. Hér til hliðar eru skýringarmyndir sem þeim við kemur og að neðan er farið í gegnum hvernig grunngildi eru reiknuð og útskýringar á þeim breytum sem notaðar eru.

- $P_1 = 0.5 \times P_{Bolti} \times \tan(v)$
- $P_2 = \frac{P_{Bolti}}{2 \cos(v)}$
- $P_3 = 0.5 \times P_{Bolti}$

Hornið (v) er fundið út með eftirfarandi formúlu:

- $v = \tan^{-1}\left(\frac{(c + 0.5) + (d + 0.125)}{a - (b + 0.5)}\right)$

Þar sem að breytur eru [mm]:

- a = Fjarlægð frá miðjum bolta að kanntbrún í kraftlínu
- b = Breidd svaðís fyrrir framan bolta þar sem kraftar verka á
- c = Fjarlægð frá miðjum bolta að kanntbrún hornrétt frá kraftlínu
- t = Þykkt þversniðs
- d = Þvermál bolta
6.1.1.1 Tilfelli 1

Reikningar fyrir rifnun á þversniði útfrá bolta eins og sést á mynd, vegna togs.

- Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:
 \[Spenna [Mpa] = \frac{P_3}{(c - d/2)} \times 1000 \]

- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni
- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:
 \[P_{Bolti} < 720 \text{ Mpa} * t * d \]

6.1.1.2 Tilfelli 2

Reiknar fyrir klofnun á efni fyrir framan bolta

- Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:
 \[Spenna [Mpa] = \frac{P_1}{b} \times 1000 \]

- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni
- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:
 \[P_{Bolti} < 720 \text{ Mpa} * t * d \]
6.1.1.3 Tilfelli 3
Reikningar fyrir því að bolti rifnar útúr þversniði

Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:

- Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:

\[\text{Spenna [Mpa]} = \frac{P_{\text{Bolti}}}{2 \ast \left(\frac{a - d}{2}\right) \ast t} \ast 1000 \]

- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni
- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:

\[P_{\text{Bolti}} < 720 \text{ Mpa} \ast t \ast d \]

6.1.1.4 Tilfelli 4
Þrýstingur sem myndast í svæði fyrir framan bolta, sú spenna má ekki verða meiri en uppgefin mesta spenna vegna þrýstings í FRP efni.

- Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:

\[\text{Spenna [Mpa]} = \frac{P_2}{d \ast t} \]

- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni
- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:

\[P_{\text{Bolti}} < 720 \text{ Mpa} \ast t \ast d \]
6.1.1.5 Tilfelli 5

Núningsþrýstingur sem myndast á milli bolta og FRP, sú spenna sem myndast má ekki verða meiri en uppgefin mesta spennna vegna þrýstings í FRP efni.

- Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:

\[
\text{Spenna [Mpa]} = \frac{P_{Bolt}}{d \times t} \times 1000
\]

- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni

- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:

\[
P_{Bolt} < 720 \text{ Mpa} \times t \times d
\]
6.1.2 Sker þvert á lengdarstefnu trefja (90°)

Þegar sker á sér stað þvert á lengdarstefnu trefja er hægt að notast við sömu grunnformúlur og gildi breytur og þuldar voru upp hér að ofan fyrir sker í lengdarstefnu trefja. Skýringarmyndir, boltastykur og aðrar kröfur breytast þó frá því sem tekið var fram fyrir sker í lengdarstefnu trefja. Hér til hliðar er eru skýringarmyndi fyrir útreikninga á þessum tilfellum og neðar er farið í gegnum þau tilfelli sem gilda fyrir sker þvert á lengdarstefnu trefja.

6.1.2.1 Tilfelli 1

Reikningar fyrir rifun á þversniði útfrá bolta eins og sést á mynd vegna togs.

- Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:

\[
\text{Spenna [Mpa]} = \frac{P_3}{(c - \frac{d}{2})} \ast 1000 \ast t
\]

- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni
- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:

\[P_{Bolti} < 150 \text{ Mpa} \ast t \ast d\]
6.1.2.2 Tilfelli 2
Reiknar fyrir klofnun á efni fyrir framan bolta.

Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:

\[
\text{Spenna [Mpa]} = \frac{P_1}{b \cdot t} \cdot 1000
\]

- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni
- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:

\[
P_{\text{Boltri}} < 768 \text{ Mpa} \cdot t \cdot d
\]

6.1.2.3 Tilfelli 3
Reikningar fyrir því að bolti rifnar út úr þversniði

Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:

- Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:

\[
\text{Spenna [Mpa]} = \frac{P_{\text{Boltri}}}{2 \cdot \left(a - \frac{d}{2} \right) \cdot t} \cdot 1000
\]

- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni
- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:

\[
P_{\text{Boltri}} < 100 \text{ Mpa} \cdot t \cdot d
\]
6.1.2.4 Tilfelli 4

Þrýstingur sem myndast í svæði fyrir framan bolta, sú spenna má ekki verða meiri en uppgefin mesta spenna vegna þrýstings í FRP efni.

- Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:
 \[\text{Spenna [Mpa]} = \frac{P_2}{d \times t} \]
- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni
- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:
 \[P_{Bolt} < 145 \text{ Mpa} \times t \times d \]

6.1.2.5 Tilfelli 5

Núningsþrýstingur sem myndast á milli bolta og FRP, sú spenna sem myndast má ekki verða meiri en uppgefin mesta spennna vegna þrýstings í FRP efni.

- Formúla til að reikna spennu [Mpa] vegna tilfellis er eftirfarandi:
 \[\text{Spenna [Mpa]} = \frac{P_{Bolt}}{d \times t \times 1000} \]
- Ganga þarf svo úr skugga á að reiknuð spenna fari ekki yfir leyfilega spennu í FRP efni
- Einnig þarf eftirfarandi skilyrði að vera uppfyllt:
 \[P_{Bolt} < 70 \text{ Mpa} \times t \times d \]
7. Niðurstöður

7.1 SAP2000

Þegar búið var að reikna út og tína saman allt það álag sem verkar á brúarvirkið var eitt knekti teiknað upp í SAP2000 og álag sett inn. Eins og áður hefur verið nefnt var öllu því álagi sem á brúna verkar umbreytt yfir í ýmist línuálag eða punktálag sem verkar beint á eitt knekti. Með því að afgreiða málin svona nægir í raun að hanna eitt knekti, ef að það stenst allar kröfur og reikninga þá eru augljóslega öll önnur knekti í lag. Þá skiptir í raun ekki máli hvort brúin sé 3 m eða 3000 m á lengd. Skilgreint var í forritinu þær álagsfléttur sem farið var í gegnum í kaflanum hér að ofan. Þegar það var klárt var módelið keyrt til að ná út þeim sniðkröftum sem verka á hvert knekti fyrir sig. Hér að neðan má sjá myndir úr SAP módelinu og þá undirstöðukrafta sem myndast við verstu álagsfléttu, nr 4.

Þeir kraftar sem tíndir hafa verið út úr SAP módelinu á mynd (25) eru svo notaðir við festingareikninga sem nánar er farið í síðar í skýrslunni.

Mynd 25 – Sýnir krafta sem myndast við brúarkant sem hanna þarf boltaðar tengingar fyrir
Annað sem nauðsynlegt er að taka úr SAP módelinu eru til að mynda mestu normalkraftar sem myndast í þverbita undir brúargólf og einnig skástifunni undir brúargólf.

Ganga þarf úr skugga um að þverbitinn sem liggur undir brúargólf þoli þann normalkraft og vægi sem í honum myndast. Einnig þarf að athuga hvort að skástifan sé ekki í lagi miðað við þann þrýsting sem myndast í henni með tilliti til kiknunar. Nánari útreiknar á þessum atriðum er farið í seinna í skýrslunni en hér að neðan má sjá mestu normalkrafta sem myndast í þversniðum, við verstu álagsfléttu (4).

Mynd 26 – Niðurstöður fyrir mestu normalkrafta fyrir knekti tekin úr SAP2000 módeli
7.2 Spennur í þversniðum

Niðurstöður á spennureikningum í burðarvirkinu eru allar uppfylltar. Reikna þurfti beygjuspennur og skerspennur sem myndast í þverbita undir brúargólfi og beygjuspennur í brúargólfinu sjálfum. Reiknuð beygjuspenna í þessum burðarhlutum má ekki fara yfir leyfilega beygjuspennu í FRP.

\[
\sigma_{\text{leyfileg}} = \frac{240 \text{ Mpa}}{1,3} \rightarrow \sigma_{\text{leyfileg}} = 185 \text{ Mpa}
\]

- Reiknuð beygjuspenna í þverbita
 \[
 \sigma_{\text{max}} = 35,82 \text{ Mpa}
 \]

- Reiknuð skerspenna í þverbita
 \[
 \tau_{\text{max}} = 6,3 \text{ Mpa}
 \]

- Reiknuð beygjuspenna í brúargólfi
 \[
 \sigma_{\text{max}} = 43,97 \text{ Mpa}
 \]

Athuga þarf hvort að spenna sem myndast í þverbita fari nokkuð yfir leyfilega spennu í FRP efni. Þverbiti verður bæði fyrir normalkrafti og vægi og þarf að reikna spennuna útfrá því og bera saman við uppgefna leyfilega spennu í FRP. Skástífa undir brúargólfi verður fyrir þrásting og ganga þarf úr skugga að hún geti borið þann kraft með tilliti til kiknunar.

7.2.1 Þverbiti

\[
\sigma_{\text{max}} = 37,97 \text{ Mpa}
\]

\[
\sigma_{\text{leyfileg}} = 185 \text{ Mpa}
\]
7.2.2 Skástffa

\[N_{cr} = 280 \, kN \]
\[N_d \leq N_{cr} \rightarrow 53,61 \, kN < 280 \, kN \rightarrow \text{Í lagi}! \]

7.3 Niðurbeygjur

Reiknaðar voru niðurbeygjur fyrir þverbita og brúargólfi. Niðurbeygjukrafan L/200 var höfð að leiðarljósi. Ítarlegri útreikninga á niðurbeygjum má sjá í viðauka en hér að neðan er niðurstöður niðurbeygjureikninga.

- Niðurbeyja í þverbita

\[Heildarniðurbeygja(\delta) = 2,67 \, mm \]
\[Heildarniðurbeygja \leq \frac{L}{200} \rightarrow 2,67 \, mm \leq 10 \, mm \rightarrow \text{Í lagi}! \]

- Niðurbeygja í brúargólfi

\[Heildarniðurbeygja(\delta) = 7,5 \, mm \]
\[Heildarniðurbeygja(\delta) \leq \frac{L}{200} \rightarrow 7,5 \, mm \leq 7,5 \, mm \rightarrow \text{Í lagi}! \]

Við útreikninga á niðurbeygju er tekið inn álag frá, eiganþyngd brúargólfs, snjóálag og snjórúðningstæki. Velta má fyrir sér þerri pælingu að þegar snjórúðningstæki ekur um brú og mokar snjó þá augljóslega hreinsar tækið megnið af snjónum frá áður það keyrir yfir og því yrði snjóþunginn sem eftir stæð ekki mikill. Því mætti líklega ganga út frá því að þessir niðurbeygjureikningar séu alveg upp í topp reiknaðir, og hugsanlegt að niðurbeygjan sé eiththað minni í raunveruleikanum.
7.4 Skerþol

Athuga þarf hvort að skerkraftur sem myndast í brúargólfi sé ekki örugglega undir því skerþoli sem brúargólfseining þolir. Mesti skerkraftur sem myndast í brúargólfseiningu er 8,31 kN.

- Skerþol brúargólfs

\[
Skerþol = \frac{3265 \text{ mm}^2 \times 19,23 \text{ Mpa}}{1000} \rightarrow Skerþol = 62,79 \text{ kN}
\]

\[V_{\text{Max}} < Skerþol? \rightarrow 8,31 \text{ kN} < 62,79 \text{ kN} \rightarrow \text{Í lagi!}
\]

7.5 Þrýstispennur í steypu

Athuga hvort að þrýstispennur sem myndast frá skástífu í brúarkannt fari nokkuð yfir þrýstíþol steypunnar. Mesti þrýsikraftur sem myndast í skástífu er 53,81 kN. Skástífa er úr kassaprófíl [132x132x10]. Reikna þarf út það flatarmál sem ber kraftinn áður en hægt er að reikna út þrýstispennu sem verkar á steypu.

\[
\text{Virkt flatarmál} = (132mm \times 132mm) - (122mm \times 122mm)
\]

\[
\text{Virkt flatarmál} = 2540 \text{ mm}^2
\]

\[
\sigma = \frac{53,81 \times 10^3}{2540 \text{ mm}^2}
\]

\[
\sigma = 20,87 \text{ Mpa} \rightarrow \text{Í lagi!}
\]
7.6 Samtengingar

Í viðauka II má finna reikninga fyrir bolsðar tengingar í brúarvirkinu. Á mynd (27) er svo að sjá teikningu af knekti þar sem allar samtengingar eru útskýrðar. Einnig má sjá frekar útreikninga á Hilti boltum sem bolta vinkil við steyptan brúarkant í viðauka III. Allir boltar sem notaðir eru skulu vera rústfríir. Einnig verður notast við límingu aukalega við boltafestingar við öll samtengi nema þar sem handriðsplattar boltast við handriðsstoðir.

Vinklar sem boltast við steypu

- 2 M12 boltar
 - Nota skal HIT – Z M12x196 mm bolta með HIT HY-200 mortar lími frá Hilti þar sem vinklar eru boltaðir við steypan brúarkant
 - Bordýpt skal vera 174 mm með 14 mm bor og hreinsa skal úr borgati fyrir ísetningu.

Vinklar boltast við prófila (U – skúffu og skástífu)

- 4 M12 boltar

Þar sem skástífa mætur þerbita

- 3 M16 boltar

Handriðsstoð mætur þerbita

- 2 M12 boltar

Handriðsplattar á handriðsstoðir

- 2 M8 boltar í hvern platta sem liggur að handriðsstoð
Handriðslisti á handriðsstoðir

- Handriðslisti lagður yfir handriðsstoðir og festur með hnoði
7.7 Þyngd brúarvirkis

Brúin er rétt um 37,5 m að lengd og samanstendur af 26 knektum og brúargólfi sem lagt er ofan á knekti. Hér að neðan verður farið í gegnum reikninga á heildarþyngd brúarvirkisins. Í hónnunarbæklingi Fiberline Composites eru gefin upp þyngdir prófíla, ýmist á lengdarmeter eða þyngd á hvern fermetra. Í töflu (6) má sjá samantekið allt það efni sem fer í brúarvirkið og reikninga á heildarþyngd brúarinnar.

<table>
<thead>
<tr>
<th>Þyngd prófils</th>
<th>Pöntunarstærðir</th>
<th>Fjöldi eininga</th>
<th>Heildarþyngd</th>
<th>Einig</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-skúffa</td>
<td>5.48 kg/m</td>
<td>2.132 m</td>
<td>52</td>
<td>608</td>
</tr>
<tr>
<td>Skástífa</td>
<td>8.69 kg/m</td>
<td>2 m</td>
<td>26</td>
<td>452</td>
</tr>
<tr>
<td>Handriðsstöð</td>
<td>8.69 kg/m</td>
<td>1.4 m</td>
<td>26</td>
<td>316</td>
</tr>
<tr>
<td>Handriðsplattar</td>
<td>3.60 kg/m</td>
<td>37.5 m</td>
<td>3</td>
<td>405</td>
</tr>
<tr>
<td>Brúargólf</td>
<td>17.06 kg/m²</td>
<td>3 m²</td>
<td>25</td>
<td>1280</td>
</tr>
<tr>
<td>Handriðsplattar</td>
<td>6.78 kg/m</td>
<td>37.5 m</td>
<td>1</td>
<td>254</td>
</tr>
<tr>
<td>Vinklar</td>
<td>5.16 kg/m</td>
<td>18 m</td>
<td>1</td>
<td>93</td>
</tr>
</tbody>
</table>

Heildarþyngd brúarvirkisins reiknast til að vera rétt rúmlega 3,4 tonn.
7.8 Samantekt

Þegar skoðaðar eru niðurstöður útreikninga er ekki ólíklegt að það fyrsta sem komi upp í hugann sé orðið yfirhannað. Það eru hins vegar skýringar á bakvið það að burðarvirkið virðist vera yfirhannað á einhverjum sviðum. Samtengingar og niðurbeygjur var það sem gert var ráð fyrir að yrðu ráðandi fyrir hönnun og það var það sem kom á daginn. Útreikningar við boltaðar tengingar var mesti flækjufóturinn, að koma fyrir nægilegum fjölda bolta í þversniðinu án þess að spennur í efnum faeru yfir leyfilegar spennur og um leið að uppfylla kantfjarlægdir. Þetta olli því að stundum var notast við størri prófíla en í raun og veru þurfti, til þess að uppfylla kantfjarlægdir og fjölda bolta.
8. Kostnaður

Hér verður sett fram kostnaðaráætlun á uppsætningu á þeirri brú sem hönnuð var í þessu verkefni. Kostnaðaráætlunin var unnin í nánu samstarfi við Ragnar Kærnested umboðsæðila Fiberline Composites hér á landi og verktökum sem hafa húsasetur í Stykkishólmi og hafa reynslu af vinnu við samsetningu burðarvirkja úr FRP. Við gerð kostnaðaráætlunar eru eftirtaldir þættir teknir fyrir:

- Efniskostnaður og flutningur til landsins
- Flutningur á efni í brúarvirki frá Reykjavík til Stykkishólmar
- Boltar, lím og annað nauðsynlegt við samsetningu brúar
- Vinnulíður við samsetningu brúar
- Vinnulíður og tækjaleiga við uppsætningu brúar við nútandandi brúar yfir Laxá á Breið

Sá hluti kostnaðaráætlunar sem snýr að uppsætningu brúar við nútandi brú er tilturlega gróflega áætlaður efir bestu vitund, byggt á fyrirspurnum og reynslu. Efniskostnaður, flutningur, vinnu við samsetningu brúarvirkis sjálfs er byggt á tilboði frá verktökum miðað þá hönnun sem unnið var að í verkefninu, og því áreiðanleg tala.

Framgangur verks yrði háuttað á eftirfarandi hátt:

1. Hluti

Þegar efni í brúarvirki er hingað komið er það sent til Stykkishólmar þar sem hvert knekti er sett saman, þar að segja boltað og límt saman þannig að öll knekti séu tilbúin til festingar við núverandi brúarkant. Samsetning knektis samanstendur af eftirfarandi prófilum:

- Þverbiti: Tvöföld U-skúffa [200x60x10]
- Skástífa: Kassaprófill [132x132x10]
- Vinklar: L – prófill [100x150x10]
- Handriðsstoð: Kassaprófill [132x132x10]
2. Hluti

Ðegar samsetningu á knektum er lokið er hægt að huga að uppsetningu þeirra við núverandi brúarkant. Gert er ráð fyrir tveimur mönnum við uppsetningu og einum manní á kranabíl sem búinn er stórrí körfu til að menn geti athafnað sig. Gengið er út frá því að unnið sé 8 klst á sólarhring. Gert er ráð fyrir að þríví dagar fari í uppsetningu knekta við brúarkant.

- Dagur 1
 - Mæla út og merkja fyrir boltagötum við brúarkant
- Dagur 2
 - Bora fyrir boltum og líma þá í samanber verklýsingu á teikningu í viðauka IV.
- Dagur 3
 - Festa knekti utan á brúarkant

3. Hluti

Sömu menn og sáu um samsetningu knekta mæta á verkstað og fullklára samsetningu brúar. Inn í því felst:

- Festa handriðslista á handriðsstöðir
- Festa handrið (handriðsplatta) á handriðsstöðir
- Leggja brúargólfr á milli knekta

Hér að ofan var farið í megindrattum yfir það hvernig uppsetningu brúar yrði háttad ef verkefnin yði að raunveruleika. Í töflu (7) má sjá kostnaðarætlun í töulum og síðar samantekinn heildarkostnað verksins. Það fellur ekki undir þetta verkefní að hanna brúna og kostnaðargreina miðað við annað byggjingarefni en FRP. Því verður ekki farið í neina samanburðarreikninga.
Heildarkostnaður við brúarvirkið með uppsetingu væri því:

\[
\text{Heildarkostnaður} = 10.555.800 \text{ kr} + 816.000 \text{ kr}
\]

\[
\text{Heildarkostnaður} = 11.371.800 \text{ kr}
\]

Þessi kostnaðaráætlun byggist á samsetningu og uppsetningu brúar, ekki hefur verið tekið saman hugsaðlegur kostnaður vegna viðhalds og annarra þátta sem til gætu fallið með tímanum. Ef að verkið yrði að veruleika stæðu menn svo frammi fyrir ákvörðun um hvernig vinnutíma yrði háttafa við uppsetningu brúar. Ráðlagt verið að vinna næturvinnu, hugsaðlega á lengri vöktum til þess að lágmorka röskun á umferð á meðan á uppsetningu stendur.
9. Lokaorð

Eftir að hafa unníð að þessu hönnunarverkefni finnst mér í raun ótrúlegt að burðarvirk í úr FRP hafi ekki náð meiri fótfestu í heiminum en raunin er. Burðarvirk í úr FRP býður óteljandi möguleika bæði í hönnun er kemur að útliti og notagildi. Lykilpáttur í því að hönnuðir fari að horfa af meiri alvöru í átt að FRP við hönnun burðarvirkja er að samræmdur hönnunarstaðall verði settur saman.

Áður en hafist var handa við úrlausn verkefnis fannst mér hugmyndin um notkun FRP í burðarvirk heillandi, og álitið jókst til muna eftir úrvinnslu verkefnisins. Víða um Evrópu hafa menn verið að hanna og smíða bæði göngu- og vegbrýr. Því er í raun ótrúlegt að hönnuðir hér á landi séu ekki komnir lengra í því ferli að líta á burðarvirk í úr FRP alvarlega sem raunhæfan möguleika. FRP prófilarnir frá Fiberline Composites sem notast var við í þessu verkefni hafa marga eginleika sem henta ættu vel við brúargerð hér á landi. Þeir eru veðrunar- og efnaþolnir, þarfíast ekki yfirborðsmiðhöndlunar og búa yfir gríðarlegum styrk þrátt fyrir lága eðlisþyngd svo eitthvað sé nefnt.

Mér fannst verkefnið hafa verið mjög gagnlegt og opnaði huga minn gagnavart FRP enn frekar. Fyrir utan það að verkefnið hafi verið lærdómsríkt og fræðandi þá var það um leið skemmtilegt. Ég vona innilega að FRP eigi eftir að riðja sér enn frekar til rúms í náinni framtíð og ekki mundi skemma fyrir að sjá eins og eina göngubreður framleidda úr FRP rísa hér á landi.
10. Heimildaskrá

11. Myndaskrá

Mynd 1 – Fyrsta brúin sem Fiberline Composites framleiddu, í Kolding 7
Mynd 2 – Framleiðsluaðferð á samfelldri framleiðslu ... 8
Mynd 3 – Stefurn fyrir styrk og stíflleika prófils ... 9
Mynd 4 – Sýnir hvernig knekti er uppstíllt í reiknimódeli SAP2000 18
Mynd 5 – Útfærsla á knekti í brúarvirki ... 19
Mynd 6 – U-Skúffa í þverbita .. 20
Mynd 7: Skástífa undir brúargólf .. 20
Mynd 8 – HD 40 brúargólf frá Fiberline Composites ... 21
Mynd 9 – Þverskurður af handriðsplatta .. 22
Mynd 10 – Þverskurður af handriðslista .. 22
Mynd 11 – Útfærsla á handriði brúar ... 22
Mynd 12 – Lágmarkskantfjarlægðir, bil á milli bolta, bil á milli boltaraða sem uppfylla þarf . 23
Mynd 13 – Útskýringarmynd fyrir reikninga, kantfjarlægðir og annað 26
Mynd 14 – Þversnið rifnar útfrá bolta .. 27
Mynd 15 – Klofnun í þversnið fyrir framan bolta ... 27
Mynd 16 – Bolti rifnar úr þversniði .. 28
Mynd 17 – Þrýstispennur í efni fyrir framan bolta ... 28
Mynd 18 – Núningsþrýstingur milli bolta FRP ... 29
Mynd 19 - Útskýringarmynd fyrir reikninga, kantfjarlægðir og annað 30
Mynd 20 - Þversnið rifnar útfrá bolta ... 30
Mynd 21 - Klofnun í þversniði fyrir framan bolta ... 31
Mynd 22 - Bolti rifnar úr þversniði ... 31
Mynd 23 - Þrýstispennur í efni fyrir framan bolta ... 32
Mynd 24 - Núningsþrýstingur milli bolta FRP ... 32
Mynd 25 – Sýnir krafta sem myndast við brúarkant sem hanna þarf boltaðar tengingar fyrir33
Mynd 26 – Niðurstöður fyrir mestu normalkrafta fyrir knekti tekin úr SAP2000 módeli....... 34
Mynd 27 – Útfærsla boltaðar tenginga í knekti .. 39
Mynd 28 – Útfærsla á handriði brúar ... 54
Mynd 29 – Sýnir verstu staðsetningu ökutækis sem ekur yfir brú .. 55
Mynd 30 – Sýnir hvernig statískt módel lítur út, liðtenging þar sem skástífa og brúargólf koma saman. Skástífa flytur ekki vægi. .. 56
Mynd 31 – Niður úr SAP2000 módeli sem sýna mesta mögulega vægi sem myndast í þverbita .. 57
Mynd 32 - Mestu skerspennur sem myndast í þverbita .. 58
Mynd 33 – Hegðun á knekti í brúarvirki undan verstu álagsfléttu í notmarkaástandi og niðurbeygja þverbita. .. 60
Mynd 34 – Mestu vægi sem myndast í brúargólfi við álagsfléttu 6 ... 61
Mynd 35 – Mestu vægi sem myndast í brúargólfi miðað við verstu álagsfléttu í notmarkaástandi .. 62
Mynd 36 – Biti sem verður fyrir vægi á enda (Tilfelli 3.8 úr stabi útgáfu 21) .. 63
Mynd 37 – Mestu skerspennur í brúargólfsæiningu .. 64
Mynd 38 – Undirstöðukraftar sem myndast við álagsfléttu 4 ... 67
Mynd 39 - Sýnir kraftstefnu miðað við trefjastefnu prófíla ... 67
Mynd 40 – Sýnir útfærslu á vinkilfestingu milli U-skúffu og steypts brúarkannts 69
Mynd 41 – Útfærsla hvernig vinkill og U – skúffa eru boltuð saman.. 73
Mynd 42 - Útfærsla hvernig vinkill og U – skúffa eru boltuð saman .. 77
Mynd 43 – Sýnir útfærslu hvernig vinkill sem boltast í skástífu... 81
Mynd 44 – Sýnir hversu miðað þarf þarf að vinna upp þegar einungis verkar á brúarvirkið vindur
Mynd 45 – Sýnir útfærslu þar sem vinkill boltast við skástífu... 84
Mynd 46 – Sýnir útfærslu þar sem vinkill boltast við skástífu.. 88
Mynd 47 – Útfærsla þar sem skástífa og U-skúffa boltast saman .. 95
Mynd 48 – Útfærsla á því hvernig skástífa boltast við U-skúffa ... 100
Mynd 49 – Upplýsingar fyrir HIT-Z bolta frá Hilti sem notaðir skulu við steyptan brúarkant 105
Mynd 50 – Sýnir niðurstöður í prósentuhlutfalli .. 106
12. Töfluskrá

Tafla 1 – Samanteknir helstu kostir og gallar burðarvirka framleiddum úr FRP 6
Tafla 2 – Efniðeignleikar FRP .. 9
Tafla 3 – Sýnir leyfilegar spennur í FRP efni með og án öryggissstuðla .. 10
Tafla 4 – Tafla sem sýnir leyfilegar spennur í FRP efni með og án öryggissstuðla 23
Tafla 5 – Styrmleikagildi bolta með tilliti til kraftstefnu miðað við legu trefjaðráða 24
Tafla 6 – Heilarþyngd brúarvirkis ... 40
Tafla 7 – Kostnaðaráætlun fyrir brúarvíkki ... 44
Tafla 8 – Spennureikningar fyrir þann hluta vinkils sem snýr að steypu og verður fyrir álægi 0° á trefjastefnu .. 70
Tafla 9 – Togþol athugað, sá hluti vinkils sem snýr að steypu ... 71
Tafla 10 – Spennureikningar fyrir þann hluta vinkils sem snýr að U-skúffu og verður fyrir álægi 0° á trefjastefnu .. 74
Tafla 11 – Spennureikningar fyrir þann hluta vinkils sem snýr að U-skúffu og verður fyrir álægi 90° á trefjastefnu .. 75
Tafla 12 – Spennureikningar fyrir U-skúffu sem verður fyrir álægi 0° á trefjastefnu 78
Tafla 13 – Spennureikningar fyrir U-skúffu sem verður fyrir álægi 90° á trefjastefnu 79
Tafla 14 – Spennureikningar fyrir vinkil í neðri brún sem verður fyrir álægi 0° á trefjastefnu 82
Tafla 15 – Spennureikningar fyrir vinkil sem snýr að skástífu og verður fyrir álægi 0° á trefjastefnu .. 85
Tafla 16 – Spennureikningar fyrir vinkil sem snýr að skástífu og verður fyrir álægi 90° á trefjastefnu .. 86
Tafla 17 – Spennureikningar fyrir skástífu sem verður fyrir 25° á trefjastefnu 92
Tafla 18 – Spennureikningar fyrir skástífu sem verður fyrir 65° á trefjastefnu 93
Tafla 19 – Spennureikningar fyrir skástíful þegar kraftur verkar 65° á tefjar 98
Tafla 20 – Spennureikningar fyrir skástíful þegar kraftur verkar 25° á tefjar 98
Tafla 21 – Spennureikningar fyrir U-skúffu þegar kraftur verkar 90° á trefjastefnu 101
Tafla 22 – Spennureikningar fyrir U-skúffu þegar kraftur verkar 90° á trefjastefnu 102
Viðauki I –Snjó og vindálag

Snjóálag

- Snjóálagssvæði: 2 (skv. Íslenska Þjóðarviðauka – Mynd bls 30)

Stuðullinn S_k er fenginn með tilliti til þessa snjóálagssvæðis sem brúin er staðsett á.

- $S_k = 2,2 - 3,8 \rightarrow Míðgildi notað → S_k = 3,0$

Snjóálagið er þá reiknað út með eftirfarandi jöfnu úr ÍST EN 1991-1-3:2003 (5.1):

$$S_d = \mu_1 * C_e * C_t * S_k$$

Þar sem:

- μ_1: Formstuðull
 - Fyrir lárétt yfirborð er $\mu_1 = 0,8$ (ÍST EN 1991-1-3:2003 tafla 5.2)
- C_e: Affoksstuðull
 - $C_e = 0,6$ (Íslenski þjóðarvið. tafla 5.1)
- C_t: Bráðnunarstuðull
 - $C_t = 1$ (ÍST EN 1991-1-3:2003 grein 5.2.(8))
- S_k: Stuðull miðað við snjóálagssvæði

$$S_d = 0,8 * 0,6 * 1 * 3,0 \rightarrow S_d = 1,44 \text{ kN/m}^2$$
Vindálag

Við reikninga á vindálagi er notast við ÍÞV og EN 1991-1-4: 2004. Formúlan sem notuð er til að reikna út vindálag er:

\[F_w = \frac{1}{2} \rho v_b^2 C * A_{ref,x} \]

Þar sem:
- \(V_b = 36 \, m/s \) (Íslenski þjóðarvið. grein 4.2.(1))
- \(C = C_e * C_{f,x} \)
 - \(C_e \)
 - \(C_{f,x} = C_{f,x,0} = 1,3 \) (ÍST EN 1991-1-4:2005 (8.3.1(1))
- \(\rho = 1,25 \) (eðlisþyngd loftsl)

Reikna mig í átt að gildi fyrir \(F_w \):

\[k_r = 0,19 * \left(\frac{z_0}{Z_{0,II}} \right)^{0,07} \rightarrow 0,19 * \left(\frac{0,003m}{0,05m} \right)^{0,07} \rightarrow k_r = 0,156 \]

- \(z_0 = 0,003 \) (ÍST EN 1991-1-4:2005 tafla 4.1)
- \(C_{r(z)} = k_r * \ln \left(\frac{z}{z_0} \right) fyrir [z_{min} < z_e < z_{max}] \) (ÍST EN 1991-1-4:2005 jafna 4.4)
- \(z_0 = 0,003 \) (ÍST EN 1991-1-4:2005 tafla 4.1)
- \(z = Hæð \) (Gengið út frá 4,5 m)

\[C_{r(z)} = 0,156 * \ln \left(\frac{4,5m}{0,003m} \right) \rightarrow C_{r(z)} = 1,141 \]

\[l_v = \frac{1}{C_0(z) * \ln \left(\frac{z}{z_0} \right)} \]

- \(C_0(z) = 1,0 \) (ÍST EN 1991-1-4:2005 grein 4.3.1.(1))

\[l_v = \frac{1}{1,0 * \ln \left(\frac{4,5m}{0,003m} \right)} \rightarrow l_v = 0,1367 \]
\[C_e(z) = [1 + 7 \times I_v] \times (C_r(z) \times C_e(z))^2 \]

\[C_e(z) = [1 + 7 \times 0.1367] \times (1.141 \times 1.0)^2 \rightarrow C_e(z) = 2,548 \]

- \(A_{ref,x} = (d + 0.6) \times L \)
 - L= bil á milli þverbita
 - d= Hæð brúargólfs (HD40)

\[A_{ref,x} = (0.04m + 0.6) \times 1.5 \rightarrow A_{ref,x} = 0.96 \]

\[F_w = 0.5 \times 1.25 \times 36^2 \times (2.548 \times 1.3) \times 0.96 \]

\[F_w = 2,576 \text{ kn/m}^2 \]

Éins og áður hefur verið nefnt var unnið þannig við hönnun brúar að eitt knekti var hannað til að standast þá áraun sem á það verkar. Hægt er svo að raða knektum upp meðfram brúarkantinum með ákveðnu bili á milli. Þess vegna þarf að yfirfæra þetta reiknaða vindálag yfir á álag á lengdarmetra til að fá vindálag á knekti. Reiknað er að bil á milli knekta sé 1,5 m.

Vindprýstingur og vindsg

Til þess að yfirfæra reiknaða vindálag yfir á álag fyrir hvert knekti er \(F_w \) margfalað með bili á milli knekta.

\[F_{sog} & F_{Vindprýstingur} = 2,58 \text{ kn/m}^2 \times 1,50 \text{ m} \]

\[F_{sog} & F_{Vindprýstingur} = 3,86 \text{ kN/m} \]

Vindálag á handrið

Ekki er reiknað með jafn miklu vindálagi á handriðsstoðir. Ástæðan fyrir þessu er sú að ekki er heill lokaður flötur í handriðum, handriðsstoðir standa upp frá hverju knekti og handriðplattar svo þvert á milli handriðsstoða líkt og sést á mynd (28).
Reikna þá út hversu mikið hlutfall vindálags lendir raunverulega á prófílum, því einhver vindur blæs beint í gegnum handrið brúarinnar. Miðað við flatarmálsrekninga fæst að:

- Hlutfallið á milli rífa á handriði og fullu vindálagi er 0,44.

Því verður vindálag á handriðsstoð:

\[
F_{\text{Handriði}} = 3,86 \text{ kN/m} \times 0,44
\]

\[
F_{\text{Handriði}} = 1,71 \text{ kN/m}
\]
Viðauki II – Niðurbeygju- og spennureikningar

Þverbitar undir brúargólfi

Beygjuspennur

Nauðsynlegt er að ganga úr skugga um að beygjuspennur í bitanum fari ekki yfir leyfilega beygjuspennu í FRP efni. Til þess að framkvæma þetta reikna ég út mesta vægi sem verður í bitanum og deili með móstöðuvægi þversniðsins. Það gefur beygjuspennuna sem verður í þverbitanum. Athuga að þverbitinn er tvöföld U – skúffa og þar af leiðandi er móstöðuvægið augljóslega tvöfalt það sem ein U – skúffa er gefin upp fyrir.

Við útreikninga á beygjuspennum er notast við álagsfléttu, númer 6. Í þeirri fléttu er reiknað með eiginþyngd, snjóruðningstæki og snjóálagi. Ekki er tekið inn vindálag því það er gríðarlega óreglulegt og getur gefið ranga mynd af niðurstöðum.

- Fléttna sem um ræðir er:
 - Álagsfléttta 6 : 1,35G + 1,35T + (1,5S)0,8

Eins og áður hefur verið talað um er ekki hægt að ganga að því öruggu að snjóruðningstæki eða annað samþærilegt tæki keyri alltaf nákvæmlega á miðri brú. Reikna verður með versta mögulega tilfelli. Versta tilfellid er að tækið keyri yfir brúna eins langt frá brúarkanti og mögulegt er, eins nálagt handriði og hægt er. Það veldur því að 10 kN kraftur undan öðru dekki verkar í 1,85 m út á hafi þverbita og hitt dekkið þá í fjarlægð 0,85 m frá brúarkanti. Gengið út frá því að breidd dekks sé um 30 cm. Sjá skýringarmynd (29) til nánari útskýringar.
Þar sem að þverbitar undir gólfi eru boltadir saman við skástifu á öðrum enda er ekki hægt að líta á þverbita sem einfalt undirstuddan bita. Bitaendi sem er fjær brúarkanti hefur því möguleika á að færast upp og niður eins og einskonar gormur. Þetta flækir reikninga töluvvert og því verður týnt úr SAP2000 módelinu þau nauðsynlegu gildi sem til þarf við útreikninga til að fá sem bestu niðurstöðu.

![Image](30.png)

Tek saman þau álög sem verka á bitann og set saman í fléttu og reikna þannig út mesta vægi á hafi bitans. Athuga að búið er að umbreyta fermetraálagi yfir á línuálag með tilliti til lengdar á milli þverbita, sem er 1,5m. Til að fá sem nákvæmustu niðurstöðu er sett inn álag í SAP2000 sem jafngjör eiginþyngd bita og brúargólfs og það notað í staðinn fyrir að láta SAP2000 reikna eiginþyngd virkisins sjálfnokkrara.

- **Eiginþyngd bita:**
 \[5,47 \frac{kg}{m} = 0,054 \frac{kN}{m} \times 2 \text{ stk} = 0,11 \frac{kN}{m} \]

- **Eiginþyngd brúargólf:**
 \[17,06 \frac{kg}{m^2} = 0,167 \frac{kN}{m^2} = 0,167 \frac{kN}{m^2} \times 1,5m = 0,25 \frac{kN}{m} \]

- **Notálag:**
 Tvö 10 kN punktálög

- **Snjóálag:**
 2,16 kN/m
Líkt og mynd (31) sýnir fæst mesta vægi í þverbita undan verstu álagsfléttu til að vera 8,96 kNm undir dekki sem staðsett er 0,85 m frá brúarkanti.

Í þverbitum undir brúargólfí myndast bæði normalkraftur sem tog og einnig verkar á bitann vægi. Ganga þarf úr skugga um að spennurnar í þversniðinu fari ekki yfir leyfilegar spennur. Mesti normalkraftur sem verkar á þverbitann kemur fram í fléttu 4 og er af stærðargráðunni 47,91 kN.

Reikna út mestu spennu sem myndast í þversniðinu sökum normalkrafts og vægis:

$$\sigma_{\max} = \frac{N_d}{A} + \frac{M_d}{W}$$

Þar sem:

- N_d: Normalkraftur í prófil
- M_d: Vægi í prófil
- A: Þverskurðarflatarmál
- W: Mótstöðuvægi
Tæknirýsingar fyrir U-skúffu [200x60x10], hafa ber í huga að þverskurðarflatarmál og mótsöðuvægi telja tvofalt því þverbitinn er tvöföld U-skúffa.

- A: 3.043 mm²
- W: 160.308 mm³

\[
\sigma_{\text{max}} = \frac{47,91 \cdot 10^3 \text{ N}}{3043 \text{ mm}^2 \cdot 2 \text{ stk}} + \frac{8,96 \cdot 10^6 \text{ Nmm}}{160308 \cdot 2 \text{ stk}}
\]

\[
\sigma_{\text{max}} = 35,82 \text{ Mpa}
\]

\[
\sigma_{\text{leyfileg}} = 185 \text{ Mpa}
\]

\[
\sigma_{\text{max}} \leq \sigma_{\text{leyfileg}} \rightarrow 35,82 \text{ Mpa} < 185 \text{ Mpa} \rightarrow \text{Í lagi!}
\]

Skerspennur

Athuga hvort að skerspennur í þverbita fari nokkuð yfir leyfilega skerspennu í FRP. Leyfileg skerspenna með álagsstuðli í FRP er = 20 Mpa.

\[
\tau_{\text{Max}} = \frac{V_{\text{Max}}}{A_{k,y}} = \frac{f_T}{\gamma_m}
\]

\[
\tau_{\text{Max}} = \frac{22,70 \cdot 10^3 \text{kN}}{1800 \cdot 2} = 6,3 \text{ Mpa}
\]

\[
6,3 \text{ Mpa} \leq 20 \text{ Mpa} \rightarrow \text{Í lagi!}
\]
Niðurbeygjur

\[
Flétta \, 13 \, [SI] = 1,0G \, + \, 1,0T \, + \, (1,0S)\psi 0
\]

- Eiginþyngd bita: \[5,47 \frac{kg}{m} \rightarrow 0,054 \frac{kN}{m} \times 2 \, stk = 0,11 \frac{kN}{m}\]
- Eiginþyngd brúargólf: \[17,06 \frac{kg}{m^2} \rightarrow 0,167 \frac{kN}{m} = 0,167 \times 1,5 = 0,25 \frac{kN}{m}\]
- Snjóruðningstæki: Tvö 10 kN punktálög
- Snjóálag: 2,16 kN/m

Helstu efniseiginleikar U–skúffu [200x10x10] fyrir niðurbeygjureikninga

- E: 28000 Mpa
- I: 16.030.763 mm^4

Hér að neðan á mynd (33) má sjá hvernig knekti í brúarvirki hegðar sér undan verstu mögulegu álagsfléttu og mestu niðurbeygju þverbita. Endi knektar þar sem skástífa og þverbiti kemur saman sígur um 2,49 mm og niðurbeygja þverbita er mest í fjarlægð x = 0,85 m frá brúarkanti undir öðru dekki snjóruðningstækis og reynist vera 2,67 mm.
Athuga hvort að niðurbeygjukrafan L/200 sé uppfyllt:

\[\text{Heildarniðurbeygja}(\delta) = 2,67 \text{ mm} \]

\[\text{Heildarniðurbeygja} \leq \frac{L}{200} \rightarrow 2,67 \text{ mm} \leq 10 \text{ mm} \rightarrow \text{Í lagi!} \]
Brúargólfr

Í brúargólfr er notast við 1m breiðar brúargólfséiningar. Brúargólfséiningarnar eru 3m á lengd og spanna því 2 höf. Miðað við þá skilgreiningu á léttu ökutæki sem mögulega getur ekið yfir brúna kemur ávallt bara til þess að tvö dekk geti lent á sömu brúargólfséiningunni, það er að segja fram- og afturdekk. Þar sem eiginþyngd brúargólfs er skilgreind frá framleiðanda sem þyngd á fermeter og snjóálag upphaflega skilgreint sem fermetraálag kemur það álag til með að margaldast með breidd brúargólfs = 1 m og þar af leiðandi verða umbreytt fermetraálög í álag á lengdarmeta þau sömu. Forsendur og efniseiginuleikar brúargólfs HD40 frá Fiberline Composites er sem hér segir

- Haflengd á milli þverbita: 1500 mm
- Þverskurðarflatarmál [A]: 9.568 mm²/m
- Tregðuvægi [I]: 2.148.000 mm³/m
- Mótstöðuvægi [W]: 86.646 mm³/m
- Skerflatarmál: 3.265 mm²/m

Beygjuspennur

Samþærilegir útreikningar og farið var í gegnum þegar reiknaðar voru beygjuspennur fyrir þverbitana. Þar sem að brúargólfið er tekið 3 m lengdum er versta tilfellið þegar að punktálogan frá snjóruðningstækinnu lenda akkurat á milli þverbita. Líkt og áður hefur verið gert er sett inn álag sem jafngildir eiginþyngd brúargólfs og það álag notað í stað eiginþunga álags sem SAP2000 reiknar.

Flétta sem notuð er við útreikninga á beygjuspennu er

\[
Flétta\ 6 = 1.35G + 1.35T + (1.5S)\psi_0 \rightarrow 1.35G + 1.35T + (1.5S)0.8
\]

Mynd 34 – Mestu vægi sem myndast í brúargólfi við álagsflétta 6
Reikna þá út þá beygjuspennu sem myndast í brúargólfi og athuga hvort hún fari nokkuð yfir leyfilega beygjuspennu í FRP efni. Mesta vægi myndast undir dekkjum og er það gildi tekið inn í eftirfarandi reikninga.

\[
\sigma_{\text{Leyfíleg}} = \frac{240}{1.3} \rightarrow \sigma_{\text{Leyfíleg}} = 184.62 \text{ Mpa}
\]

\[
\sigma_{\text{Max}} = \frac{M_{\text{Max}}}{W} \rightarrow \sigma_{\text{Max}} = \frac{3.81 \times 10^6 \text{Nm}}{86.646 \text{ mm}^2} \rightarrow \sigma_{\text{Max}} = 43.97 \text{ Mpa}
\]

\[
\sigma_{\text{Max}} < \sigma_{\text{Leyfíleg}} \rightarrow 43.97 \text{ Mpa} < 184.62 \text{ Mpa} \rightarrow \text{Í lagi!}
\]

Niðurbeygjur

Þar sem að brúareiningar eru 3 m á lengd spanna þær 2 höf, þar af leiðandi er fundið út mesta vægi sem myndast yfir undirstöðu undan punktkröftum snjótæks og jafnreifðs álags frá snjó og eiginþyngd. Það vægi er svo notað inni tilfelli (3.8) í Stabi (útgáfa 21) og reiknuð er niðurbeygja fyrir einfalt undirstuddan bita sem verður fyrir vægi á bitaenda. Við niðurbeygjurereikninga er reiknað með verstu mögulegu álagsfléttu í notmarkaástandi, álagsfléttu 13. Sömu aðferðum er beitt og áður hefur verið gert þar sem búað er til nýtt álagsfléttum sem birtir eiginþyngd brúargólfs í stað þess að láta SAP2000 sjá um að reikna eiginþyngd sjálvkrafa. Þar sem að punktálög frá snjótæks lenda ekki akkurat á miðju hafi á milli þverbita er notast við vægisniðurstöður úr SAP2000 til að fá niðurstöður eins nákvæmar og mögulegt er.

\[
F_{\ell} 13 [\text{SIS}] = 1.0G + 1.0T + (1.0S)Y_0 \rightarrow 1.0G + 1.0T + (1.0S)0,8
\]

Niðurbeygja er reiknuð miðað við það vægi sem myndast yfir miðri ásetu. Ónnur möguleg tilfelli voru skoðuð en virtust ekki gefa verri niðurbeygju en fyrrgreint tilfelli. Því verður reiknuð mesta niðurbeygja sem verður á brúargólfi á hafinu á milli þverbita miðað við það vægi sem myndast yfir ásetu á milli hafa. Við útreikninga er reiknað með tilfelli (3.8) úr Stabi (útgáfu 21) að leiðarljósi.
Mynd 36 – Bít sem verður fyrir vægi á enda (Tilfelli 3.8 úr stabi útgáfu 21)

\[u_{\text{Max}} = \frac{1}{9 \times \sqrt{3}} \times \frac{M_0 \times L^2}{EI} \]

\[u_{\text{Max}} = \frac{1}{9 \times \sqrt{3}} \times \frac{2,57 \times 10^6 \text{ Nmm} \times 1500^2}{23,000 \text{ Mpa} \times 2,148,000 \text{ mm}^4} \]

\[u_{\text{Max}} = 7,5 \text{ mm} \]

\[u_{\text{Max}} \leq \frac{L}{200} \Rightarrow 7,5 \text{ mm} \leq 7,5 \text{ mm} \rightarrow \text{lagi!} \]
Skerþol brúargólfs

Athuga þarf hvort að mestu skerspennur sem myndast í brúargólf fari nokkuð yfir það skerþol sem brúargólfséining býr yfir það skerþol sem brúargólfséining býr yfir. Til að fá sem bestu niðurstöðu við útreikninga er SAP2000 notað, tekin er fyrir það að forritið reikni sjálft með eiginþyngd og í staðinn er búið til jafndreift álag sem samsvarar álagi frá eiginþyngd brúargólfs sem uppgefin er af framleiðanda. Fléttan sem notuð er eftirfarandi:

\[
Fléttta 6 = 1,35G + 1,35T + (1,5S)\gamma_0 \to 1,35G + 1,35T + (1,5S)0,8
\]

![Mynd 37 – Mestu skerspennur í brúargólfséiningu](image)

Athuga þá hvert skerþol er, til þess að uppfylla kröfur um skerþol þversniðisins þarf mesti skerkraftur í þversniðinu að vera undir skerþoli þess.

\[
Skerþol = Skerflatarmál \ast \sigma_{\text{Leyfileg}}
\]

\[
Skerþol = \frac{3265 \, mm^2 \ast 19,23 \, Mpa}{1000} \to Skerþol = 62,79 \, kN
\]

\[
V_{\text{Max}} < Skerþol \to 8,31 \, kN < 62,79 \, kN \to í lagi!
\]
Skástífa – Kassaprófill

Tæknupplýsingar fyrir kassaprófil [132x132x10]

- Þverskurðarflatarmál [A]: 4730 mm²
- Tregðuvægi [I]: 11950000 mm⁴
- $E_{0°}$: 23000 Mpa
- L_k: 2000 mm (lengd skástífu)

\[
F_d = \frac{A \cdot f_{c,0°}}{Y_m, f} \quad \rightarrow \quad F_d = \left(\frac{4,73 \cdot 10^3 \cdot 240 \text{ Mpa}}{1,3}\right) \cdot 10^{-3} \rightarrow F_d = 873 \text{ kN}
\]

\[
N_{el} = \frac{\pi^2 \cdot E_{0°} \cdot I}{Y_m,E \cdot L_k^2} \rightarrow N_{el} = \frac{\pi^2 \cdot 23000 \text{ Mpa} \cdot 11,95 \cdot 10^6 \text{ mm}^4}{1,3 \cdot 2000^2 \text{ mm}} \cdot 10^{-3} \rightarrow N_{el} = 522 \text{ kN}
\]

\[
N_{cr} = \frac{F_d}{1 + \frac{F_d}{N_{el}}} \rightarrow N_{cr} = \frac{873 \text{ kN}}{1 + \frac{873 \text{ kN}}{412 \text{ kN}}} \rightarrow N_{cr} = 326 \text{ kN}
\]

\[
N_d \leq N_{cr} \quad ? \quad \rightarrow 53,61 \text{ kN} < 280 \text{ kN} \quad \rightarrow \text{Í lagi!}
\]
Prýstispennur í steypu

Til að ganga úr skugga um að að steypan þoli þann kraft sem fluttur er úr skástífu í steyptan brúarkant er reiknuð út spennan og athuga hvort að sú spenna fari nokkuð yfir þrýstistyrk steypunnar. Þar sem að skástífan er úr kassaprófíl [132x132x10] sem er holur að innan þarf að reikna út það þverskurðarflatarmál sem flytur krafðinn.

\[
Virkt\ flatarmál = Ytra\ flatarmál - Innra\ flatarmál
\]

\[
Virkt\ flatarmál = (132\text{mm} \times 132\text{mm}) - (122\text{mm} \times 122\text{mm})
\]

\[
Virkt\ flatarmál = 2540\ mm^2
\]

\[
\sigma = \frac{F[N]}{A[mm^2]}
\]

\[
\sigma = \frac{53,89 \times 10^3\ N}{2540\ mm^2}
\]

\[
\sigma = 20,87\ Mpa \rightarrow \text{Í lagi!}
\]
Viðauki III - Samtengingar

Mynd 39 - Sýnir kraftstefnu miðað við trefjastefnu prófila

Mynd 38 – Undirstöðukraftar sem myndast við álagsflétta 4
Til að auðvelda og auka skilning á excel töflum sem birta niðurstöður festingarreikninga er rétt að l íta á eina útskýringarmynd fyrst. Hér að neðan er reikniskjalið birt líft og það er notað fyrir allar festingar, á myndinni eru útskýrir þeir rammar sem nauðsynlegt þykir til að. Dekkri gráu reitirinir eru innslátarreitir, ljósgráir eru út komur reikniforrits.

Boltaða tenging

<table>
<thead>
<tr>
<th>Atak er:</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sker (0°)</td>
<td>12.00</td>
</tr>
<tr>
<td>Þykkt þversniðs</td>
<td>12.00</td>
</tr>
<tr>
<td>Stærð bolta</td>
<td>4.00</td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>16.60</td>
</tr>
<tr>
<td>Styrkur bolta</td>
<td>13.25</td>
</tr>
<tr>
<td>Kraftur í prófíl</td>
<td>132.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Í lagi?</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjöldi bolta</td>
<td>8.00</td>
</tr>
<tr>
<td>Kraftur per bolta</td>
<td>1.66</td>
</tr>
<tr>
<td>a</td>
<td>42.00</td>
</tr>
<tr>
<td>b</td>
<td>12.00</td>
</tr>
<tr>
<td>c</td>
<td>24.00</td>
</tr>
<tr>
<td>Input í horn</td>
<td>0.42</td>
</tr>
<tr>
<td>Krafthorn [°]</td>
<td>22.62</td>
</tr>
<tr>
<td>Krafthorn [rad]</td>
<td>0.39</td>
</tr>
<tr>
<td>P₈</td>
<td>1.66</td>
</tr>
<tr>
<td>P₁</td>
<td>0.35</td>
</tr>
<tr>
<td>P₂</td>
<td>0.90</td>
</tr>
<tr>
<td>P₃</td>
<td>0.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tílfelli 1</th>
<th>Tílfelli 2</th>
<th>Tílfelli 3</th>
<th>Tílfelli 4</th>
<th>Tílfelli 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reiknuð spenna</td>
<td>Leyfileg spenna</td>
<td>Reiknuð spenna</td>
<td>Leyfileg spenna</td>
<td>Reiknuð spenna</td>
</tr>
<tr>
<td>ft,0°</td>
<td>Mpa</td>
<td>ft,90°</td>
<td>Mpa</td>
<td>ft</td>
</tr>
<tr>
<td>11.50</td>
<td>OK</td>
<td>2.40</td>
<td>OK</td>
<td>1.92</td>
</tr>
<tr>
<td>184.62</td>
<td>Mpa</td>
<td>38.46</td>
<td>Mpa</td>
<td>19.23</td>
</tr>
</tbody>
</table>

Segir til um kraftstefnu miðað við trefjalegu í prófíl.

Styrkur bolta með tilliti til og legu trefja, fenginn úr töflu.

Athugar hvort kraftbol tengingar meiri en kraftur sem verkar.

Kanntfjarlægdir bolta á þversniði.

Útreiknuð gildi fyrir P₁, P₂, P₃.

Reiknuð út spenna fyrir hvert tílfelli fyrir sig, tílfellin voru þuld upp framar í skyrsli.

Tilgreinir hver leyfileg spenna í FRP er fyrir þetta tílfelli.

Athugun hvort spenna í efni fyrir tílfelli fari yfir leyfilega spennu
Festing efri brún

Vinkill

Sá hluti sem snýr að steypum kanti

Byrja á að skoða efri vinkiltengingu sem boltast við steypta kannt brúarinnar og boltast svo við U-skúffuna. Hér að neðan má sjá mynd af útfærslu festingarinnar.

![Diagram of vinkill and U-skúffa]

Byrja á að athuga hvort að kröfur um kanntfjarlægði séu ekki uppfylltar.

Kraftur 0° á trefjastefnu:

\[
Frá enda \ (kraftur \ 0° \ á \ trefjastefnu) = 3,5d \leq 42 \rightarrow 3,5d = 42 \rightarrow Í lagi!
\]

\[
Frá hliðarbrún \ (kraftur \ 0° \ á \ trefjastefnu) = 2d \leq 50 \rightarrow 2d = 24 \rightarrow Í lagi!
\]

\[
Bil á milli boltaraða = 4d \leq 66 \rightarrow 4d = 48 \rightarrow Í lagi!
\]
Tafli 8 - Spennureikningar fyrir þann hluta vinkils sem snýr að steypu og verður fyrir alagi 0° á treffjastefnu

<table>
<thead>
<tr>
<th>Vinkill við U - skúffu [Sem snýr að steypu] - Kraftur 0° á treffjastefnu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helstu upplýsignar um boltaða tengingu</td>
</tr>
<tr>
<td>Átak er:</td>
</tr>
<tr>
<td>Pykkt þversniðs</td>
</tr>
<tr>
<td>Stærð bolta</td>
</tr>
<tr>
<td>Stærð bolta[mm]</td>
</tr>
<tr>
<td>Fjöldi bolta</td>
</tr>
<tr>
<td>Stytrkur bolta</td>
</tr>
<tr>
<td>Kraftur í prófil</td>
</tr>
<tr>
<td>Tvöföld tenging?</td>
</tr>
<tr>
<td>Kraftþol tengingar</td>
</tr>
<tr>
<td>Í lagi?</td>
</tr>
<tr>
<td>Fjöldi bolta</td>
</tr>
<tr>
<td>Kraftur per bolta</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>Input í horn</td>
</tr>
<tr>
<td>Kraftþorn [v°]</td>
</tr>
<tr>
<td>Kraftþorn [rad]</td>
</tr>
<tr>
<td>P₁</td>
</tr>
<tr>
<td>P₂</td>
</tr>
<tr>
<td>P₃</td>
</tr>
<tr>
<td>P₄</td>
</tr>
</tbody>
</table>

| **Tilfelli 2** |
Reiknuð spenna	8,95 Mpa
Átak	ft,90°
Leyfileg spenna	38,46 Mpa
Í lagi ?	OK

| **Tilfelli 3** |
Reiknuð spenna	3,83 Mpa
Átak	ft
Leyfileg spenna	19,23 Mpa
Í lagi ?	OK

| **Tilfelli 4** |
Reiknuð spenna	14,57 Mpa
Átak	ft,0°
Leyfileg spenna	184,62 Mpa
Í lagi ?	OK

| **Tilfelli 5** |
Reiknuð spenna	23,00 Mpa
Átak	ft,0°
Leyfileg spenna	184,62 Mpa

Í lagi? OK
Lágmarkskröfur um boltafjarlægðir eru uppfylltar og því næst verða skoðaðar niðurstöður úr reikningum fyrir þann flangs vinkilsins sem boltast í steyptan brúarkantinn.

Geng úr skugga um að skilyrði fyrir hvert tilfelli fyrir sig sé uppfyllt þegar kemur að burðarþoli bolta. Miðað við að kraftur verki í lengdarstefnu (0°) á trefjar.

\[
\begin{align*}
Tilfelli 1 &= P_{Boltt} \leq \frac{720 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,31 \leq 103,68 \rightarrow \text{Í lagi!} \\
Tilfelli 2 &= P_{Boltt} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,31 \leq 34,56 \rightarrow \text{Í lagi!} \\
Tilfelli 3 &= P_{Boltt} \leq \frac{150 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,31 \leq 21,6 \rightarrow \text{Í lagi!} \\
Tilfelli 4 &= P_{Boltt} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,31 \leq 34,56 \rightarrow \text{Í lagi!} \\
Tilfelli 5 &= P_{Boltt} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,31 \leq 34,56 \rightarrow \text{Í lagi!}
\end{align*}
\]

Líkt og niðurstöður reikninga hér að ofan gefa til greina þá stenst þessi tenging miðað við það átak sem á hana verka. Næst verður sannreynt að festingin þoli það krafta sem á hana verka þegar boltarnir verða fyrir togi.

Tafla 9 - Togbol athugað, sá hluti vinkils sem snýr að steypu

<table>
<thead>
<tr>
<th>Vinkill [Snýr að steypu] Tog</th>
<th>Tog</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Átak er:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Þykkt þversniðs</td>
<td>12</td>
<td>mm</td>
</tr>
<tr>
<td>Stærð bolta</td>
<td>M12</td>
<td></td>
</tr>
<tr>
<td>Stærð bolta[mm]</td>
<td>12</td>
<td>mm</td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>2</td>
<td>stk</td>
</tr>
<tr>
<td>Styrkur bolta</td>
<td>17,4</td>
<td>kN</td>
</tr>
<tr>
<td>Kraftur í prófil</td>
<td>47,91</td>
<td>kN</td>
</tr>
<tr>
<td>Tvöföld tenging?</td>
<td>JÁ</td>
<td></td>
</tr>
<tr>
<td>Kraftbol tengingar</td>
<td>69,6</td>
<td>kN</td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>
Hlutfallsreikningar fyrir festingu

Þar sem að undirstöðukraftarnir hafa verið þáttadir upp í x- og y-stefnu en í raun og veru eru þeir að virka sem kraftur í undir ákveðnu horni útfrá festingu þá þarf festingin að uppfylla eftirfarandi kröfu:

\[
\left(\frac{P_{Ed,0^\circ}}{P_{Rd,0^\circ}}\right)^2 + \left(\frac{P_{Ed,90^\circ}}{P_{Rd,90^\circ}}\right)^2 \leq 1,0
\]

Þar sem:

- \(P_{Ed,0^\circ} \): Kraftur sem verkar á tengingu 0° á trefjastefnu
- \(P_{Rd,0^\circ} \): Krafþol tengingar sem verkar á tengingu 0° á trefjastefnu
- \(P_{Ed,90^\circ} \): Kraftur sem verkar á tengingu 90° á trefjastefnu
- \(P_{Rd,90^\circ} \): Krafþol tengingar sem verkar á tengingu 90° á trefjastefnu

\[
\left(\frac{13,25}{66,40}\right)^2 + \left(\frac{47,91}{69,6}\right)^2 \leq 1,0 \rightarrow 0,51 < 1,0 \rightarrow Í \text{lagi!}
\]

Notaðir verða 12mm HIT – Z boltar með HIT HY-200 mortar lími frá Hilti í vinkilfestingu við steyptan brúarkant. Frekari boltătreikninga við steyptan brúarkant má finna í viðauka III.
Sá hluti sem snýr að U – skúffu

Lítum á þann hluta vinkilsins sem snýr að U – skúffunni. Hér verka kraftar bæði í lengdarstefnu trefja og þvert á þær og því verður gengið útfrá að skilyrði um kantfjarlægðir séu uppfylltar þegar kraftur verkar í lengdarstefnu trefja (0°) því þær eru stærri.

Kraftur 0° á trefjastefnu

Frá enda (kraftur 0° á trefjastefnu) = 3,5d ≤ 42 → 3,5d = 42 → í lagi!

Frá hliðarbrún (kraftur 0° á trefjastefnu) = 2d ≤ 30 → 2d = 24 → í lagi!

Bil á milli boltaraða = 4d ≤ 66 → 4d = 48 → í lagi!

Bil á milli bolta = 4d ≤ 78 → 4d = 48 → í lagi!

Kraftur 90° á trefjastefnu

Frá enda (kraftur 90° á trefjastefnu) = 2d ≤ 42 → 2d = 24 → í lagi!

Frá hliðarbrún (kraftur 90° á trefjastefnu) = 2,5d ≤ 30 → 2,5d = 30 → í lagi!

Bil á milli boltaraða = 4d ≤ 66 → 4d = 48 → í lagi!

Bil á milli bolta = 3d ≤ 78 → 3d = 36 → í lagi!
Hafa ber í huga að við staðsetningu bolta og kantfjarlagðir var nauðsynlegt að hafa í huga að skilyrði kantfjarlagða yrðu líka uppfyllt fyrir U – skúffuna sem vinkillinn boltast við því hún verður auðvitað líka fyrir sömu áraun og vinkillinn og prófilarnir boltast saman.

Niðurstöður fyrir útreikninga á þeim flangs vinkilsins sem snýr að U – skúffu eru eftirfarandi.

Tafli 10 - Spennureikningar fyrir þann hluta vinkils sem snýr að U-skúffu og verður fyrir álagi 0° á trefjastefnu

<table>
<thead>
<tr>
<th>Vinkill við U - skúffu [Sem snýr að U - Skúffu] - Kraftur í 0° á trefjastefnu</th>
<th>Tafelli 1</th>
<th>Tafelli 2</th>
<th>Tafelli 3</th>
<th>Tafelli 4</th>
<th>Tafelli 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helstu upplýsningar um boltaða tengingu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak er:</td>
<td>Sker (0°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bykkt þversniðs</td>
<td>12</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stærð bolta</td>
<td>M12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stærð bolta [mm]</td>
<td>12,00</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>4,00</td>
<td>stk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrkur bolta</td>
<td>16,60</td>
<td>kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftur í prófil</td>
<td>13,25</td>
<td>kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvöföld tenging?</td>
<td>JÁ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftþol tengingar</td>
<td>132,80</td>
<td>kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>8,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftur per bolta</td>
<td>1,66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>42,00</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>12,00</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>24,00</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input í horn</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krafthorn [°]</td>
<td>22,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krafthorn [rad]</td>
<td>0,39</td>
<td>rad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_b</td>
<td>1,66</td>
<td>kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>0,90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td>0,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td>11,50</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft,0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>184,62</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td>2,40</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft,90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>38,46</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td>1,92</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>19,23</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td>6,23</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft,0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>184,62</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td>11,50</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft,0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>184,62</td>
<td>Mpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geng úr skugga um að skilyrði fyrir hvert tilfelli fyrir sig sé uppfyllt þegar kemur að burðarþoli bolta. Miðað við að kraftur verki í lengdarstefnu (0°) á trefjastefnu.

Tilfelli 1

\[P_{Bo} \leq \frac{720 \text{ Mpa} \times t \times d}{1000} \rightarrow 1,66 \leq 103,68 \rightarrow \text{lágí!} \]

Tilfelli 2

\[P_{Bo} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 1,66 \leq 34,56 \rightarrow \text{lágí!} \]

Tilfelli 3

\[P_{Bo} \leq \frac{150 \text{ Mpa} \times t \times d}{1000} \rightarrow 1,66 \leq 21,6 \rightarrow \text{lágí!} \]

Tilfelli 4

\[P_{Bo} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 1,66 \leq 34,56 \rightarrow \text{lágí!} \]

Tilfelli 5

\[P_{Bo} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 1,66 \leq 34,56 \rightarrow \text{lágí!} \]
Geng ír skugga um að skilyrði fyrir hvert tilfelli fyrir sig sé uppfyllt þegar kemur að burðarþoli bolta. Miðað við að kraftur verki í lengdarstefnu (90°) á trefjar.

Tilfelli 1

\[
T_{\text{tilfelli 1}} = P_{\text{Bolth}} \leq \frac{150 \text{ Mpa} \ast t \ast d}{1000} \rightarrow 5,99 \leq 21,6 \rightarrow \text{lagi!}
\]

Tilfelli 2

\[
T_{\text{tilfelli 2}} = P_{\text{Bolth}} \leq \frac{768 \text{ Mpa} \ast t \ast d}{1000} \rightarrow 5,99 \leq 110,59 \rightarrow \text{lagi!}
\]

Tilfelli 3

\[
T_{\text{tilfelli 3}} = P_{\text{Bolth}} \leq \frac{100 \text{ Mpa} \ast t \ast d}{1000} \rightarrow 5,99 \leq 14,4 \rightarrow \text{lagi!}
\]

Tilfelli 4

\[
T_{\text{tilfelli 4}} = P_{\text{Bolth}} \leq \frac{145 \text{ Mpa} \ast t \ast d}{1000} \rightarrow 5,99 \leq 20,88 \rightarrow \text{lagi!}
\]

Tilfelli 5

\[
T_{\text{tilfelli 5}} = P_{\text{Bolth}} \leq \frac{145 \text{ Mpa} \ast t \ast d}{1000} \rightarrow 5,99 \leq 10,08 \rightarrow \text{lagi!}
\]

Hlutfallsreikningar fyrir festingu

\[
\left(\frac{13,25}{132,8}\right)^2 + \left(\frac{47,91}{62,4}\right)^2 \leq 1,0 \rightarrow 0,60 < 1,0 \rightarrow \text{lagi!}
\]
$U – S$kúffa

Skoðum nú þverbitana undir brúargólfinu sem eru útfærðir sem tvöföld $U – s$kúffa. Búið er að sannreyna vinkilfestinguna en ganga þarf úr skugga um að spennunar í $U – s$kúffa með tilkomu bolta verði ekki yfir þeim leyfulegu spennum sem leyfðar eru í FRP efni við hvert tilfelli fyrir sig, sömu útreikningar og farið hefur verið í gegnum fyrir vinkil.

Hér verka kraftar bæði í lengdarstefnu trefja og þvert á þær og því verður gengið útfra að skilyrði um kantfjarlægðir séu uppfylltar þegar kraftur verkar í lengdarstefnu trefja (0°) því þær eru stærri.

Kraftur 0° á trefjastefnu

$Frá$ enda (kraftur 0° á trefjastefnu) = $3,5d \leq 42 \rightarrow 3,5d = 42 \rightarrow Í lagi!$

$Frá$ hliðarbrún (kraftur 0° á trefjastefnu) = $2d \leq 67 \rightarrow 2d = 24 \rightarrow Í lagi!$

$Bil á milli boltaraða = 4d \leq 78 \rightarrow 4d = 48 \rightarrow Í lagi!$

$Bil á milli bolta = 4d \leq 66 \rightarrow 4d = 48 \rightarrow Í lagi!$
Kraftur 90° á trefjastefnu

Frá enda (kraftur 90° á trefjastefnu) = 2d ≤ 42 → 2d = 24 → Í lagi!

Frá hliðarbrún (kraftur 90° á trefjastefnu) = 2,5d ≤ 67 → 2,5d = 30 → Í lagi!

Bil á milli boltaraða = 4d ≤ 78 → 4d = 48 → Í lagi!

Bil á milli bolta = 3d ≤ 66 → 3d = 36 → Í lagi!

Bil milli boltaraða þarf að reikna út með pýthagoras því bolti lengst til hægri er mitt á milli boltaraða og því þarf hann að uppfylla skilyrði á milli bolta með tillit til bils á milli boltaraða og bolta til hliðar:

\[\text{Bil á milli boltaraða} = \sqrt{4d^2 + 4d^2} \leq 84 \rightarrow 5,66d \leq 84 \rightarrow 5,66d = 68 \rightarrow \text{Í lagi!} \]

Niðurstöður reikninga eru sem hér segir.

Tafla 12 - Spennureikningar fyrir U-skúffu sem verður fyrir álagi 0° á trefjastefnu

<table>
<thead>
<tr>
<th>[U - skúffa] - Kraftur 0° á trefjastefnu</th>
<th>Tilfelli 1</th>
<th>Tilfelli 2</th>
<th>Tilfelli 3</th>
<th>Tilfelli 4</th>
<th>Tilfelli 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átak er: Sker (0°)</td>
<td>Reiknuð spenna</td>
<td>10,89</td>
<td>Mpa</td>
<td>Reiknuð spenna</td>
<td>25,30</td>
</tr>
<tr>
<td>Þykkt þversniðs</td>
<td>mm</td>
<td>Stærð bolta</td>
<td>M12</td>
<td>Leyfileg spenna</td>
<td>184,62</td>
</tr>
<tr>
<td>Stærð bolta [mm]</td>
<td>mm</td>
<td>Fjöldi bolta</td>
<td>4,00</td>
<td>Lýlagi?</td>
<td>OK</td>
</tr>
<tr>
<td>Fjöldi bolta per bolta</td>
<td>8,00</td>
<td>Styrkur bolta</td>
<td>13,80</td>
<td>Lýlagi?</td>
<td>OK</td>
</tr>
<tr>
<td>Kraftur í prófil</td>
<td>kN</td>
<td>Tvoföld tenging?</td>
<td>JA</td>
<td>Lýlagi?</td>
<td>OK</td>
</tr>
<tr>
<td>Kraftbol tengingar</td>
<td>kN</td>
<td>Lýlagi?</td>
<td>OK</td>
<td>Lýlagi?</td>
<td>OK</td>
</tr>
<tr>
<td>Lýlagi?</td>
<td>OK</td>
<td>Lýlagi?</td>
<td>OK</td>
<td>Lýlagi?</td>
<td>OK</td>
</tr>
</tbody>
</table>

| Lýlagi? | OK |

Átak er: Sker (0°) Reiknuð spenna 10,89 Mpa
Þykkt þversniðs 10 mm Átak ft,0°
Stærð bolta M12 Leyfileg spenna 184,62 Mpa
Stærð bolta [mm] 12,00 Fjöldi bolta 4,00 Lýlagi? OK
Styrkur bolta 13,80 Leyfileg spenna 184,62 Mpa
Kraftur í prófil 47,91 kN Lýlagi? OK
Tvoföld tenging? JA Lýlagi? OK
Kraftbol tengingar 110,40 kN Lýlagi? OK

Tafla 12 - Spennureikningar fyrir U-skúffu sem verður fyrir álagi 0° á trefjastefnu

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |

| Lýlagi? | OK |
Geng úr skugga um að skilyrði fyrir hvert tilfelli fyrir sig sé uppfyllt þegar kemur á bursarþoli bolta. Miðað við at kraftur verki í lengdarstefnu (0°) á trefjar. Hafa í huga að veggþykktin á U – skúffu er 10 mm á medan að hún er 12 mm í vinklinum.

\[T_{1} = P_{Bolti} \leq \frac{720 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,99 \leq 86,4 \rightarrow \text{Í lagi!} \]

\[T_{2} = P_{Bolti} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,99 \leq 28,8 \rightarrow \text{Í lagi!} \]

\[T_{3} = P_{Bolti} \leq \frac{150 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,99 \leq 18 \rightarrow \text{Í lagi!} \]

\[T_{4} = P_{Bolti} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,99 \leq 28,8 \rightarrow \text{Í lagi!} \]

\[T_{5} = P_{Bolti} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,99 \leq 28,8 \rightarrow \text{Í lagi!} \]
Geng úr skugga um að skilyrði fyrir hvert tilfelli fyrir sig sé uppfyllt þegar kemur að burðarþoli bolta. Miðað við að kraftur verki í lengdarstefnu (90°) á trefjar.

\[
Tilfelli 1 = P_{Bolti} \leq \frac{150 \text{ MPa} \times t \times d}{1000} \rightarrow 1,66 \leq 18 \rightarrow í lagi! \\
Tilfelli 2 = P_{Bolti} \leq \frac{768 \text{ MPa} \times t \times d}{1000} \rightarrow 1,66 \leq 92,16 \rightarrow í lagi! \\
Tilfelli 3 = P_{Bolti} \leq \frac{100 \text{ MPa} \times t \times d}{1000} \rightarrow 1,66 \leq 12 \rightarrow í lagi! \\
Tilfelli 4 = P_{Bolti} \leq \frac{145 \text{ MPa} \times t \times d}{1000} \rightarrow 1,66 \leq 17,4 \rightarrow í lagi! \\
Tilfelli 5 = P_{Bolti} \leq \frac{145 \text{ MPa} \times t \times d}{1000} \rightarrow 1,66 \leq 8,4 \rightarrow í lagi! \\
\]

Hlutfallsreikningar fyrir festingu

\[
\left(\frac{47,91}{110,40}\right)^2 + \left(\frac{13,25}{52,00}\right)^2 \leq 1,0 \rightarrow 0,25 < 1,0 \rightarrow í lagi!
\]
Festing neðri brún

Vinkill

Tek nú fyrir vinkilfestinguna í neðri brún steypta kants þar sem skástífan undir brúargólfí er boltuð við brúarkant. Sambærilega pælinar og voru í gangi hér að ofan þar sem U – skúffan er boltuð við kant. Munurinn er sá að hér er um að ræða kassaprófíl sem sem verður fyrir normalkrafti í þrýsting. Þáttar þarf þann kraft sem stöngin ber í kraftstefnur x og y með tilliti til þess horns sem prófíllinn liggur í. Einnig þarf að taka inn í reikninga að leyfilega spennur í FRP efni umbreytast með tilliti til kraftstefnu miðað við trefjastefnu. Hér eru skerkraftar niður á við ekki að verka í 0° né 90° á trefjastefnu við kassaprófíl og því þarf að reikna út leyfilegar spennur í FRP efninu með tilliti til þess horns sem myndast á milli trefjastefnu og kraftstefnu í þrýstingi.

Sá hluti sem snýr að steypu

\[
\text{Frus enda (kraftur } 0° \text{ á trefjastefnu)} = 3,5d \leq 45 \rightarrow 3,5d = 42 \rightarrow \text{Í lagi!}
\]

\[
\text{Frá hliðarbrún (kraftur } 0° \text{ á trefjastefnu)} = 2d \leq 50 \rightarrow 2d = 24 \rightarrow \text{Í lagi!}
\]

\[
\text{Bil á milli boltaraða } = 4d \leq 90 \rightarrow 4d = 48 \rightarrow \text{Í lagi!}
\]
Geng úr skugga um að skilyrði fyrir hvert tilfelli fyrir sig sé uppfyllt þegar kemur að burðarþoli bolta. Miðað við að kraf tur verki í lengdarstefnu (0°) á trefjar.

\[
\begin{align*}
\text{Tilfelli 1} &= P_{Bolti} \leq \frac{720 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,78 \leq 103,68 \rightarrow \text{Í lagi!} \\
\text{Tilfelli 2} &= P_{Bolti} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,78 \leq 34,56 \rightarrow \text{Í lagi!} \\
\text{Tilfelli 3} &= P_{Bolti} \leq \frac{150 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,78 \leq 21,6 \rightarrow \text{Í lagi!} \\
\text{Tilfelli 4} &= P_{Bolti} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,78 \leq 34,56 \rightarrow \text{Í lagi!} \\
\text{Tilfelli 5} &= P_{Bolti} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 5,78 \leq 34,56 \rightarrow \text{Í lagi!}
\end{align*}
\]
Ekki þarf að fara djúpt í þá reikninga til að sannreyna að boltar og festing þoli þá togáraun sem verður í festingu. Í þessari festingu er kassaprófillsinn að flytja hreina normalkraft í þráðingi í steypuna. Því þarf bara að gangu úr skugga um að þeir bolta og hluti vinkils sem boltast við kassaprófills geti flutt þann þráðing sem myndast í prófílum og þannig flutt kraftinn í steypuna. Vert er að nefna að þó að ekki myndist hreint tog í verstu mögulega fléttu (Flétta 4) eins og áður hefur komið fram. Þá er hugsanlegt að tog myndist í bolta þegar enginn er á brúnni og einungis verkar á brúnna vindálag á handrið og vindþráðingur undir brú. Þetta tilfelli er tekið fyrir í fléttu 9 og myndast þá einungis tog uppá 11,31 kN eins og sést á mynd hér fyrir neðan. Þetta álagn var langt undir því sem festingin þolir í togi eins og sást bersýnilega í útreikningum fyrir vinkilfestingu í efri brún.

Notaðir verða sömu boltar í festingu í neðri brú kants og notaðir voru í efri brún hennar. Því er vísað í nánari útökýringar á þeim boltum frá Hilti í viðauka III.
Sá hluti sem snýr að skástifu

Líkt og þegar reiknað var fyrir samsetningu vinkils og U – skúfí í efri brún verka hér kraftar bæði í lengdarstefnu trefja og þvert á þær og því verður gengið útfra að skilyrði um kantfjarlægðir séu uppfylltar þegar kraftur verkar í lengdarstefnu trefja (0°) því þær eru stærri.

Þegar kraftur verkar 0° á trefjastefnu:

\[F_{r\text{á} \text{endum}} (\text{kraftúr 0° á trefjastefnu}) = 3,5d \leq 42 \rightarrow 3,5d = 42 \rightarrow \text{Í lagi!} \]

\[F_{r\text{á} \text{hlíðarbrún}} (\text{kraftúr 0° á trefjastefnu}) = 2d \leq 30 \rightarrow 2d = 24 \rightarrow \text{Í lagi!} \]

\[B \text{i} \text{l á milli boltaraða} = 4d \leq 68 \rightarrow 4d = 48 \rightarrow \text{Í lagi!} \]

Bil milli boltåa þarf að reikna út með pýþagoras því boltí lengst til hægri er mitt á milli boltaraða og því þarf hann að uppfylla skilyrði á milli bolta með tillit til bilis á milli boltaraða og bolta til hlíðar:

\[B \text{i} \text{l á milli bolta} = \sqrt{4d^2 + 4d^2} \leq 82 \rightarrow 5,66d \leq 82 \rightarrow 5,66d = 68 \rightarrow \text{Í lagi!} \]
Kraftur 90° á trefjastefnu

Frá enda (kraftur 90° á trefjastefnu) = \(2d \leq 42 \rightarrow 2d = 24 \rightarrow \text{Í lagi!}\)

Frá hliðarbrún (kraftur 90° á trefjastefnu) = \(2,5d \leq 42 \rightarrow 2,5d = 30 \rightarrow \text{Í lagi!}\)

\[
\text{Bil á milli boltaraða} = 4d \leq 68 \rightarrow 4d = 48 \rightarrow \text{Í lagi!}
\]

\[
\text{Bil á milli bolta} = \sqrt{3d^2 + 4d^2} \leq 82 \rightarrow 5d \leq 82 \rightarrow 5d = 60 \rightarrow \text{Í lagi!}
\]

Líkt og við reikninga fyrir festingu í efri brún þurfti að samtvinna kantfjarlægðir fyrir vinkil og kassaprófil til þess að þau skilyrði væru uppfyllt fyrir báða prófíla.

Niðurstöður reikninga á festingu vinkils við kassaprófil.

Tafli 15 - Spennureikningar fyrir vinkil sem snýr að skástifu og verður fyrir álægi 0° á trefjastefnu

<table>
<thead>
<tr>
<th>Helstu upplýsingar um boltaða tengingu</th>
<th>Tilfelli 1</th>
<th>Tilfelli 2</th>
<th>Tilfelli 3</th>
<th>Tilfelli 4</th>
<th>Tilfelli 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átak er: Sker (0°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Þykkt þversniðs</td>
<td>12 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stærð bolta</td>
<td>M12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stærð bolta[mm]</td>
<td>12,00 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>4,00 stk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrkur bolta</td>
<td>16,60 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftur í prófí</td>
<td>23,11 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvöföld tenging?</td>
<td>JA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftbol tengingar</td>
<td>132,80 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>8,00 stk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftur per bolta</td>
<td>2,89 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>42,00 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>12,00 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>30,00 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input í horn</td>
<td>0,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krafthorn [v°]</td>
<td>26,57 °</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krafthorn [rad]</td>
<td>0,46 rad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_8)</td>
<td>2,89 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_1)</td>
<td>0,72 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_2)</td>
<td>1,61 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_3)</td>
<td>1,44 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft,0°</td>
<td>ft,90°</td>
<td>ft</td>
<td>ft,0°</td>
<td>ft</td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>184,62 Mpa</td>
<td>38,46 Mpa</td>
<td>38,46 Mpa</td>
<td>38,46 Mpa</td>
<td>38,46 Mpa</td>
</tr>
<tr>
<td>Í lagi ?</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
</tr>
<tr>
<td>Í lagi ?</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
</tr>
<tr>
<td>Í lagi ?</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
</tr>
<tr>
<td>Í lagi ?</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Reiknuð spenna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
<td>ft</td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
<td>184,62 Mpa</td>
</tr>
<tr>
<td>Í lagi ?</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>
Geng úr skugga um að skilyrði fyrir hvert tilfelli fyrir sig sé uppfyllt þegar kemur að burðarþoli bolta. Miðað við að kraftur verki í lengdarstefnu (0°) á trefjar.

\[
\text{Tilfelli } 1 = P_{\text{Boltt}} \leq \frac{720 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 103,68 \rightarrow \text{Í lagi!}
\]

\[
\text{Tilfelli } 2 = P_{\text{Boltt}} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 34,56 \rightarrow \text{Í lagi!}
\]

\[
\text{Tilfelli } 3 = P_{\text{Boltt}} \leq \frac{150 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 21,6 \rightarrow \text{Í lagi!}
\]

\[
\text{Tilfelli } 4 = P_{\text{Boltt}} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 34,56 \rightarrow \text{Í lagi!}
\]

\[
\text{Tilfelli } 5 = P_{\text{Boltt}} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 34,56 \rightarrow \text{Í lagi!}
\]
Geng úr skugga um að skilyrði fyrir hvert tilfelli fyrir sig sé uppfyllt þegar kemur að burðarþoli bolta. Miðað við að kraftur verki í lengdarstefnu (90°) á trefjar.

\[
Tilfelli \ 1 = P_{Bolti} \leq \frac{150 \text{MPa} \cdot t \cdot d}{1000} \rightarrow 6,05 \leq 21,6 \rightarrow í lagi!
\]

\[
Tilfelli \ 2 = P_{Bolti} \leq \frac{768 \text{MPa} \cdot t \cdot d}{1000} \rightarrow 6,05 \leq 110,59 \rightarrow í lagi!
\]

\[
Tilfelli \ 3 = P_{Bolti} \leq \frac{100 \text{MPa} \cdot t \cdot d}{1000} \rightarrow 6,05 \leq 14,4 \rightarrow í lagi!
\]

\[
Tilfelli \ 4 = P_{Bolti} \leq \frac{145 \text{MPa} \cdot t \cdot d}{1000} \rightarrow 6,05 \leq 20,88 \rightarrow í lagi!
\]

\[
Tilfelli \ 5 = P_{Bolti} \leq \frac{145 \text{MPa} \cdot t \cdot d}{1000} \rightarrow 6,05 \leq 10,08 \rightarrow í lagi!
\]

Hlutfallsreikningar fyrir festingu

\[
\left(\frac{23,11}{132,80}\right)^2 + \left(\frac{48,38}{62,40}\right)^2 \leq 1,0 \rightarrow 0,51 < 1,0 \rightarrow í lagi!
\]
Skástífa

Skoðum nú festinguna með tilliti til skástífunnar sem er undir brúargólfi. Búið er að sannreyna vinkilfestinguna en ganga þarf úr skugga um að spennurnar í kassaprófilnum með tilkomu bolta verði ekki yfir þeim leyfilegu spennum sem leyfðar eru í FRP efni við hvert tilfelli fyrir sig, sömu útreikningar og farið hefur verið í gegnum fyrrir vinkil.

Kraftur 0° á trefjastefnu

\[F_{r\text{á\;endá}} (\text{kraftur 0° á trefjastefnu}) = 3,5d \leq 42 \rightarrow 3,5d = 42 \rightarrow \text{Í lagí!} \]

\[F_{r\text{á\;hlíðarbrún}} (\text{kraftur 0° á trefjastefnu}) = 2d \leq 30 \rightarrow 2d = 24 \rightarrow \text{Í lagí!} \]

Bil á milli bolta

\[4d \leq 68 \rightarrow 4d = 48 \rightarrow \text{Í lagí!} \]

Bil milli boltaraða þarf að reikna út með pýþagoras því bolti lengst til hægri er mitt á milli boltaraða og því þarf hann að uppfylla skilyrði á milli bolta með tillit til bils á milli boltaraða og bolta til hlíðar:

\[\text{Bil á milli boltaraða} = \sqrt{4d^2 + 4d^2} \leq 82 \rightarrow 5,66d \leq 80 \rightarrow 5,66d = 68 \rightarrow \text{Í lagí!} \]
Kraftur 90° á trefjastefnu

\[
\text{Frá enda (kraftur 90° á trefjastefnu)} = 2d \leq 42 \rightarrow 2d = 24 \rightarrow \text{Í lagi!}
\]

\[
\text{Frá hlíðarbrún (kraftur 90° á trefjastefnu)} = 2,5d \leq 30 \rightarrow 2,5d = 30 \rightarrow \text{Í lagi!}
\]

\[
\text{Bil á milli boltaraða} = 4d \leq 68 \rightarrow 4d = 48 \rightarrow \text{Í lagi!}
\]

\[
\text{Bil á milli bolta} = \sqrt{3d^2 + 4d^2} \leq 82 \rightarrow 5d \leq 82 \rightarrow 5d = 60 \rightarrow \text{Í lagi!}
\]

Aðeins eru uppgefin styrkgildi bolta þegar kraftur verkar 0° eða 90° á trefjastefnu í hönnunarbæklingi Fiberline Composites. Hinsvegar í brúarvirknu sem hannað er hér í þessari skýrslu er skástífa undir brúargólfinu eins og kunnugt er. Hún hallar í 65° frá láréttu og því gefur ranga mynd að reikna með styrkgildi bolta sem gefinn er fyrir annaðhvort 0° eða 90°.

Skoðuð voru þau töflugildi sem gefin voru í hönnunarbæklingi og þar er tilturlega augljóst samband er á milli styrkgilda 0° og 90° á trefjastefnu. Þegar kraftur fer úr því að verka ásklægt eftir trefjastefnu og virkar þess í stað þvert á trefjastefnu lækkar styrkgildi hans um rétt tæp 50%. Reiknað var hlutfall á milli 0° og 90° fyrir allar boltastærðir að M20 med allar þversniðsþykktir að 20mm. Þar fengust niðurstöður sem sýna hversu mikinn heildarstyrk bolts sem verkar þvert á trefjastefnu hefur af sömu stærð bolta sem verkar þvert á trefjastefnu.

- Mesta hlutfall af styrk miðað við 0°: 47,92%
- Minnsta hlutfall af styrk miðað við 0°: 45,24 %
- Mismunur mestu og minnstu: 2,68 %

Útfra þessu er talið nægilega góð nálgun að reikna út styrkleika bolta miðað við kraftstefnu á trefjalegu. Tekið vor meðtal hlutfallslækkana á öllum töflugildum frá 0° og 90°.

- Hlutfallslegt meðaltal af styrk miðað við 0°: 46,67%
Útfra þessu má svo búa til formúlu sem tekur inn nauðsynlegar breytur og reiknar út boltastyrk miðað við kraft- og trefjastefnu. Breytturnar sem nota þarf eru stærð bolta, þykkt þversniðs, krafthorn miðað við trefjastefnu og svo reiknað med prósentu styrkhlutfallinu af bolta sem verkar miðað við kraft 0° á trefjastefnu.

\[Hlutfall: 1 - 0,4667 = 0,533 \]

\[Hlutfall: \frac{0,533}{90°} = 0,005926 \]

Margföldunarstudull til styrklækkunar: \(1 - (Krafthorn \times 0,005926)\)

Sannreyni hana fyrir 90°: \(1 - (90 \times 0,005926) = 0,4667 (46,67\%)\)

Því er hægt að reikna boltastyrk miðað við að krafstefna sé annaðhvort 65° eða 25° á trefjastefnu:

\[Fyrir 65° á trefjastefnu : 1 - (65 \times 0,005926) = 0,61 (61 \%) \]

\[Fyrir 25°: 1 - (25 \times 0,005926) = 0,85 (85 \%) \]

- Styrkur bolta þegar kraftur verkar 65° á trefjastefnu er því 61\% af uppgefnu styrkgildi bolta sem þegar kraftur verkar 0° á trefjastefnuna.
 - Boltastærð: M12
 - Þykkt þversniðs: 10
 - Styrkur (0°): 13,8 kN
 - Styrkur (65°): \(13,8 \times 0,61 = 8,42 kN\)

- Á sama hátt er gengið útfra því að styrkur bolta þegar kraftur verkar 25° á trefjastefnu sé 85\% af styrkgildi bolta miðað við 0°.
 - Boltastærð: M12
 - Þykkt þversniðs: 10
 - Styrkur (0°): 13,8 kN
 - Styrkur (25°): \(13,8 \times 0,85 = 11,73 kN\)
Áður en niðurstöðu reikninga eru birtar þykir þörf fyrir nánari útskýringa. Skástífan verður fyrir þróýsingi, sá þróystingskraftur hefur verið þatthaður upp í x og y stefnu í SAP2000. Þar sem að þeir kraftar verka ekki undir 0° eða 90° horni miðað við trefjastefnu þarf að finna út leyfilega spennu í FRP efninu miðað við það horn sem kraftarnir verka með tilliti til trefjastefnu prófílsins.

Prófíllinn liggur upp í brúargólfíð með 65° horni miðað við lárétt eins og sjá má á útskýringarmynd hér að neðan. Þar af leiðandi verkar skerkraftur í y-átt 65° á trefjastefnu og skerkrafturinn í x-átt verkar á prófíllinn í undir 25° miðað við trefjastefnu hans.
Til að umbreyta leyfilegri spennu úr 0°eða 90° á trefjastefnu er farið í gegnum eftirfarandi reikninga.

\[f_{c,v} = \min \left\{ f_{c,90°} + f_T \cdot \cot(v) \right\} \]

Fyrir 25° horn fæst:

\[f_{c,25°} = \min \left\{ f_{c,90°} + f_T \cdot \cot(25°) \right\} \rightarrow f_{c,25°} = 124 \text{ Mpa} \rightarrow Með öryggi = 95 \text{ Mpa} \]

Fyrir 65° horn fæst:

\[f_{c,65°} = \min \left\{ f_{c,90°} + f_T \cdot \cot(65°) \right\} \rightarrow f_{c,65°} = 82 \text{ Mpa} \rightarrow Með öryggi = 63 \text{ Mpa} \]

Niðurstöður úr útreikningum eru eftirfarandi.

Tafila 17 - Spennureikningar fyrir skástífu sem verður fyrir 25° á trefjastefnu

<table>
<thead>
<tr>
<th>Helstu upplýsingar um boltaða tengingu</th>
<th>Trefjelli 1</th>
<th>Trefjelli 2</th>
<th>Trefjelli 3</th>
<th>Trefjelli 4</th>
<th>Trefjelli 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ætak</td>
<td>25° 50,40 mm</td>
<td>25° 10,50 mm</td>
<td>25° 8,40 mm</td>
<td>25° 27,30 mm</td>
<td>25° 50,40 mm</td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>95,09 Mpa</td>
<td>95,09 Mpa</td>
<td>19,23 Mpa</td>
<td>95,09 Mpa</td>
<td>95,09 Mpa</td>
</tr>
<tr>
<td>Í lagi ?</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

Tafla 17 - Spennureikningar fyrir skástífu sem verður fyrir 25° á trefjastefnu
Tafla 18 - Spennureikningar fyrir skástífu sem verður fyrir 65° á trefjastefnu

Skástífa [132x132x8] - Sker 65° á trefjastefnu

<table>
<thead>
<tr>
<th>Helstu upplýsignar um boltaða tengingu</th>
<th>Tilfelli 1</th>
<th>Tilfelli 2</th>
<th>Tilfelli 3</th>
<th>Tilfelli 4</th>
<th>Tilfelli 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átak er: Sker (65°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Þykkt þversniðs</td>
<td>10 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stærð bolta</td>
<td>M12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stærð bolta [mm]</td>
<td>12,00 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>4,00 stk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stykur bolta</td>
<td>8,42 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftur í prófil</td>
<td>23,11 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvoföld tenging?</td>
<td>JA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftbol tengingar</td>
<td>67,34 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leyfileg spenna</td>
<td>62,81 Mpa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi ?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>8,00 stk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftur per bolta</td>
<td>2,89 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>42,00 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>12,00 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>30,00 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input í horn</td>
<td>0,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krafthorn [v°]</td>
<td>26,57 °</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krafthorn [rad]</td>
<td>0,46 rad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₀</td>
<td>2,89 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>0,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂</td>
<td>1,61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₃</td>
<td>1,44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>62,81 Mpa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂</td>
<td>62,81 Mpa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tilfelli 1
- Reiknuð spenna: 16,05 Mpa
- Átak: 65° á Trefjastefnu
- Leyfileg spenna: 62,81 Mpa
- Í lagi?: OK

Tilfelli 2
- Reiknuð spenna: 6,02 Mpa
- Átak: 65° á Trefjastefnu
- Leyfileg spenna: 62,81 Mpa
- Í lagi?: OK

Tilfelli 3
- Reiknuð spenna: 4,01 Mpa
- Átak: fT
- Leyfileg spenna: 19,23 Mpa
- Í lagi?: OK

Tilfelli 4
- Reiknuð spenna: 13,46 Mpa
- Átak: 65° á Trefjastefnu
- Leyfileg spenna: 62,81 Mpa
- Í lagi?: OK

Tilfelli 5
- Reiknuð spenna: 24,07 Mpa
- Átak: 65° á Trefjastefnu
- Leyfileg spenna: 62,81 Mpa
- Í lagi?: OK
Þar sem að nú er um að ræða kraft sem hvorki er 90° á trefjastefnu né 0° á trefjastefnu þá verður reiknað í gegnum tilfelli 1 – 5 miðað við að kraftur verki 90° á trefjastefnu. Þau tilfelli eru veikari þannig að ef að þau tilfelli eru uppfyllt þá er um við öruggu megin við línu.

Prófill þar sem kraftur verkar 65° á tefjastefnu:

\[
\begin{align*}
\text{Tilfelli 1} &= P_{Bolti} \leq \frac{150 \text{ Mpa} \times t \times d}{1000} \rightarrow 6,05 \leq 18 \rightarrow \text{lagi!} \\
\text{Tilfelli 2} &= P_{Bolti} \leq \frac{768 \text{ Mpa} \times t \times d}{1000} \rightarrow 6,05 \leq 92,16 \rightarrow \text{lagi!} \\
\text{Tilfelli 3} &= P_{Bolti} \leq \frac{100 \text{ Mpa} \times t \times d}{1000} \rightarrow 6,05 \leq 12 \rightarrow \text{lagi!} \\
\text{Tilfelli 4} &= P_{Bolti} \leq \frac{145 \text{ Mpa} \times t \times d}{1000} \rightarrow 6,05 \leq 17,4 \rightarrow \text{lagi!} \\
\text{Tilfelli 5} &= P_{Bolti} \leq \frac{145 \text{ Mpa} \times t \times d}{1000} \rightarrow 6,05 \leq 8,4 \rightarrow \text{lagi!}
\end{align*}
\]

Prófill þar sem kraftur verkar 25° á tefjastefnu:

\[
\begin{align*}
\text{Tilfelli 1} &= P_{Bolti} \leq \frac{150 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 18 \rightarrow \text{lagi!} \\
\text{Tilfelli 2} &= P_{Bolti} \leq \frac{768 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 92,16 \rightarrow \text{lagi!} \\
\text{Tilfelli 3} &= P_{Bolti} \leq \frac{100 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 12 \rightarrow \text{lagi!} \\
\text{Tilfelli 4} &= P_{Bolti} \leq \frac{145 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 17,4 \rightarrow \text{lagi!} \\
\text{Tilfelli 5} &= P_{Bolti} \leq \frac{145 \text{ Mpa} \times t \times d}{1000} \rightarrow 2,89 \leq 8,4 \rightarrow \text{lagi!}
\end{align*}
\]

\textit{Hlutfallsreikningar fyrir festingu}

\[
\left(\frac{48,38}{93,84}\right)^2 + \left(\frac{23,11}{67,34}\right)^2 \leq 1,0 \rightarrow 0,38 < 1,0 \rightarrow \text{lagi!}
\]
Skástífa við U – skúffur

Kassaprófill [skástífa]

Byrjum á að skoða kantfjarlægðir, skoðum kantfjarlægðir þar sem kraftur er 0° á trefjastefnu þar sem þau gildi eru ráðandi.

Frá enda (kraftur 0° á trefjastefnu) = 3,5d ≤ 56 → 3,5d = 70 → Í lagi!
Frá hliðarbrún (kraftur 0° á trefjastefnu) = 2d ≤ 66 → 2d = 32 → Í lagi!

Bíl á milli boltaraða = $\sqrt{4d^2 + 4d^2} \leq 96 \rightarrow 5,66d \leq 96 \rightarrow$

5,66d = 91 → Í lagi!
Kraftur 90° á trefjastefnu

\[
Frá enda (kraftur 90° á trefjastefnu) = 2.5d \leq 56 \rightarrow 2d = 40 \rightarrow \text{Í lagi!}
\]

\[
Frá hliðarbrún (kraftur 90° á trefjastefnu) = 2d \leq 66 \rightarrow 2d = 32 \rightarrow \text{Í lagi!}
\]

\[
Bil á milli bolta = \sqrt{3d^2 + 4d^2} \leq 120 \rightarrow 5d \leq 96 \rightarrow 5d = 80 \rightarrow \text{Í lagi!}
\]

Hér að neðan koma svo niðurstöður reikninga. Hafa ber í huga að sömu aðferð þarf að beita og hér að ofan þar sem kassaprófill var boltaður við vinkil. Þar að segja að kraftur verkar ýmist 25° eða 65° á trefjastefnu. Þar sem að skástífa flytur normalkraft [44,79 kN] þarf að þáttta upp þann kraft með tilliti til hornis sem skástífan liggur í frá láréttu (65°) til að fá út þann kraft sem verkar beint niður.

\[
Kraftur_{Löðrétta} = \cos(65) \times 53,61 \rightarrow Kraftur_{Löðrétta} = 22,66 kN
\]

Í þessari tengingu þarf einnig að reikna styrkgildi með hlutfallsútreikningum á sama hátt og gert var hér áður þar sem prófillinn var boltaður við vinkil. Ef nánari skýringa á því hvernig boltastyrkur er hlutfallaður niður er bent á útskýringar ofar í skýrslu. Hér er um að ræða M16 bolta í gegnum 10mm
• Styrkur bolta þegar kraftur verkar 65° á trefjastefnu
 o Boltastærð: M16
 o Þykkt þversniðs: 10
 o Styrkur (0°): 18,5 kN
 o Styrkur (65°): 18,5 * 0,61 = 11,29 kN

• Styrkur bolta þegar kraftur verkar 25° á trefjastefnu
 o Boltastærð: M16
 o Þykkt þversniðs: 10
 o Styrkur (0°): 18,5 kN
 o Styrkur (25°): 18,5 * 0,85 = 15,73 kN

Áður en niðurstöður eru birtar skal skerpa á því að þar sem prófíllinn er undir horni og kraftarnir verka því undir hornunum 65° og 25° á trefjastefnu eru leyfilegar spennur í FRP efni eins og áður var reiknað eftirfarandi:

Fyrir 25° horn:

\[f_{c,25°} = \min\left\{ f_{c,90°} + f_t \cdot \cot(25°) \right\} \]
\[f_{c,0°} + f_t \cdot \tan(25°) \rightarrow f_{c,25°} = 124 \text{ Mpa} \rightarrow Með öryggi = 95 \text{ Mpa} \]

Fyrir 65° horn:

\[f_{c,65°} = \min\left\{ f_{c,90°} + f_t \cdot \cot(65°) \right\} \]
\[f_{c,0°} + f_t \cdot \tan(65°) \rightarrow f_{c,65°} = 81,66 \text{ Mpa} \rightarrow Með öryggi = 62,81 \text{ Mpa} \]
Tafla 20 - Spennureikningar fyrir skástífu þegar kraftur verkar 25° á trefjarn

<table>
<thead>
<tr>
<th>Átak er:</th>
<th>Sker (25°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pykt þversniðs</td>
<td>10 mm</td>
</tr>
<tr>
<td>Stærð bolta</td>
<td>M16</td>
</tr>
<tr>
<td>Stærð bolta[mm]</td>
<td>16 mm</td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>3 stk</td>
</tr>
<tr>
<td>Stykkur bolta</td>
<td>15,73 kN</td>
</tr>
<tr>
<td>Kraftur í prófíl</td>
<td>47,91 kN</td>
</tr>
<tr>
<td>Tvöföld tenging?</td>
<td>JA</td>
</tr>
<tr>
<td>Kraftþol tengingar</td>
<td>94,38 kN</td>
</tr>
<tr>
<td>í lagi?</td>
<td>OK</td>
</tr>
</tbody>
</table>

Fjöldi bolta	6 stk
Kraftur per bolta	7,99 kN
a	56,00 mm
b	16,00 mm
c	66,00 mm
Input í horn	0,77
Krafthorn [v°]	37,63 °
Krafthorn [rad]	0,66 rad
P₆	7,99 kN
P₁	3,08 kN
P₂	5,04 kN
P₃	3,99 kN

Tafla 19 - Spennureikningar fyrir skástíful þegar kraftur verkar 65° á trefjarn

<table>
<thead>
<tr>
<th>Átak er:</th>
<th>Sker (65°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pykt þversniðs</td>
<td>10 mm</td>
</tr>
<tr>
<td>Stærð bolta</td>
<td>M16</td>
</tr>
<tr>
<td>Stærð bolta[mm]</td>
<td>16 mm</td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>3 stk</td>
</tr>
<tr>
<td>Stykkur bolta</td>
<td>11,29 kN</td>
</tr>
<tr>
<td>Kraftur í prófíl</td>
<td>22,66 kN</td>
</tr>
<tr>
<td>Tvöföld tenging?</td>
<td>JA</td>
</tr>
<tr>
<td>Kraftþol tengingar</td>
<td>67,74 kN</td>
</tr>
<tr>
<td>í lagi?</td>
<td>OK</td>
</tr>
</tbody>
</table>

Fjöldi bolta	6 stk
Kraftur per bolta	3,78 kN
a	66,00 mm
b	16,00 mm
c	56,00 mm
Input í horn	0,55
Krafthorn [v°]	28,89 °
Krafthorn [rad]	0,50 rad
P₆	3,78 kN
P₁	1,04 kN
P₂	2,16 kN
P₃	1,89 kN
Þar sem að nú er um að ræða kraft sem hvorki er 90° á trefjastefnu né 0° á trefjastefnu þá verður reiknað í gegnum tilfelli 1 – 5 miðað við að kraftur verki 90° á trefjastefnu. Þau tilfelli eru veikari þannig að ef að þau tilfelli eru uppfyllt þá erum við öruggu megin við líðuna.

Prófíll þar sem kraftur verkar 65° á tefjastefnu:

\[
Tilfelli \, 1 = P_{Bolti} \leq \frac{150 \, MPa \times t \times d}{1000} \rightarrow 3,78 \leq 24 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli \, 2 = P_{Bolti} \leq \frac{768 \, MPa \times t \times d}{1000} \rightarrow 3,78 \leq 122,88 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli \, 3 = P_{Bolti} \leq \frac{100 \, MPa \times t \times d}{1000} \rightarrow 3,78 \leq 16 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli \, 4 = P_{Bolti} \leq \frac{145 \, MPa \times t \times d}{1000} \rightarrow 3,78 \leq 23,2 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli \, 5 = P_{Bolti} \leq \frac{145 \, MPa \times t \times d}{1000} \rightarrow 3,78 \leq 11,2 \rightarrow \text{Í lagi!}
\]

Prófíll þar sem kraftur verkar 25° á tefjastefnu:

\[
Tilfelli \, 1 = P_{Bolti} \leq \frac{150 \, MPa \times t \times d}{1000} \rightarrow 7,99 \leq 24 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli \, 2 = P_{Bolti} \leq \frac{768 \, MPa \times t \times d}{1000} \rightarrow 7,99 \leq 122,88 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli \, 3 = P_{Bolti} \leq \frac{100 \, MPa \times t \times d}{1000} \rightarrow 7,99 \leq 16 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli \, 4 = P_{Bolti} \leq \frac{145 \, MPa \times t \times d}{1000} \rightarrow 7,99 \leq 23,2 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli \, 5 = P_{Bolti} \leq \frac{145 \, MPa \times t \times d}{1000} \rightarrow 7,99 \leq 11,2 \rightarrow \text{Í lagi!}
\]

Hlutfallsreikningar fyrir festingu

\[
\left(\frac{22,66}{67,74}\right)^2 + \left(\frac{47,91}{94,38}\right)^2 \leq 1,0 \rightarrow 0,37 < 1,0 \rightarrow \text{Í lagi!}
\]

99
U - Skúffa

Byrjum á að skoða kantfjarlægðir, skoðum kantfjarlægðir þar sem kraftur er 0° á trefjastefnu þar sem þau gildi eru ráðandi.

Frá enda (kraftur 0° á trefjastefnu) = 3,5d ≤ 457 → 3,5d = 56 → Í lagi!

Frá hliðarbrún (kraftur 0° á trefjastefnu) = 2d ≤ 66 → 2d = 32 → Í lagi!

Bil á milli boltaraða = \(\sqrt{4d^2 + 4d^2} \leq 96 \rightarrow 5,66d \leq 96 \rightarrow 5,66d = 91 \rightarrow Í lagi!

Kraftur 90° á trefjastefnu

Frá enda (kraftur 90° á trefjastefnu) = 2d ≤ 457 → 2d = 32 → Í lagi!

Frá hliðarbrún (kraftur 90° á trefjastefnu) = 2d ≤ 66 → 2d = 40 → Í lagi!

Bil á milli bolta = \(\sqrt{3d^2 + 4d^2} \leq 120 \rightarrow 5d \leq 96 \rightarrow 5d = 80 \rightarrow Í lagi!

Mynd 48 – Útfærsla á því hvernig skástífa boltast við U-skúffu
Niðurstöðurnar má sjá hér að neðan, athuga skal að skerkrafturinn sem verkar í 90° á trefjastefnu er normalkrafturinn í skástífunni þáttáður í x-stefnu líkt og reikningar í kaflanum um skástífu gáfu til kynna.

Tafla 21 - Spennureikningar fyrir U-skúffu þegar kraftur verkar 90° á trefjastefnu

<table>
<thead>
<tr>
<th>Helstu upplýsignar um boltaða tengingu</th>
<th>Tilfelli 1</th>
<th>Tilfelli 2</th>
<th>Tilfelli 3</th>
<th>Tilfelli 4</th>
<th>Tilfelli 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átak er: Sker (0°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pykkt þversniðs</td>
<td>10 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stærð bolta</td>
<td>M16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stærð bolta [mm]</td>
<td>16 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>3 stk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrkur bolta</td>
<td>18,5 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftur í prófil</td>
<td>47,91 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tvöföld tenging?</td>
<td>JÁ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftþol tengingar</td>
<td>111 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Í lagi?</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjöldi bolta</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraftur per bolta</td>
<td>7,99 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>457 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>16 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>66 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input í horn</td>
<td>0,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krafthorn [v°]</td>
<td>4,71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krafthorn [rad]</td>
<td>0,08 rad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₈</td>
<td>7,99 kN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>0,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂</td>
<td>4,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₃</td>
<td>3,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reiknuð spenna
Átak
Leyfileg spenna
Í lagi?

<table>
<thead>
<tr>
<th>Leiðiver</th>
<th>Leiðiver</th>
<th>Leiðiver</th>
<th>Leiðiver</th>
<th>Leiðiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,97 Mpa</td>
<td>ft,0°</td>
<td>184,62 Mpa</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,06 Mpa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184,62 Mpa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19,23 Mpa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49,91 Mpa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tafla 21 - Spennureikningar fyrir U-skúffu þegar kraftur verkar 90° á trefjastefnu
Geng úr skugga um að skilyrði fyrir hvert tilfelli fyrir sig sé uppfyllt þegar kemur að burðarþoli bolta. Miðað við kraftur verki í lengdarstefnu (0°) á trefjar.

U – skúffa þar sem kraftur verkar 0° á trefjastefnu:

\[Tilfelli \ 1 = P_{\text{Bølti}} \leq \frac{720 \text{ Mpa} \times t \times d}{1000} \rightarrow 7,99 \leq 115,2 \rightarrow í \text{lagi!} \]

\[Tilfelli \ 2 = P_{\text{Bølti}} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 7,99 \leq 38,4 \rightarrow í \text{lagi!} \]

\[Tilfelli \ 3 = P_{\text{Bølti}} \leq \frac{150 \text{ Mpa} \times t \times d}{1000} \rightarrow 7,99 \leq 24 \rightarrow í \text{lagi!} \]

\[Tilfelli \ 4 = P_{\text{Bølti}} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 7,99 \leq 38,4 \rightarrow í \text{lagi!} \]

\[Tilfelli \ 5 = P_{\text{Bølti}} \leq \frac{240 \text{ Mpa} \times t \times d}{1000} \rightarrow 7,99 \leq 38,4 \rightarrow í \text{lagi!} \]
U – skúffa þar sem kraftur verkar 90° á tefjastefnu:

\[
Tilfelli 1 = P_{Bo\!t\!i} \leq \frac{150 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,78 \leq 24 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli 2 = P_{Bo\!t\!i} \leq \frac{768 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,78 \leq 122,88 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli 3 = P_{Bo\!t\!i} \leq \frac{100 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,78 \leq 16 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli 4 = P_{Bo\!t\!i} \leq \frac{145 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,78 \leq 23,2 \rightarrow \text{Í lagi!}
\]

\[
Tilfelli 5 = P_{Bo\!t\!i} \leq \frac{145 \text{ Mpa} \times t \times d}{1000} \rightarrow 3,78 \leq 11,2 \rightarrow \text{Í lagi!}
\]

\[
Hlutfallsreikningar fyrir festingu
\]

\[
\left(\frac{47,91}{111}\right)^2 + \left(\frac{22,66}{51,6}\right)^2 \leq 1,0 \rightarrow 0,38 < 1,0 \rightarrow \text{Í lagi!}
\]
Handriðsstoð á milli U-skúffa

Handriðsplattar á handriðsstoðir

Líkt og fjallað var um í kaflanum hér að ofan er engin áraun að viti á handriðsplatta. Þeir verða boltaðir á handriðsstoðina með tveimur M8 boltum.
Viðauki III - Boltafesting vinkils við steyptan brúarkant

Þar sem vinkill boltast við steyptan brúarkant skal notast við M12 x 196 mm HIT – Z bolta auk HY-HIT 200 Mortar lími frá Hilti. Bordýpt skal vera 175 mm með 14 mm bor. Ekki er nauðsynlegt að hreinsa borgat áður en ísetning fer fram.

Í tæknupplýsingablaði Hilti fyrir þessa boltagerð eru gefin upp lágmarksfjarlægðir frá enda steypu og fjarlægðar á milli bolta. Í samtengingum við brúarkant eru þau skilyrði uppfyllt og einnig eru tog- og skerþol boltanna nægilegt miðað við þá áraun sem á þá verkar.

<table>
<thead>
<tr>
<th>Anchor size</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal diameter of drill bit</td>
<td>d₀</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[mm]</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Nominal embedment depth range</td>
<td>h₀</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[mm]</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>Borehole condition 1</td>
<td>h₀</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum base material thickness</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h₀ + 60 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h₀ + 100 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borehole condition 2</td>
<td>h₀</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum base material thickness</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h₀ + 30 mm ≥100 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h₀ + 45 mm ≥45 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-setting</td>
<td>d₁ ≤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter of clearance hole in the fixture</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Through-setting</td>
<td>d₁ ≤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter of clearance hole in the fixture</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque moment</td>
<td>Tₘ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Nm]</td>
<td>10</td>
<td>25</td>
<td>40</td>
<td>80</td>
<td>150</td>
</tr>
<tr>
<td>Maximum thickness of fixture</td>
<td>tₒ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[mm]</td>
<td>48</td>
<td>87</td>
<td>129</td>
<td>303</td>
<td>326</td>
</tr>
</tbody>
</table>

Mynd 49 – Upplysingar fyrir HIT-Z bolta frá Hilti sem notaðir skulu við steyptan brúarkant

Til að sannreyna notaða bolta gagnvart togþoli, skerþoli og útrifnun úr steypu var notast við Hilti Profis Anchor forrit frá Hilti sem er mjög öflugt forrit við útreikninga. Aðalastæðan fyrir því að forritið var notað, var til að ganga úr skugga um að ekki eigi sér stað útrifnun úr steypu. Tog- og skerþol boltanna er nægilegt en hætta getur verið á að brotni uppúr steypu við áraun boltanna. Við notkun forritsins eru sett inn þeir kraftar sem boltar þurfa að vinna upp í þæði skeri og togi. Þar sem tvöföld festing er við brúarkant er heildarkrafti í skeri og togi helmingaður festing reiknuð út frá þeim breytum. Nauðsynleg inntaksgildi í reiknihorritið eru:

- Boltagerð og boltasterð
- Bordýpt
- Kanfjarlægðir og fjarlægðir á milli bolta
- Sker og togáraun á bolta
Hér til hliðar á mynd (50) má sjá niðurstöður úr reikniforritinu. Tekið er fyrir hvert og eitt tilfelli og niðurstöður birtar í prósentuhlutfalli. Prósentuhlutfallið segir í raun til um þá nýtingu sem á við tilfelli af heildarþoli. Ef að prósentuhlutfall færir einhverstaðar yfir 100% væri boltafestingin ekki í lagi.

Hér fyrir á næstu blaðsíðu eru svo þuldir upp nauðsynlegir útreikningar við hvert til tilfelli fyrir sig. Ekki þykir ástæða að fara djúpt í þá útreikninga og því niðurstöður bara birtar.
3 Tension load SOFA (fib (07/2011), section 16.2.1)

<table>
<thead>
<tr>
<th></th>
<th>Load [kN]</th>
<th>Capacity [kN]</th>
<th>Utilization (\phi_u) [%]</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Strength**</td>
<td>11.976</td>
<td>36.667</td>
<td>33</td>
<td>OK</td>
</tr>
<tr>
<td>Combined pullout-concrete cone failure**</td>
<td>23.955</td>
<td>40.332</td>
<td>60</td>
<td>OK</td>
</tr>
<tr>
<td>Concrete Breakout Strength**</td>
<td>23.955</td>
<td>32.377</td>
<td>74</td>
<td>OK</td>
</tr>
<tr>
<td>Splitting failure**</td>
<td>23.955</td>
<td>36.531</td>
<td>66</td>
<td>OK</td>
</tr>
</tbody>
</table>

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

<table>
<thead>
<tr>
<th>(N_{\text{max}}) [kN]</th>
<th>(\sigma_{\text{m}}) [kN]</th>
<th>(N_{\text{cap}}) [kN]</th>
<th>(N_{\text{cap}}) [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.000</td>
<td>1.500</td>
<td>36.667</td>
<td>11.978</td>
</tr>
</tbody>
</table>

3.2 Combined pullout-concrete cone failure

<table>
<thead>
<tr>
<th>(A_{\text{ppl}}) [mm²]</th>
<th>(A_{\text{cpl}}) [mm²]</th>
<th>(\sigma_{\text{m}}) [N/mm²]</th>
<th>(\sigma_{\text{cpl}}) [N/mm²]</th>
<th>(\sigma_{\text{cap}}) [N/mm²]</th>
<th>(\delta_{\text{m}}) [mm]</th>
<th>(\delta_{\text{cpl}}) [mm]</th>
<th>(\delta_{\text{cap}}) [mm]</th>
<th>(\delta_{\text{SFRM}}) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.000</td>
<td>32.000</td>
<td>1.571</td>
<td>24.00</td>
<td>103</td>
<td>86</td>
<td>67</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>(1.000)</td>
<td>(0.000)</td>
<td>(8.000)</td>
<td>(1.000)</td>
</tr>
<tr>
<td>(\varepsilon_{\text{m}}) [mm]</td>
<td>(\varepsilon_{\text{cpl}}) [mm]</td>
<td>(\varepsilon_{\text{cap}}) [mm]</td>
<td>(\varepsilon_{\text{SFRM}}) [mm]</td>
<td>(\varepsilon_{\text{m}}) [mm]</td>
<td>(\varepsilon_{\text{cpl}}) [mm]</td>
<td>(\varepsilon_{\text{cap}}) [mm]</td>
<td>(\varepsilon_{\text{SFRM}}) [mm]</td>
<td>(\varepsilon_{\text{m}}) [mm]</td>
</tr>
<tr>
<td>0</td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.923</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_{\text{cap}}) [kN]</td>
<td>(N_{\text{cap}}) [kN]</td>
<td>(N_{\text{cap}}) [kN]</td>
<td>(N_{\text{cap}}) [kN]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.793</td>
<td>60.499</td>
<td>1.500</td>
<td>40.332</td>
<td>23.955</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Concrete Breakout Strength

<table>
<thead>
<tr>
<th>(A_{\text{ppl}}) [mm²]</th>
<th>(A_{\text{cpl}}) [mm²]</th>
<th>(\varepsilon_{\text{m}}) [mm]</th>
<th>(\varepsilon_{\text{cpl}}) [mm]</th>
<th>(\varepsilon_{\text{cap}}) [mm]</th>
<th>(k_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>156.816</td>
<td>156.816</td>
<td>0.960</td>
<td>216</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>(0)</td>
</tr>
<tr>
<td>(N_{\text{cap}}) [kN]</td>
<td>(N_{\text{cap}}) [kN]</td>
<td>(N_{\text{cap}}) [kN]</td>
<td>(N_{\text{cap}}) [kN]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.678</td>
<td>1.500</td>
<td>32.377</td>
<td>23.955</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 Splitting failure

<table>
<thead>
<tr>
<th>(A_{\text{ppl}}) [mm²]</th>
<th>(A_{\text{cpl}}) [mm²]</th>
<th>(\varepsilon_{\text{m}}) [mm]</th>
<th>(\varepsilon_{\text{cpl}}) [mm]</th>
<th>(\varepsilon_{\text{cap}}) [mm]</th>
<th>(k_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>156.816</td>
<td>156.816</td>
<td>0.960</td>
<td>216</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>(0)</td>
</tr>
<tr>
<td>(N_{\text{cap}}) [kN]</td>
<td>(N_{\text{cap}}) [kN]</td>
<td>(N_{\text{cap}}) [kN]</td>
<td>(N_{\text{cap}}) [kN]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.678</td>
<td>1.500</td>
<td>36.531</td>
<td>23.955</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Shear load SOFA (fib (07/2011), section 16.2.2)

<table>
<thead>
<tr>
<th>Load [kN]</th>
<th>Capacity [kN]</th>
<th>Utilization Pk [%]</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>3.313</td>
<td>21.500</td>
<td>16</td>
</tr>
<tr>
<td>Steel failure</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pryout</td>
<td>6.625</td>
<td>64.753</td>
<td>11</td>
</tr>
<tr>
<td>Concrete edge failure</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* anchor having the highest loading ** anchor group (relevant anchors)

4.1 Steel Strength (without lever arm)

<table>
<thead>
<tr>
<th>Vrel [kN]</th>
<th>YM</th>
<th>Vrel [kN]</th>
<th>Vss [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.000</td>
<td>1.250</td>
<td>21.500</td>
<td>3.313</td>
</tr>
</tbody>
</table>

4.2 Pryout Strength (Concrete Breakout Strength controls)

<table>
<thead>
<tr>
<th>AN</th>
<th>VN</th>
<th>cN</th>
<th>nN</th>
<th>kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>156810</td>
<td>186024</td>
<td>0.640</td>
<td>210</td>
<td>432</td>
</tr>
<tr>
<td>0</td>
<td>1.000</td>
<td>0</td>
<td>1.000</td>
<td>0.703</td>
</tr>
</tbody>
</table>

5 Combined tension and shear loads SOFA (fib (07/2011), section 10.3)

<table>
<thead>
<tr>
<th>Team</th>
<th>aT</th>
<th>aV</th>
<th>Utilization</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>0.327</td>
<td>0.153</td>
<td>2.000</td>
<td>14</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.740</td>
<td>0.102</td>
<td>1.500</td>
<td>67</td>
</tr>
</tbody>
</table>

pT = pV = 1
Viðauki IV - Teikningar