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Abstract 

Species distribution models (SDM) are useful tools for describing and predicting species 

ecological role within its community or ecosystem. They are increasingly becoming 

important in the context of marine resource management and conservation in light of the 

the relative difficulty and expense of obtaining quality marine biological and 

environmental data. SDM have been applied to the marine realm in areas such as marine 

spatial planning (MSP), prioritizing for the establishment of protected areas, predicting and 

planning for the impact of non-native species and climate change mitigation. There is an 

on-going effort by private and public stakeholders to further develop and implement 

ecosystem based management approaches to Jamaicaʼs marine resources, in particular on 

socio-economically important species and habitats. In this context descriptive and 

predictive distribution models were developed for different size and age groups of the 

commercially important gastropod mollusc, Queen conch (Strombus gigas), on the Pedro 

Bank Jamaica. Species occurrence data from four abundance surveys (2002, 2007, 2011 

and 2015) were modelled against the environmental variables; depth, substrate and primary 

production using generalized additive models (GAM) and Maxent. Descriptive results 

revealed that for both juveniles and adults there is a higher tendency toward shallower 

depths and substrates with relatively high amounts of their marcoalgal food. However, it is 

substrate complexity rather than specific substrate types that may be most important. 

Predictive models showed that not all supposedly suitable areas were being occupied by the 

species, but importantly also suggest priority areas for management of the species and its 

habitat in the context of the Pedro Banksʼ increasingly multi-use nature. 

Key words: Strombus gigas, realized niche, potential niche, Pedro Bank, species 

distribution models, biological variables, environmental variables, marine spatial planning    

 

 

 

 

 

 

 



 

Útdráttur 

Útbreiðslulíkön tegunda (Species distribution models, SDM) eru hentug tæki til að lýsa og 

spá fyrir um útbreiðslu tegunda og hlutdeild þeirra og stöðu í samfélögum og vistkerfum. 

Notkun þeirra hefur aukist verulega við stjórnun sjávarauðlinda og verndun þeirra, einkum 

í ljósi erfiðleika og mikils kostnaðar við að afla magnbundinna gagna, bæði líffræðilegra 

og umhverfisgagna. Slíkum líkönum hefur verið beitt á lífverur og umhverfi sjávar, m.a. 

við skipulagningu sjávarsvæða, skipulagningu verndaðra svæða, til að meta áhrif 

aðkomutegunda og við mat á áhrifum loftslagsbreytinga. Á Jamaíku er nú aukin áhersla á 

að beita vistfræðilegum aðferðum við auðlindastjórnun, einkum vegna nytjategunda og 

mikilvægra búsvæða í sjó. Í tengslum við þetta voru lýsandi líkön (descriptive) og spálíkön 

(predictive) útbúin fyrir mismunandi strærðardreifingu og aldursflokka snigilsins 

tröllajöfurs (Queen conch, Strombus gigas) á Pedro Banka á Jamaíku, en tegundin er 

mikilvæg nytjategund þar. Gögn um magn og útbreiðslu tegundarinnar úr fjórum 

sýnatökum (2002, 2007, 2011 og 2015), ásamt umhverfisbreytunum dýpi, gerð undirlags 

og frumframleiðslu, voru sett í GAM (Generalized additive models) og Maxent líkön. 

Niðurstöður úr lýsandi líkönum sýndu tilhneigingu til þess að bæði ungviði og fullorðin dýr 

héldu sig frekar á grynnra vatni og á undirlagi með hlutfallslega miklu magni af 

stórþörungum, sem eru helsta fæða tröllajöfurs. Hins vegar bendir ýmislegt til meira 

mikilvægis fjölbreytileika undirlagsins, frekar en sérstakrar undirlagsgerðar. Spálíkönin 

sýndu að tegundin finnst ekki víða þar sem ætla má að kjöraðstæður séu fyrir hana. Út frá 

líkönunum má skilgreina forgangssvæði vegna auðlindastjórnunar á tröllajöfri, en slíkt er 

mikilvægt í ljósi aukinnar og fjölbreyttari nýtingar lífríkisins á Pedro Banka. 
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1 Introduction 

1.1 Conch benthic distribution and life history  

Queen conch (Strombus gigas  Linnaeus, 1758; synonym Lobatus gigas (Linnaeus, 1758)) 

is a large gastropod mollusc (Figure 1) native to shallow waters usually less than 50 m of 

the western Atlantic region, ranging from Bermuda in the north down to the Gulf of 

Mexico, the greater Caribbean region, and the coast of northern South America (Chakallal 

and Cochrane, 1996). The animal often grows to around 25 cm in shell length which it 

attains after 3 to 4 years and at which time most individuals are also sexually mature 

(Brownell and Stevely, 1981; Prada et al., 2008).   

   

Figure 1. Queen conch viewed from different angles; above view (left), underside view 

(centre) and lateral view (right). 

The species is an important part of the comminities and ecosystems in which it occur often 

being one of the primary benthic grazing herbivores, feeding on marcoalgae and detritus 

(Brownell and Stevely, 1981). The species is also a food source for a number of other 

species ranging from planktonic crustaceans and fish which feed on the young planktonic 

life stages to larger marine animals such as Nurse Sharks (Ginglymostoma cirratum 

Bonnaterre, 1788), Spiny lobsters (Palinurus argus Latreille, 1804) and octopuses 

(Octupus vulgaris Lamarck, 1798) which prey on benthic life stages (Prada et al., 2008).  

Like most marine species, their distribution over space and time is determined by a 

complex relationship among various biological and environmental variables including 

those of anthropogenic origin (Brownell and Stevely, 1981; Prada et al., 2008). The extent, 

composition and nature of the substratum is one of the key determinants of the distribution 

of benthic marine organisms (Reiss et al., 2014), and such is the case with the Queen 

conch. Throughout its benthic life history and ontogeny Queen conch inhabit mainly flat, 

shallow sand-based or hard bottom (weathered dead coral reef) habitat associated with 

relatively high primary production needed for their main macroalgae and seagrass detritus 

food sources (Brown and Stevely, 1981; Stoner et al., 1996b). Their distribution, like that 

of many other benthic species, is therefore closely related to access to and availability of 
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their food resulting in the species occurring often in clusters throughout their range (Stoner 

and Lally, 1994).  

Different substrate types or combination of substrate types including coral reefs, reef 

pavement, coral rubble (weathered coral reef fragments and biogenic debris), sands of 

various grain sizes, and seagrasses are thought to influence the abundance and population 

structure of these clusters (Brownell and Stevely, 1981). This is partly due to their differing 

affinity for growth of their marcoalgal food and for providing suitable spawning and 

nursery habitat (Brownell and Stevely, 1981; Stoner and Sandt, 1992). As a result different 

age and size groups display daily and seasonal movements between different feeding 

grounds as well as movement between feeding grounds and spawning grounds in the case 

of sexually mature adults (Stoner and Sandt, 1992). Daily movements for food has been 

estimated to range between 2 and 15 m/day while an individuals’ annual range, including 

for reproductive activity, is thought to range between 2 ha/year (0.02 km²) and 30 ha/year 

(0.3 km²) (Stoner and Ray-Culp, 2000).  

There is significant movement of the species among different substrates for the purpose of 

reproduction (Stoner and Sandt, 1992). Sexually mature conch of around 3 years and older 

will move from marcoalgal hard substrates (coral reefs, coral rubble and reef pavement) 

where they feed during the months of May to June (Stoner and Sandt, 1992). They then 

move to flat sandy habitat where they copulate and spawn during the warmer months of the 

year peaking during the period of July to August (Stoner and Culp, 2000). Very little 

feeding occurs during the reproductive season (Stoner and Sandt, 1992). At the end of the 

reproductive season, roughly from August to September, they migrate to hard substrate 

where they feed until the next reproductive season (Stoner and Sandt, 1992).   

The migration of juveniles and sexually mature adults are thought to produce a type of 

ontogenic stratification in some parts of the Caribbean region particularly based on 

substrate type and depth (Stoner and Ray-Culp, 2000). In these areas, smaller juvenile 

conch tend to occur more often in shallower waters associated with abundant macroalgae 

and seagrass where they aggregate in high densities as a mechanism to avoid predation and 

increase overall survivorship (Stoner and Lally, 1994). Larger adults, on the other hand, are 

more numerous in deeper waters associated with flat, less complex habitat where they may 

be more exposed to predation (Stoner and Sandt, 1992). This type of stratification is 

however not the rule as the size and composition of Queen conch aggregations are 

dependent on a complex of substrate types in an area rather than any one or two specific 

types thus both juveniles and adults may occupy the same general areas (Stoner and Lally, 

1994). Juveniles may occur in deeper waters possibly as a means of avoiding mechanical 

disturbance and dealing with limited amounts of suitable habitat and resources (Marshak et 

al., 2006), while adults may utilize the often food-rich shallower areas as well (Stoner and 

Sandt, 1992) 

It is therefore likely that the species’ distribution is dependent on a more complex set of 

ecological and environmental processes which may be difficult to measure but are 

influential shaping distributional patterns (Stoner, 2003). These include for instance 

different species interactions in determining the spatial extent of nurseries, feeding grounds 

and spawning areas (Marshak et al., 2006). Other important factors include ocean currents 

which have important role in larval retention and settlement as the species planktonic life 

phase may last for up to three weeks which is ample time for wide distribution by currents 
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(Stoner et al., 1996a). Additionally, photoperiod or the relative amount of daylight per day 

is also thought to provide physiological stimuli for commencement of reproductive 

migration in sexually mature adults and also for pelagic larvae to move to the benthos to 

settlement (Stoner and Sandt, 1992; Stoner, 2003). This research paper will however not 

consider factors such as these but focus mainly on modeling direct and indirect 

environmental factors affecting the distribution of the benthic life stages of the species 

namely; depth, substrate and chlorophyll-a concentration which is used here as an indirect 

measure of primary productivity. 

1.2 Conch fishery on the Pedro Bank  

An important consideration when looking at Queen conch on the Pedro Bank is the fact 

that it is an important commercial species. Exports originating from the bank during the 

last decade and a half has averaged around 500 tonnes (MT) annually (Fisheries Division, 

2013), and contributing to a regional fishery worth in excess of an estimated 60 million 

United States dollars annually thus underlining its tremendous socioeconomic importance 

to coastal communities in Jamaica and other countries in the region (Chakallal and 

Cochrane, 1996). That said however, by its very nature the commercial exploitation of 

Queen conch is a source of potential threat to the species itself and to the wider 

biodiversity on the bank necessitating prudent management.  

The Queen conch fishery grew exponentially from the mid 1980ʼs to the late 1990ʼs where 

in fact before 1988 Jamaica averaged around 50 MT in annual exports and by 1995 exports 

this had risen to over 2,000 MT (Aiken et al., 1999). This excessive and unsustainable 

removal of individuals was thought to have had significant negative impacts on the 

distribution and population structure of the stock on the Pedro Bank, as well as causing 

ecological imbalances (Tewfik and Appeldoorn, 1998). Luckily through the introduction of 

a comprehensive management regime in the early 1990ʼs the fishery underwent a period of 

contraction which brought both level of exploitation and the number of fishers down to 

more sustainable levels (Smikle and Appeldoorn, 2003).  

The management regime implemented during this time contained a number of tools and 

instruments which allowed for a recovery on the path of sustainability. Perhaps the most 

important of these management instruments came about with the listing of the species 

under appendix II of the Convention on International Trade in Endangered Species 

(CITES) in 1992 in response to the high levels of over-exploitation and poor management 

which was occurring simulataneously throughout the region (Aiken, et al., 1999). 

Appendix II of the CITES lists species not yet endangered but are at risk to becoming 

endangered due to their commercial exploitation and obligates countries invloved in their 

trade to take action and prove that their level of exploitation is not detrimental to the 

species (Aiken, et al., 2006). Jamaicaʼs response to this and the general need to improve 

the management of the species included the drafting of a comprehensive fishery 

management plan outlining the policy direction, specific management actions and the roles 

of various regulators involved in the fishery (Fisheries Division, 2014).  

A number of initiatives within the framework of the draft management plan were 

implemented inluding; a fisher reduction programme, a limited entry policy and a non-

transferable individual quota and total allowable catch (TAC) system which were 
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determined by a series of regular population surveys and other ecosystem-based research 

on the species and its associated habitat (Aiken, et al., 2006). Additionally there were a 

number of important pieces of legislations passed aimed at empowering regulators 

including regulations and amendments to the existing Fishing Industry Act of 1975 as well 

as new ones such as the the Aquaculture, Inland, Marine Products and By-Products Act of 

1999. As a result of these and other initiatives by 2011 the Jamaican fisheries authorities 

were reporting that the key indicators of stock health, densities and biomass, were at levels 

similar to the expansion phase in the early 1990ʼs (Fisheries Division, 2013; CRFM, 2012).  

Notwithstanding the success of this management intervention it is important to understand 

that commercial fishing may have still had a significant impact on the species’ distribution 

(Stoner and Ray, 1996). Stoner and Sandt (1992) as well as Stoner and Schwarte (1994) 

from their studies in the Bahamas discussed significant differences observed in the 

distribution and densities composition of conch communities in fished versus non-fished 

areas on substrates at different depths. Also there is the threat of localized extinction and 

negative population growth which can result from fishing as fishers will more likely target 

high density areas. This practice increase the likelihood of allee effects where reproductive 

adult densities become too low (~56 adult conch/ha) for effective copulation and 

reproduction to occur resulting in reduced stocks (Stoner and Ray-Culp, 2000). Of concern 

as well is the effect of the practice of removing meat from the shell underwater which 

results in numerous dead conch shells lining the seafloor (Tewfik and Appeldoorn, 1998; 

Kaiser et al., 2003). Live conch are thought to avoid areas where there are dead conch, 

potentially reducing the amount of suitable habitat for the species (Aiken et al., 2006).   

1.3 Species distribution models 

Species distribution models (SDM) are a group of tools and techniques used to describe 

and predict spatial patterns of species based on specific environmental parameters (Elith 

and Leathwick, 2009). SDMs in this sense refer to statistical and machine learning 

ecological models rather than theoretical and heuristic models (Guisan et al., 2002). These 

have become an important part of ecosystem-based management (ESBM) approaches all 

over the world, mostly in the terrestrial realm but are becoming increasingly used in the 

marine environment as well (Reiss et al., 2014). This increased usage and importance has 

occured especially over the last two decades as a result of a number of technical 

advancements in the mathematics applied to ecological data as well as increased access to 

more powerful computers and software able to carry out such analyses (Guisan et al., 

2002). Ecologistist and other natural resource managers therefore, more than ever, have a 

greater ability to quantify, visualize and assess species-environment relationships which 

can then be fed into larger decision-making processes, thus leading to improved capacity to 

sustainably manage sensative or threatened ecosystems (Robinson et al., 2011).  

Management and conservation of marine ecosystems and their resources are among the 

most promising areas of application for SDMs especially given the often prohibitive costs 

associated with obtaining detailed and quality biological and environmental information 

(Reiss et al., 2014). This high cost is perhaps the greatest obstacle to SDMsʼ greater use in 

a marine context, and thus  renders it still very much a developing field as data is often 

absent, sparse or of low quality for use in SDMs (Guisan and Zimmermann, 2000). Use of 
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SDMs in marine environments as a result often follow closely the pattern of easily-to-

accessible or low-cost data usually in and around shallow coastal marine areas or areas 

having high value species or habitats (Elith and Leathwick, 2009; Reiss et al., 2014).  

Many SDMs, particularly predictive ones, can be useful in filling knowledge gaps in 

relatively data-poor marine environments as they are able to model species distributions 

over large geographical areas with relatively small amounts of biological and 

environmental data input (Guisan et al., 2002). This attribute has lead to successful 

application in areas such as; (i) marine spatial planning (MSP), (ii) designing of marine 

species and resource monitoring programmes, (iii) management of non-indeginous species, 

and (iv) providing prediction of species distributions in light of various threats such as 

habitat loss and climate change (Robinson et al., 2011; Reiss et al., 2014). These 

applications have lead in many cases to better resourse management and, importantly, 

better management of conflicts among a growing number marine stakeholders around the 

world (Baldwin et al., 2014; Reiss et al., 2014).  

Two of the more commonly used groups of SDMs are; (i) generalized regression methods 

and (ii) machine learning methods (Elith and Leathwick, 2009). Regression methods 

include generalized linear models (GLM) and generalized additive models (GAM) which 

have proven very useful in modelling species distributions of both terrestrial and marine 

species due to their relative simplicity, ease of interpretation and relatively low data 

requirement (Guisan and Zimmermann, 2000; Huang et al., 2011). Many machine learning 

SDMs have been relatively recent in their developed and include methods such as 

Maximum Entropy (Maxent) (Phillips et al., 2006), BIOCLIMatic (BIOCLIM) (Nix, 

1986), and DOMAIN (Carpenter et al., 1993) among others. Both generalized regression 

methods and machine learning methods may be used to simulate species distributions that 

estimate different aspects of a speciesʼ specific ecological role in its community or 

ecosystem; that is, its realized niche and fundamental/potential niches. A speciesʼ 

fundamental niche refers to its distribution (or other response) as a function of 

physiological and ecosystem constraints, and is estimated based on theoretical concepts 

(Guisan and Zimmermann, 2000). The realized niche on the the other hand incorporates 

further contraints such as biotic interactions and competitive exclusion, and is often based 

on field observations (Malanson et al., 1992).   

The success of GLMs and GAMs in distribution is largely due to the fact that they are 

flexible enough to allow for a multitude of distributions, correlations, variance and error 

structures that are more suited to ecological data (Hastie and Tibshirani, 1990; Guisan et 

al., 2002). They therefore are able to provide a truer picture of the species-environment 

relationship than tranditional linear regression models (LR) for instance that are bounded 

by rigid assumptions about the data (Zuur et al., 2010). These assumptions often lead to 

instances where ecological data are forced into a model through data transformation and 

other means that can lead to the loss of important data characteristics (Zuur et al., 2009). 

Perhaps the most important advantage of GLMs and GAMs is that they are able to model 

species abundances as opposed to presence/absence models that ignore relative abundance 

(Reiss et al., 2014).      

Maxent is a presence/absence model but is recognized as having one of the best predictive 

performance among machine learning methods and is also well suited to the data-limited 

marine environments as it is robust against small sample sizes (Elith and Leathwick, 2009; 
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Reiss et al., 2014). Maxent and other presence/absence models are often used in indicating 

suitability of habitats given the background and assumption of a species being present in in 

certain specified environmental conditions (Phillips et al. 2006). It is cost-effective as it 

essentially only require occurence (presence) records as input along with spatial 

environmental layers, many of which have become available as open-source datasets (Elith 

and Leathwick, 2009; Magris and Déstro, 2010). The predictive output, even with small 

amounts of input data, can give useful insight in a relatively easily understood manner into 

salient biological characteristics and environmental conditions affecting species 

distributions which otherwise would have only been speculative (Robinson et al., 2011). It 

should also be noted that the quality of output given by Maxent and any other SDM is 

dependent to a large extent on deligent consideration by the researcher in terms of; an 

appropriate sample, choosing of only relevent environmental predictors to explain a 

speciesʼ response, and adherence to the modelling processes including model evaluation 

and interpretation of its results (Reiss et al., 2014).    

There are also a number of more general numerical approaches may also be useful in the 

distribution modelling process (Reiss et al., 2014). Heuristic clustering methods for 

instance can allow for the detection of discountinuous groupings (clusters) within species 

group, among groups of species as well as environmental variables which can be critically 

important information for ecologists looking to model the distribution of species (Bocard et 

al., 2011). In addition, ordination methods such as principal component analysis (PCA) and 

canonical correspondence analysis (CCA) are also useful tools for identifying important 

patterns in the relationship among modelled species and environmental data (Moore et al., 

2010).  

The focus of this research paper will be to use GAMs and Maxent to model the distribution 

of Queen conch in waters of the Pedro Bank, Jamaica. GAMs will be used to model the 

speciesʼ abundance and distribution assuming that the variables included in the models are 

most important in determining itsʼ abundance and spatial extent. The Maxent method will 

be used to model habitat suitability for Queen conch on the bank given the specifc 

environmental factors.  

The use of Maxent here is due to its wide-scale usage and popularity particularly in data-

poor marine environments. It was thought, therefore, that for a small island developing 

state such as Jamaica it would be worthwhile to constrast its output against that of the 

GAM. This would allow for its exploration it as a frequent, viable and cost-effective 

addition (or alternative if needs be) to the costly abundance survey used for studying the 

Queen conch distribution. Implicit in these modelling exercises are the further objectives of 

determining the relative importance of each environmental variable in addition to 

providing management recomendations based on the modelsʼ outcomes. 
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2 Background 

2.1 Study site description 

The Pedro Bank is an offshore proximal bank located within the territorial waters of 

Jamaica roughly 80 km south of the main island (Figure 1) (Allen and Webber, 2013). The 

country itself is located in the western Caribbean region and is an archipelagic state 

consisting of the main island as well as a number of nearshore and offshore cays, shoals 

and banks of which the Pedro Bank is the largest and most important (Munro and 

Thompson, 1983). The bank is amongst the country’s most valuable marine resources 

generating income and serving the purposes of many stakeholders and with still greater 

potential for generating income (Baldwin et al., 2014) It is essentially an underwater 

plateau with its highest points to the southeast, then gradually slope toward the north to 

around 70 m before finally descending into deep waters (Smikle and Apeldoorn, 2003). 

The bank also extends some 184 km west to east and about 84 km north to south covering 

an area of approximately 8,040 km² (804,000 ha) (Munro and Thompson, 1983).  

 

Figure 2. Map of mainland Jamaica and the Pedro Bank. Map adapted from Fisheries 

Division (2013) and produced using QGIS (QGIS Development Team (2015). 

On its southeastern edge, the bank has a chain of four islands, the Pedro Cays, which are 

often used as a base for various users including; wildlife conservation interests, research 

and education, transport, marine resource exploration, the military, tourism, and fisheries 

(Allen and Webber, 2013). These in part have fostered the development of the bank over a 
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number of years into an important multi-use marine space serving the interest of many 

sectors and playing an ever increasing role in the country’s socio-economic development 

(Baldwin et al., 2014). This increased importance of the bank has coincided with the 

recognition that more comprehensive management approaches including ecosystem-based 

management (ESBM) and MSP are needed to ensure maximization of opportunities and 

minimization of threats posed by each activity on the economic, social and environmental 

sustainability of the bank (Baldwin et al., 2014).  

The biggest threats to the ecology of the bank are activities such as fishing which may lead 

to habitat change or destruction. Habitat destruction has been recognized as the greatest 

threat to biodiversity worldwide by the Millennium Ecosystem Assessment board (2005). 

A number of ecologically and commercially important species which contribute to the lives 

and ivelihoods of many Jamaicans stand to be negatively affected (Fisheries Division, 

2014). Of these species, Queen conch is perhaps the most important as the stock on the 

Pedro Bank is perhaps the largest and most viable remaining Queen conch stock in the 

region (CRFM, 2012).  

Part of the success of Queen conch on the Pedro Bank is due to the banks’ benthic structure 

which provides ideal habitat for the various benthic life stages of the species which tend to 

follow the distribution pattern of their main macroalgal and detritus food as well as the flat 

sandy areas used as spawning grounds (Stoner et al., 1996b). The banks’ benthos generally 

consist of various species of macroalgae and sand flats which make up two-thirds of the 

substratum along with a number of patch reefs and shoals interspersed with seagrasses, 

gorgonians, sponges and macroalgae (Dolan, 1972). The distribution of the different 

substrate types are not uniform across the bank as substrate structure and complexity 

appear to change with depth (Table 1) (Smikle and Appeldoorn, 2003). As a result, for the 

purposes of Queen Conch stock assessments, the bank has historically been classified into 

four depth zones in order to capture the relationship among; depth, substrate and conch 

distribution (density or abundance) (Fisheries Division, 2013).  

Table 1. Summary of benthic profile for the three main depth zones used in the 

management of Queen conch on the Pedro Bank. Adapted from Dolan (1972) and Smikle 

and Appeldoorn (2003). 

Depth (m) Main habitat type Estimated area 

(km²) 

0-10 shallow reefs, shoals and sand 

substrate with irregular profile 

438 

11-20 Large flat sand plains with patch 

reefs having a more regular profile 

2,338 

21-30 Sand blanket comprised of 

carbonate, biogenic and sand 

detritus and macroalgae 

3,346 

 

The shallowest depth zone down to 10 m covers an area roughly 438 km² along the 

southeastern section of the bank. It has an irregular substrate profile due to a relatively 
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well-developed reef system with a number of shoals intermixed with reef pavement 

(weathered reef surface), coral rubble and sand flats (Dolan 1972; Smikle and Appeldoorn, 

2003). This depth zone is known to have the highest density of Queen conch (averaging 

well over 100 conch/ha) as well as the highest level of fishing effort on the bank (Smikle 

and Appeldoorn, 2003; Fisheries Division, 2013). The next depth zone from 10 to 20 m, 

extends around 2,338 km² from the southwest and central areas through to the eastern end 

of the bank. Here there exists a more flat and regular substratum primarily comprised of 

large sandflats interspersed with patch reefs, and algal patches (Munro and Thompson, 

1983). Densities of conch have been reported to fluctuate based on the results of previous 

abundance surveys and experiences low to intermediate levels of fishing effort (Fisheries 

Division, 2013).  

The final zone assessed for management purposes is down to 30 m depth which is 

approximately 3,346 km² in area and has more extensive sand plains with deep coral 

rubble, shellfish and other biotic fragments weathered and transported by currents, along 

with various marcoalgae species (Dolan, 1972; Smikle and Appeldoorn, 2003). This is 

effectively the deepest zone in terms of conch scientific research and fishing activity 

mainly due to safe diving considerations therefore fishing activity, and indeed conch stock 

assessments, on the Pedro Bank do not go beyond this depth (Fisheries Division, 2013). 

Areas on the bank deeper than 30 m form a thin area around the periphery consisting of 

sandy substrate down to depths of around 70 m, the most extensive of which is located on 

the western side of the bank (Figure 2), which then rapidly falls away to the oceanic abyss 

(Smikle and Appeldoorn, 2003).  
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3 Materials and methods 

3.1 Data 

3.1.1 Description of current distribution 

A survey of the Queen conch population on the Pedro Bank was carried out during the 

month of October 2015 to (i) provide a description of the current distribution and 

popualtion structure and (ii) provide data for models estimating the species’ realized niche. 

For the latter, the 2015 survey data will be combined with data from the previous three 

surveys conducted in the years 2002, 2007 and 2011.  

The survey involved underwater sampling at 80 sites spread across the bank down to a 

maximum depth of 30 m using a stratified systematic sampling design (Ehrhardt and Valle-

Esquivel, 2008) (Figure 3). This design was geared toward maximizing coverage of the 

benthic substrata and benthic biological range occupied by the species as well as other 

important environmental factors such as depth differences and known fishing grounds.  

 

Figure 3. Stratified systematic sampling design of the 2015 Pedro Bank Queen conch 

survey. Stratification is based primarily on depth and substrate complexity. Map produced 

using QGIS (QGIS Development Team (2015). 
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Based on this design, the bank was stratified into three depth zones at 10 m intervals down 

to the 30 m depth contour where safe diving was possible. The shallowest zone, down to 

10 metres, was densely sampled with 21 sites in order to cover as much of its complex 

benthos as possible. This zone consists of much of the traditional fishing grounds and is 

also known to have high abundance of conch (Fisheries Division, 2013). The next two 

depth zones are larger in area but have progressively less complex substrate with depth and 

are known to have less fishing effort for conch (Smikle and Appeldoorn, 2003). These 

were sampled with 40 and 19 sites respectively.  

Each site in the survey was sampled, and therefore is defined, by a transect of dimension 30 

m by 12 m in addition to two replicate transects placed roughly one metre from the end of 

the last transect. In other words, each site consisted of three transects representing a sample 

area of 30 m x12 m x 3 = 1,080 m². Transects were surveyed by two scientific divers at a 

time, one for each half. In order to reduce bias, experienced divers were used and training 

was conducted to ensure that subjectivity of interpretation was minimized. Recordings 

were made underwater of the substratum type, transect depth as well as counts of different 

size classes of Queen conch based on a classification scheme modified from Appeldoorn 

(1988) (Table 2).  

Table 2. Description of Queen conch size classification. Adapted from Appeldoorn (1988). 

Category Description 

Small juvenile < 150 mm shell length 

Medium 

juvenile 

151-200 mm shell length 

Large juvenile > 200 mm shell length, but without flared 

shell lip, <3 years old 

Sub-adult Flared lip starting to grow, but not fully 

developed (lip < 4 mm thick), ~ 3 years old 

Adult Flared lip is fully formed, with minimal to 

moderate shell erosion, > 3 years old 

Stoned conch Shell characterized by heavy to serious 

erosion and heavy fouling (coral, sponges, 

algae, etc.). Shell lip thick and worn, > 5 years 

old 

 

These size classes are determined by a combination of estimated biological criteria and 

ontogenetic milestones such as shell length (maximum length along the shellʼs horizontal 

axis) at sexual maturity which is around 200 mm and 3 years old. The structure of the 

flared lip (thickened, curved edge of shell) is also an important characteristic in 

determining size classes and is among the most common used criteria to estimate the age of 
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the species (Ehrhardt and Valle-Esquivel, 2008). Such a multi-criteria classification is 

useful and necessary for gastropod species such as Queen conch whose accurate ageing is 

often hindered by processes such as bio-erosion of the calcareous shell as well as differing 

growth rates at different times during its life history (Stoner and Sandt, 1992).  

3.1.2 Distribution modelling 

The descriptive and predictive modelling processes were carried out using the statistical 

and geographic information system (GIS) platforms available in the R software (R Core 

Team, 2014) and following modelling procedures as outlined in Zuur et al., (2009, 2010). 

Biological and environmental data from a number of sources were incorporated in the 

SDMs (Table 3). 

Table 3. Summary of environmental and biological data used for species distribution 

modelling. 

Data type  Data layer Source/Reference Purpose/Comments 

Biological Conch counts Current study; 

Smikle and 

Appeldoorn 

(2003); Fisheries 

Division (2014). 

Underwater point survey 

observations at sites across 

the Pedro Bank. 

Environmental  Depth 

(discrete) 

Current study; 

Smikle and 

Appeldoorn 

(2003); Fisheries 

Division (2014).  

Obtained from field survey 

observations. For use in 

describing current 

distribution and estimating 

realized niche. 

 Depth 

(gridded) 

IOC, IHO, BODC 

(2003). 

Gridded bathymetry data 

used for depth raster layer 

in predictive models. 

 Substrate Baldwin et al., 

(2014). 

Broad scale habitat map of 

the Pedro Bank by Schill.  

 Chlorophyll-a 

concentration  

GES-

DISC/NASA, 

(2014).  

Monthly MODIS 4 km 

resolution gridded 

remotely sensed data. 

Preliminary data used. 

 

3.1.2.1 Species biological data 

For distribution modelling purposes the abundance (counts) of each size class, transect 

depth per site and the site coordinates from the October 2015 survey were added to similar 

data compiled from the previous three conch surveys conducted in 2002, 2007 and 2011. 

The data from these surveys were obtained from the Jamaican Fisheries Division of the 

Ministry of Agriculture and Fisheries database (Fisheries Division, 2014). The scope of 

sampling for each survey vary somewhat in terms of coverage, the number of sites sampled 

and the time of year that each was conducted (Table 4). In total the combined dataset 

included 266 sites across the Pedro bank.  
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Table 4. Summary of conch abundance survey design and coverage for the years 2002, 

2007, 2011 and 2015 (Smikle and Appeldoorn, 2003; Fisheries Division, 2013; Fisheries 

Division, 2014). 

Year Survey 

month 

Survey design No. of 

sites 

Transect 

area (m²) 

Total area 

sampled 

(m²) 

2002 May and 

December 

Random with 

replication of transects 

45 90 25,560 

2007 January and 

November 

Random with 

replication of transects 

60 450 60,000 

2011 November 

to 

December 

Stratified with 

replication of transects 

81 360 100,440 

2015 October Stratified with 

replication of transects 

80 360 86,400 

 

The six size classes recorded during the survey were further consolidated into three groups 

instead for use in distribution modelling. The three groups include; (i) “Juveniles” 

consisting of small, medium and large juveniles, (ii) “Mature” consisting of the main 

sexually mature groups; sub-adults, adult and stoned conch size classes, and (iii) “Total 

conch”. The purpose here was to model each group separately and compare the 

distributions. 

Counts of each group were used as the main proxy for conch abundance and thus were used 

as response variables in both descriptive and predictive distribution models. The use of 

counts instead of conch densities, which are commonly reported for conch surveys 

throughout the Caribbean region (Erhardt and Valle-Esquivel, 2008), was to allow for the 

use of more flexible models such as GAM and GAMM which can incorporate, or be 

extended to incorporate, more suitable data distribution and variance structures than linear 

regression and is also able to maintain relative abundance within each group (Reiss et al., 

2014).  

3.1.2.2 Environmental data 

A broad scale habitat map of the Pedro Bank developed by Schill during the Pedro Bank 

Marine Spatial Planning Project (MSP) (Baldwin et al., 2014) was used as the substrate 

layer for both descriptive and predictive models. The habitat layer included seven levels 

(habitat categories) describing or summarizing the main substratum types occurring on the 

bank. These include; (i) coral reef, (ii) deep coral, (iii) deep ocean, (iv) land, (v) marcoalgal 

hardground, (vi) sand and sediment, and (vii) seagrass. The R programming software (R 

Core Team, 2014) “raster” (Hijmans, 2015) and “sp” packages (Bivand et al., 2013) were 

used to create the substrate raster layer from which information corresponding to each site 

coordinate were extracted. During this process diver-mounted video footage taken at 
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randomly selected sites during the 2015 survey were used for cross checking information 

from the habitat layer. This was done as the reliability of substrate data as a predictor 

variable in distribution modelling largely depends on ground-truth sampling (Reiss et al., 

2014). 

The substrate raster, discrete transect depth data and the year of each survey were used as 

explanatory variables in describing the species’ distribution. For the predictive modelling 

aspect, the substrate layer was reused along with depth (gridded bathymetry data) and 

chlorophyll-a concentration (mg/m³) which was used as a proxy for primary production 

especially with regards to the distribution of marcoalgae. These particular variables were 

chosen because they were relatively easy to access along with the fact that they are among 

the primary environmental factors known to influence Queen conch distribution (Stoner 

and Lally, 1994). The bathymetric depth layer was developed from the General 

Bathymetric Chart of the Oceans (GEBCO) Digital Atlas published by the British 

Oceanographic Data Centre (BODC) on behalf of the Intergovernmental Oceanographic 

Commission (IOC) and the International Hydrographic Organisation (IOC, IHO, BODC, 

2003) while the chlorophyll-a concentration layer was developed based on MODIS 4 km 

resolution ocean data retrieved through the Goddard Earth Sciences Data and Information 

Services Centerʼs (GES-DISC) Interactive Online Visualization and Analysis 

Infrastructure (Giovanni) GES-DISC/NASA, (2014).   

3.2 Data exploration 

Data collected during the October 2015 survey and the combined surveys datasets were put 

through a series of exploratory procedures in order to decipher the most salient patterns. 

For the former the aim was simply to describe the structure of the data, but for the latter 

data exploration was aimed at understanding the data structure with a view toward guiding 

the distribution modelling process. A thorough and guided data exploration process is 

essential to modelling ecological data as data taken directly from nature often do not 

conform to assumptions of traditional modelling tools such as the linear regression model 

(Zuur et al., 2010). Data exploration here was therefore geared toward exploring and 

testing for possible violation of the linear regression model assumptions which include; (i) 

normality in the distribution of covariates, (ii) homogeneity of variance in the response 

variables, and (iii) independence (non-correlation) between covariates (Zuur et al., 2009).  

A number of visualization tools available in R were used to carry out the data exploration 

process. The pairs function from the R package “graphics” whose output include 

scatterplots, histograms and pair-wise correlation measurements (R Core Team, 2014) were 

applied to both datasets. These plots were used to examine the data for normality, the 

relationship between response and explanatory variables, as well as possible dependencies 

between and among covariates. To check for heteroscedasticity or heterogeneity of 

variance the boxplot, also from the “graphics” package, was used which gives an idea of 

the spread of response variable (counts) among different nominal variables (size classes, 

survey year, and substrate types). Conditional plots, or coplots, from the “lattice” package 

(Sarkar, 2008) were also used to examine for possible two-way interactions between 

response and explanatory variables conditioned on one or more of the nominal variables. 
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3.3 Current distribution (2015 survey) 

3.3.1 Density and abundance  

The 2015 survey data was used to describe the current Queen conch distribution on the 

Pedro Bank by calculating densities estimates for each site and also for each depth zone. 

The procedure involved first taking an average of the three transects (one transect and two 

replicates) at each site then calculate the density per zone area for each different group/size 

classes. Abundance could then be calculated for each zone by multiplying the densities by 

the respective area of interest. This can be summarized by the formula: 

 

Given the biology and expected distribution of the species especially with respect to its 

tendency to occur in patches across its range, it may be reasonably assumed that their 

distribution (density and abundance) would not be expected to follow a normal distribution 

nor have homogeneity of variances (Ehrhardt and Valle-Esquivel, 2008). Also it is quite 

common in ecology to have over-dispersion or the situation where variance is larger than 

the mean (Zuur et al., 2009). Therefore, in order to obtain reasonable 95% confidence 

intervals for the density and abundance estimates means of each were resampled using the 

bootstrap method (Efron and Tibshirani, 1993). The procedure was implemented with the 

functions boot and boot.ci in the R “boot” package (Davison and Hinkley, 1997; Canty and 

Ripley, 2014). 

3.3.2 Spatial distribution 

The calculated densities for each size class were plotted over-laying the habitat layer in 

order to visualize their spatial distribution with respect to the different habitat types. This 

was conducted using the functions from the R packages “sp” (Bivand et al., 2013), “raster” 

(Hijmans, 2015), “GISTools” (Brunsdon and Chen, 2014) and “maps” (Becker et al., 

2014).  

3.4 Distribution modelling 

3.4.1 Realized niche 

3.4.1.1 Model fitting and selection: GAM 

Guided by the results of the data exploration, the dataset of combined survey data was 

fitted to an appropriate model in order to describe the species’ realized niche. This was 

done assuming that no major explanatory variable was omitted from the data fitted to the 

model. A general additive model (GAM) was chosen as an appropriate starting model as its 

very robust algorithms are appropriate for count data and are also able to deal with data 

such as this where violation of linear regression assumptions are likely (Hastie and 

Tibshirani, 1990). Linear models were not chosen due to their relatively poor performance 

in adequately modelling ecological data as a result of their rather rigid assumptions which 
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often do not fit data taken directly from nature (Guisan and Zimmermann, 2000; Zuur et 

al., 2009). GAMs on the other hand allow for several non-linear relationships between 

response and explanatory variables and can deal with heterogeneity of variances as well as 

dependent response values through the inclusion of spatial and temporal correlation 

structures (Zuur et al., 2009).  

The general form of the GAM model applied to the data is given by the formula:  

 

where Yi is the response variable, α is intercept parameter, and f (Xi) is the smoothing 

function for the smoother.  is the residuals containing the unexplained information of the 

model defined as the difference between observed and fitted values (Zuur et al., 2009). 

Residuals are assumed to be normally distributed with a mean of 0 and variance σ². This 

basic model can be further extended to yield hybrid multivariate forms where explanatory 

variables may be continuous or nominal as is the case in this analysis.  

The specific model chosen was a GAM assuming Poisson distribution of the response 

variable Y and an offset variable (intensity parameter) to address bias due to differences in 

transect area (Zuur et al., 2009). The Poisson distribution is ideal for count data having lots 

of zeroes, and confers the advantage of the probability for negative values being zero 

(number of conch cannot be less than zero) and also allowing for heterogeneity in the mean 

variance relationship (Guisan et al., 2002; Zuur et al., 2009). The full model is summarized 

by the formula:   

 

Here the term  is the natural log of the offset variable incorporated to address 

heterogeneity issues due to the differences in the area surveyed at each site during different 

years. The full model with variables inserted is given by:  

 

Here  is the number of conch (assumed to be Poisson distributed),  

is the smoothing function for transect depth at each site,  and  are used as 

factors within the model having six and four levels respectively. Also included in the GAM 

were an interaction term between the depth smoother and substrate type as well as a term 

for the residuals given by .  

Since this GAM is intended to be a starting model it was run for only the “Total” conch 

group and would only be run for the two subgroups if the model validation was favorable. 

The gam function in the R package “mgcv” by Wood (2004) was used the run the model 

and details of the model were obtained using the summary and anova commands (R Core 

Team, 2014).  
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3.4.1.2 Model validation: GAM 

Validation of the GAM was conducted by examination of the output of the gam.check 

function from the “mgcv” package which includes; a residual Q-Q plot, a histogram of the 

residuals, a plot of the response versus fitted values, and plot of the residuals versus linear 

predictor (Wood, 2004). These were used to check for normality, homogeneity and overall 

model fit. Spatial correlation (dependence) was also tested for especially since failure to 

identify and deal with correlation in spatial data can potentially invalidate important 

statistical tests such as the F-test (Zuur et al., 2009). A residual variogram was used, which 

is a useful tool for measuring spatial dependence between sites where sites that are closer 

together given a specific metric are more similar than those further apart (Zuur et al., 

2009). The bubbleplot was also used which is a plot of the residuals versus their spatial 

coordinates where clusters of negative or positive residuals are indicative of dependence 

(Zuur et al., 2010). Both plots were implemented in R using the functions variogram and 

bubble from the “gstat” package (Pebesma, 2004).  

3.4.1.3 Extending the GAM: GAMM 

Given the nature of the data (data from different surveys over a spatial range) the results of 

the validation exercise of the GAM may be expected to reveal evidence heteroscedasticity 

and spatial correlation in the residuals. The GAM was therefore extended to a generalized 

additive mixed model (GAMM) to improve model fit through the addition of optimal 

variance and spatial correlation structures. An important aspect of this procedure was to 

first determine the optimal variance and correlation structures for the three conch groups: 

total, mature and juvenile conch.  

The optimal variance structure for the data was obtained by using the general least squares 

(GLS) algorithm as given in the “nlme” package in R (Pinheiro et al., 2014). Using the 

total conch and the covariates the GLS model was fitted with different variance structures 

based on Pinheiro and Bates (2000). There are several variance structures which are better 

for different types of data. Those selected for testing here were those best for data with 

likely heterogeneity along the levels of nominal variance covariates (substrate, year) where 

different variances are expected for each factor level (Zuur et al., 2009). They are also able 

to allow for increasing or decreasing variance along a continuous variance covariate such 

as depth in this case. The variance structures added to the model included; (i) the constant 

variance function structure implemented in R with the function varIdent, (ii) power 

variance function (varPower), (iii) the constant plus power variance (varConstPower), (iv) 

exponential variance (varExp) structure, and finally (v) a combination of variance 

functions (varComb). The best correlation structure was selected using the Akaike 

Information Criteria (AIC) (Akaike, 1973) implemented in R using the AIC function from 

the “stats” package (R Core Team, 2014). This optimal variance structure was then added 

to the GAMM for each conch group. 

The optimal spatial correlation structure was obtained by firstly adding different structures 

to the GAMMs of each conch group. Correlation structures included; exponential, linear, 

Gaussian, Rational quadratic and spherical correlation structures based on Schabenberger 

and Pierce (2002) and implemented using the gamm function in the package “mgcv” 

(Wood, 2004). The through a process of backward selection using AIC the best correlation 

structure was selected. An alternative to this approach to using AIC would have been to 

extend the model to include additional covariates and their possible interaction which 
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could have better explained the response (Zuur et al., 2009) however this option was 

outside the scope of this project as additional covariates was not an option.  

3.4.1.4 Model validation: GAMM 

Validation of the optimal GAMM included examination of the residuals of the GLS models 

with the optimal variance structures for each conch group. Here a plot of the normalized 

residuals versus fitted values were used along with a plot of normalized residuals versus 

the explanatory variable depth (the only continuous covariate). The second aspect was to 

check for spatial dependence using variograms for the different conch groups. Both were 

implemented using functions from the “nlme” and “graphics” R packages (Pinheiro et al., 

2014; R Core Team, 2014). 

3.4.2 Predictive modelling 

3.4.2.1 GAM prediction 

The GAM component of the optimal GAMM describing the ecological profile for total, 

mature and juvenile conch were extracted and used to produce a habitat map of predicted 

abundance for the entire Pedro Bank including unsampled areas. All variables were 

included except that depth referring to transect depth at each site was replaced by the 

gridded bathymetry data extracted from the General Bathymetric Chart of the Oceans 

(GEBCO) Digital Atlas published by the British Oceanographic Data Centre (BODC) on 

behalf of the Intergovernmental Oceanographic Commission (IOC) and the International 

Hydrographic Organisation (IOC, IHO, BODC, 2003). Predicted values were produced 

using the predict.gam function from the “mgcv” package then converted to a raster object 

with functions from the “raster” package (Hijmans, 2015). 

3.4.2.2 Maxent prediction 

A predictive habitat map estimating the habitat suitability for Queen conch on the Pedro 

Bank was also produced using the Maxent software (Phillips et al., 2006). The programme 

was accessed and implemented in R through functions available in the “dismo” package 

(Hijmans et al., 2015). Maxent essentially estimate the probability of species presence by 

modelling species presence based on the given environmental factors and a random (or 

specified) background sample of the study area (Phillips et al., 2006; Elith et al., 2011).  

From the total of 266 sample sites in the combined surveys dataset 233 had total conch 

values greater than zero and were therefore used as presence values for the model. Of these 

presence values a portion of 20% was withheld to be used as test points for evaluating the 

model, while the remaining points were used as training data for model fitting. The 

background data was defined arbitrarily as 250 random points falling within a 4 km radius 

around each training point (Figure 4). This was done using the circles and spsample 

functions from the packages “dismo” (Hijmans et al., 2015) and “sp” (Bivand et al., 2013).  
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Figure 4. Illustration of the relative position and coverage of random background points 

used in the fitting of the Maxent model. Circles represent a 4 km radius around each 

sample point. Adapted from Yoder (2013). 

Restricting the area in which background points would fall was done in order to have the 

random background points falling as much in the study area as possible and in reasonable 

proximity to presence sites and not in deeper areas that were not sampled and were unlikely 

to have the species present (Elith et al., 2011; Yoder, 2013).The background sample is 

important as it informs the model about the density of covariates across the entire sample 

area thus providing the basis for comparison with the density of covariates occupied by the 

species (Elith et al., 2011). The model was then run in R with default settings and the 

salient model features produced and examined using the maxent, response, predict, 

evaluate and plot R functions.  

Model evaluation involved a k-fold cross-validation procedure utilizing the 20% withheld 

portion of the presence points (Phillips et al., 2006). The evaluate function (Hijmans et al., 

2015) was the main tool used to implement this in R. The function produces an object 

containing a number of model evaluation metrics, including; true positive rate (TPR) and 

false positive rate (FPR) derived from confussion matrices, the models’ associated AUC 

(Area under a receiver operating characteristic (ROC) curve) value and an association 

measure (Hijmans et al., 2015; Phillips et al., 2006). These are robust metrics which are 

among the most commonly used for evaluating Maxent models and other logistic-type 

models (Raven, 2002). AUC is threshold independent and is able to measure predictive 

accuracy or the probability that a randomly chosen presence location is ranked higher than 

a randomly chosen background point (Merow et al., 2013). 
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4 Results 

4.1 2015 abundance survey 

4.1.1 Data exploration 

The first aspect of data exploration was focused on the 2015 conch survey data which 

included records from the six size classes. The first exploratory tool applied here was a 

pairplot of the number or counts of each size class and transect depth (Figure 5). The 

results showed evidence of non-normal distribution among the size classes. In fact, the data 

distribution closely resembles a Poisson distribtion which is typical of count data extracted 

from nature (Zuur et al., 2009). In this case, sites of low counts occurred disproportionately 

more frequently than sites with higher counts. The distribution of transect depths within the 

sample was however normally distributed. The pairplot also indicated no clear relationship 

or interaction between transect depth and the numbers of each size class. Among the size 

classes there were some indications of pair-wise interaction particularly between size 

classes close to each other in terms of length for example between medium and large 

juveniles. Interaction among other size class pairs however seemed to be very little for 

instance bewteen small juveniles and adults.      

 

Figure 5. Pairplot of the total number of conch sampled within each size class along with 

transect depth from the 2015 conch survey dataset. The respective upper and lower panels 

relative to the diagonal show pair-wise Pearson correlations and scatterplots. Coding for 
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the size classes are as follows: SJ= small juvenile, MJ = medium juvenile, LJ = large 

juvenile, SA = subadult, AD = adult and ST =adult stoned conch.  

Boxplots of the number of conch per size class showed that there were different data 

spreads among them and also a fair number relatively extreme values compared to the 

median (Figure 6). This would be somewhat expected given the speciesʼ tendency to 

cluster and aggregate in response to various ecological and environmental effects (Stoner 

and Lally, 1994). The plot results are also consistent with a highly skewed, non-normal 

data distribution. Median values are similar across the size classes except for adults and to 

a lesser extent stoned conch which have higher values and a much larger data spread. 

 

Figure 6. Boxplot of the total number of conch sampled within each size class from the 

2015 conch survey. The coding for the size classes are as follows: SJ= small juvenile, MJ 

= medium juvenile, LJ = large juvenile, SA = subadult, AD = adult and ST = adult stoned 

conch. 

A boxplot was also produced of the number of conch among the three depth zones. This 

indicated that there were different data spreads among the depth zones as well as a much 

more distinct difference in median values (Figure 7). The 0-10 m zone had the largest 

median and data spread while the 21-30 m zone had the lowest median and data spread. 

 

Figure 7. Boxplot of total number of conch sampled at sites within the three main depth 

zones/strata from the 2015 conch abundance survey. 
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4.1.2 Density estimates 

The overall total density of conch on the bank was 409 conch/ha while the juveniles and 

mature conch groups had mean densities of 98 and 311 conch/ha respectively (Table 5). 

The mature conch density figure is significant as it is well above the minimum 56 

reproductive adult conch/ha reference point suggested by Stoner and Ray-Culp (2000) 

below which Queen conch populations may begin to experience negative population 

growth due to the allee effect.  

Table 5. Total conch density (conch/ha) and bootstrap obtained 95% confidence limits for 

each size class across the Pedro Bank from the 2015 survey. 

 Small 

juvenile 

Medium 

juvenile 

Large 

juvenile 

Subadult Adult  Stoned 

conch 

Total 

density  

Mature 

conch 

Juveniles 

Density 

(hectare) 

30 36 33 44 182 85 409 311 

 

98 

 

Lower 

confidence 

limit 

15 19 20 27 133 56 318 236 

 

60 

 

Upper 

confidence 

limit 

43 49 44 59 228 112 504 383 

 

130 

 

 

The two most important reproductive size classes, adults and stoned conch, were in fact 

individually above this reference point while subadults and the other juvenile size classes 

had relatively similar in mean densities (Figure 8). 

 

Figure 8. Barplot of density (conch/ha) with 95% bootstrap confidence limits of each size 

class. The dotted horizonal line refer to the 56 adult conch per hectare reference point 

suggested by Stoner and Ray-Culp (2000) below which Queen conch populations may 

begin to experience negative population growth. The coding for the size classes are as 
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follows: SJ= small juvenile, MJ = medium juvenile, LJ = large juvenile, SA = subadult, 

AD = adult and ST = adult stoned conch. 

Densities of size classes within each depth zone had a more or less similar distribution to 

the overall density on the bank (Figure 9). The important reproductive size classes (adults 

and stoned conch) had densities that were above the minimum 56 conch/ha reference point 

except in the 10-30 m zone. Densities of juvenile size classes in each zone were relatively 

similar to each other. 

 

Figure 9.  Barplot of density (conch/ha) with 95% bootstrap confidence limits of size 

classes within each surveyed depth stratum. The dotted horizonal line refer to the 56 adult 

conch/ha reference point suggested by Stoner and Ray-Culp (2000) below which Queen 

conch populations may begin to experience negative population growth. The code for the 

size classes are as follows: SJ= small juvenile, MJ = medium juvenile, LJ = large juvenile, 

SA = subadult, AD = adult and ST = adult stoned conch. 
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4.1.3 Spatial distribution of conch densities 

In terms of their spatial distribution, the highest total conch densities occured at sites 

located at the southeastern section of the bank, particularly in the shallowest depth zone (0-

10 m) where the substrate consists of mostly sand sediment, seagrass, coral reefs, and small 

areas of marcoalgal hardground (Figure 10). Total conch density were relatively lower in 

the other areas of the bank, though the western side had a few sites with high densities well 

over 300 conch/ha. This area was not heavily sampled due to its irregular depth profile, 

strong current and issues affecting diver safety.   

 

Figure 10. Broad scale habitat map of the Pedro Bank (Baldwin et al., 2014) overlaid by a 

bubbleplot of total conch density at each 2015 survey site. 

Similar plots of site densities for mature and juvenile conch. They showed that sites of 

highest denisties for both occured generally in the same areas and among the same set of 

substrate types. The distribution of mature conch density followed closely the pattern of 

total density suggesting that the mature portion of the population is accounting for most of 

the total conch density observed on the bank (Figure 11). Density of mature conch 

throughout other areas of the bank was fairly even except for a few high density sites at the 

western end of the bank. 
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Figure 11. Broad scale habitat map of the Pedro Bank (Baldwin et al., 2014) overlaid by a 

bubbleplot of mature conch density at each 2015 survey site.  

Juvenile densities was also fairly even among sites across the bank except for small 

clusters of highest density sites at the southeast of the bank associated with macroalgae, 

sand and seagrass (Figure 12). There were also a few isolated high density juvenile sites 

that stood out in the extreme western and eastern areas as well. 

 

Figure 12. Broad scale habitat map of the Pedro Bank (Baldwin et al., 2014) overlaid by a 

bubbleplot of juvenile conch density at each 2015 surveyed site.  
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4.2 Distribution modelling 

4.2.1 Data exploration  

The second data exploration exercise was applied to the combined survey dataset obtained 

from the 2002, 2007, 2011 conch survey as well as the 2015 survey. The goal here was to 

guide the distribution modelling process in terms of fitting the most appropriate models 

based on the structure of the data in order to estimate the speciesʼ realized niche and make 

predictions based on the findings. As previously mentioned, for modelling purposes the 

size classes were grouped into three categories; namely, (i) “Juveniles” consisting of small, 

medium and large juveniles, (ii) “Adults” consisting of the main sexually mature groups; 

sub-adults, adult and stoned conch size classes, and (iii) “Total” conch which includes all 

conch specimens. 

A pairsplot was made of the counts of the size groups along with the variable transect 

depth to investigate their data distribution and pair-wise relationships (Figure 13). There 

was very little indication of interaction or dependence between the groups and depth, 

neither were there clear evidence of interaction or dependence between the juvenile and 

mature conch groups. There appeared however to be a high level of interaction between the 

juvenile and mature groups and total number of conch indicated by their pair-wise 

correlations and scatterplots. This is expected since both subgroups are nested within the 

total variable. The histograms within the pairsplot also showed a that depth is normally 

distributed and that the counts of each conch group appeared to be Poisson distributed 

where there is a high proportion of low values. 

 

Figure 13. Pairplot of transect depth, total conch, juvenile conch and mature conch. The 

center panels show histograms of each variable while the left and right panels respectively 

show pair-wise relationship scatterplots and Pearson correlations. 

The data spread for total conch among the four survey years and among the various 

substrate types both revealed evidence of heteroscidasticity among the two categorical 

vaiables (Figures 14 and 15). In both cases there appeared to be a different data spread for 
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each level of the two factors. Median values were fairly similar in both cases as well and 

most values occurred well above the the median which suggests a skewed non-normal 

distribution of the data and potential for influential values if a linear regression was to be 

applied to the data (Zuur et al., 2010).  

  

Figure 14. Boxplot of total number of conch sampled at each site for each survey year. 

There is eveidence of heterogeneity among the survey years. 

 

Figure 15. Boxplot of the total number of conch among substrate types for the combined 

surveys dataset. There is evidence of heterogeneity among the subtrate types as well as 

likely skewed non-normal distribution in the data. 

The next step in the data exploration exercise was to further investigate two-way and 

possible three-way interactions among the variables. In other words, explore whether the 

number of conch at different depths change with regards to substrate type among the survey 

years. This was done using a conditioning plot or coplot from the R “lattice” package 

(Sarkar, 2008) (Figure 16). 
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Figure 16. Coplot of combined conch survey dataset including scatterplots of the total 

number of conch versus depth conditioned on the survey year and substrate type as well as 

added smoothers to aid visual interpretation. 

The resulting coplot with added smoother showed that there may be a three-way 

relationship among the variables. The relationship is however not very clear in all cases as 

there are different numbers of sites for each survey year and substrate type. For instance, 

there is a high number of sites on macroalgal hardground and sandy substrate, and also 

more overall number of sites in 2011 and 2015 compared to the other two survey years. 

Notwithstanding this there is still reason enough to consider this possible interaction in the 

distribution modelling process. The depth variable appear to only cause small changes in 

total conch although in most cases this is not entirely clear as there are only a few sites 

occuring for certain years and substrate types.  

4.3 Estimating the realized niche 

4.3.1 Starting model: GAM 

A GAM assuming Poisson distribution as previous described was fitted to the combined 

surveys dataset to estimate the realized niche of the Queen conch on the Pedro Bank. The 

model included total conch (counts) as the response variable and the explanatory variables; 
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depth (smoother), the depth-substrate interaction (smoother) as well as the terms substrate 

and year which are nominal variables. The output summary of the model as produced by 

the R anova function (R Core Team, 2014) revealed that all terms were highly significant 

(Table 6). The anova function was used instead of other summay functions avaialable in R 

because it uses the F-statistic which is best for testing the significance of nominal variables 

with more than two levels as is in this case (Zuur et al., 2009). 

Table 6. Summary output of the starting GAM given by the anova R function. 

Term type Variable Effective 

degree of 

freedom 

Degree of 

freedom 

Chi-

square 

p-value 

smoother Depth  8.979 - 373.8 <2e-16 

smoother Depth:substrate 9.446 - 991.6 <2e-16 

parametric Substrate  - 4 248.4 <2e-16 

parametric Survey year - 3 4986.4 <2e-16 

 

These results would suggest that counts of total conch change among substrate types and 

among survey years, and also that the overall effect of depth and substrate is highly 

influential in the distribution of conch across the bank (Figure 17). 

 

Figure 17. Estimated GAM smoothing curves for depth (a) and depth-substrate interaction 

(b).  
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4.3.2 Model validation: GAM 

Validation of the starting GAM was carried out through the examination of its residuals 

which revealed that the model results were not reliable and could be further improved 

(Figure 18). Plots of the residual distribution showed evidence of heteroscidasticity as there 

is a clear pattern where the residual spread appears to get larger with respect to increasing 

values of the linear predictor and fitted values. There is also evidence of non-normality in 

the distribution of the residuals though this maybe a less severe violation since regression 

models can be robust against some amounts of non-normality (Fitzmaurice et al., 2004). In 

this case however the departure from normality is severe. 

 

Figure 18. Residual plots for fitted starting GAM as given by the gam.check R function. 

There are patterns in the residuals as well as increased residual spread from low to high 

linear predictors and fitted values which is a sign of heteroscedasticity. 

Further examination of the residuals was carried out to check for spatial independence 

among values at each sample site across the bank. This was done firstly through a 

bubbleplot of the model residuals versus site coordinates which allows for a visual 

examination for possibly spatially auto-correlated sites which show up as clusters of 

negative and positive residual values (Figure 19) (Zuur et al., 2009). The plot showed 

evidence of likely spatial dependence among the sites. 



43 

 

Figure 19. Spatial bubbleplot of the GAM residuals versus their coordinates. Grey circles 

represent positive residuals and black circles represent negative residuals, each are 

proportional to the size of the residuals. Clusters of positive and negative residual values 

indicate likely spatial dependence.    

Secondly, a residual variogram which is a more formal spatial dependence meaure was 

produced using the varigram function from the “gstat” R package (Pebesma, 2004). 

Variograms are a more robust tool measuring spatial dependence between sites based on 

distances between their spatial coordinates (Zuur et al., 2009). The values produced in the 

variogram suggests that there is spatial denpendence (Figure 20) as there is an increase 

over a range of the lower distance values roughly from 0 to 30,000 which then levels off at 

higher distances.  

 

Figure 20. Cressieʼs semivariance rubust variogram of residual values from the GAM. 

Values appear to increase from a nugget over a range of lower distance values, roughly 

between 0 and 30,000, then come to an asymptote afterwards. This is indicative of spatial 

correlations. 

These validation results for the GAM dictates that the model must be further improved to 

address, in particular, the issues of spatial dependence among sites and heterogeneity as a 

result of different survey years and different substrate types.  
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4.3.3 Extending the GAM: GAMM 

4.3.3.1 Choosing the best corelation structure 

Given the model validation results, the GAM was extended to a general additive mixed 

model (GAMM) to incorpoate spatial correalation and variance structures in order to deal 

with spatial dependence and heterogeneity in the data and improve model fit. The first step 

was to choose the best correlation structure for the data. A number of correlation structures 

were fitted to the model including; exponential, linear, Gaussian, Rational quadratic and 

spherical correlation structures (Schabenberger and Pierce, 2002). The best model for each 

of the groups; total conch, mature and juveniles conch, were chosen through a process of 

backward selection based on a comparison of AIC values (Table 7).  

Table 7. Akaike Information Criteria (AIC) values for different correlation structures 

applied to the GAMM for each conch group. AIC values were used in the backward model 

selection process to choose the best correalation structure for each conch group. In all 

cases AIC values showed significant improvement compared to the starting GAM 

(AIC=12,975). 

Correlation 

structure 

Degree of 

freedom 

AIC value for 

Mature 

AIC values 

for Juveniles 

AIC values 

for Total  

None - - - 12,975.00 

Gaussian 13 1,092.32 1,180.19 1,021.22 

Exponential 13 1,092.32 1,180.19 1,021.22 

Linear 13 1,070.93 994.84 994.84 

Rational quadratic  13 1,080.16 1,164.33 994.77 

Spherical  13 1,070.27 1,180.19 994.05 

 

The optimal correlation model for total conch and mature conch included the spherical 

spatial correlation structure obtained through the R function corSpher while the best model 

for juveniles had the linear correlation structure (Pinheiro and Bates, 2000). Models 

containing linear and rational quatratic (corRatio) correlation structures for total conch may 

have also been consisdered as their AIC vaules were very close to the optimal. The same 

could also be said of the linear correalation structure in the case of mature conch. Noteable 

from these results as well is the fact that each of the extended models with different 

correlation structures resulted in significant model improvement based on AIC compared to 

the starting GAM  which had an AIC value of 12,975. 

Validation of the optimal spatial correlation model for each group was done using residual 

variogram plots which showed a much improved plot compared to Figure 19 as there was 

very little indication of spatial dependence (Figure 21). Sites within each group no longer 

showed an obviously increasing pattern at lower distance values but instead occured more 
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or less as a cloud of horizontal points which is indicative of spatial independence among 

the points (Zuur et al., 2009). 

 

Figure 21. Residual semivariograms of the optimal GAMM for each conch group; total 

conch, mature and juveniles, with added loess smoother to visualize trends. The points of 

the variogram appear largely as an horizontal cluster across the range of distances rather 

than a steep increasing trend from the lower distances..  

4.3.3.2 Choosing the best variance structure 

The next step in extending the starting model was to determine the best variance structure 

to be added to the GAMM of each group to deal with heterogeneity within the data. A 

number of variance structures were fitted to the variable total conch using general least 

squares (GLS) from the R “nlme” package (Pinheiro et al., 2014). The choice of variance 

structure was based on the data structure of the covariates and their likely residual spread 

based on the data exploration exercise. The constant variance function correlation structure 

from the “nlme” package (Pinheiro and Bates, 2000) implemented in R with the function 

varIdent was selected as the main structure for modelling heterogeneity among the groups. 

This variance structure allows for different variance for each factor level. Also included 

were the power of the covariate variance function (varPower), the constant plus power of 

the variance covariate function (varConstPower) and exponential variance (varExp), as 

well as a combination of variance functions (varComb) (Pinheiro and Bates, 2000).  
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The best variance structure was then selected through backward selection using using AIC 

values (Table 8). The best model was the one that included a constant variance structure 

(varIdent) which considered different variances for each level of the nominal terms year 

and substrate type. 

Table 8. Results of the backward selection process using AIC to determine the best 

variance structure for the GAMM. The best model is model 2 having a constant variance 

structure (varIdent) which has the lowest AIC value. Model 1 is equivalent to a linear 

model and is included for comparision. 

Model Variance 

structure 

Variance covariates Degree of 

freedom 

AIC for 

 total conch 

1 None - 11 2816.26 

2 varIdent  Year, substrate 32 2668.19 

3 varPower  depth 12 2811.10 

4 varConstPower  depth 13 2813.10 

5 varComb Year, substrate, depth 20 2688.62 

 

Validation of this optimal variance structure model was done by plotting the modelsʼ 

normalized versus fitted values (Figure 22). The plot showed a much improved residual 

spread with no clear pattern and a more even residual spread where most values occured 

withing the range -1 to +1 along the y-axis.  

 

Figure 22.Plot of normalized residuals versus fitted values for the optimal correalation 

structure obtained through the general least square (GLS) model. 

4.3.4 Optimal realized niche models 

Having determined the optimal variance and correlation structures for the data these model 

components were then added to the final optimal GAMM for each of the conch groups. A 

summary as given by the R anova and summary functions for total conch revealed that all 

main terms including; the smoother for transect depth and both factoral terms substrate and 

survey year were significantsuggesting different distributions for each of the significant 
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model covariates (Table 9a). The model summary also showed that only 23% of the 

variability of the response was explained by the covariates according to the r-squared 

value. For the mature conch all term were significant as well (Table 9b). The depth 

smoother for juveniles was however found to be non-significant while the substrate and 

survey year terms were significant (Table 9c). Of note here as well is that the r-squared 

value is surprizingly negative, despite the significant terms, suggesting the model may not 

be fully explaining juvenile abundance. 

Table 9a-c. Output model summaries for; (a) total conch, (b) mature conch, and (c) 

juvenile conch as given by the anova function in R. 

(a) 

  Total conch  

Variable Term df edf F-statistic p-value Adjusted 

R-squared 

Depth  smoother - 1.004 42.16 3.94e-10 0.226 

Substrate parametric 5 - 3.786   0.00253  

year parametric 3 - 14.660 7.88e-09  

 

(b) 

  Mature conch  

Variable Term df edf F-statistic p-value Adjusted R-

squared  

Depth  smoother - 1 9.131 0.00276 0.124 

Substrate parametric 5 - 2.85    0.016  

Year parametric 3 - 11.35 5.2e-07  

 

(c) 

  Juvenile conch  

Variable Term df edf F-statistic p-value Adjusted R-

squared 

Depth  smoother - 1.004 2.649    0.104 -0.00127 

Substrate parametric 5 - 4.213 0.00107  

Year parametric 3 - 6.278 0.00040  

 

The smoothers for transect depth for total and mature had effective degree of freedoms 

(edf) of 1 (or close to 1) which means the relationship between the distribution of these 

groups and depth is likely to be linear in each case (Figure 23) (Zuur et al., 2009).  
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Figure 23. Plot of significant depth smoothers for total conch and mature conch and non-

significant smoother for juvenile conch from the optimal GAMMs. 

Regarding the different substrate types, the GAMM revealed that seagrass, sand and 

sediment, and marcoalgal hardground were the most important in terms of overall 

abundance of Queen conch on the Pedro Bank (Figure 24). Mature conch seem to favour 

seagrass relative to the the other substrates which had a substatially low abundances. 

Juveniles however, and somewhat surprisingly, had their highest abundance closely 

followed by seagrass. 

 

Figure 24. Plot of significant parametric substrate terms and 95% confidence limits for 

total conch and the mature and juvenile subsets. Total conch and the subset of mature 

conch have their highest abundances in seagrass while juvenile abundance was highest in 

sand and sediment closely followed by seagrass as well. (cr=coral reef, dc=deep coral, 

do=deep ocean, mh=macroalgal hardground, ss=sand and sediment, sg=seagrass). 

Abundance values among the groups among the survey years were also significantly 

different (Figure 25). Numbers of total conch appear to steadily increase over the period of 

the four surveys.Mature conch seem to account for much of this increase as they showed a 

tremendous increase especially over the last two surveys in 2011 and 2015. 
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Figure 25. Plot of the significant parametric term, year, for each conch group from the 

optimal GAMM. 

Validation of the optimal GAMM included a check for homogeneity of variance using 

plots of the normalized residuals versus fitted values as well as normalized residuals versus 

the explanatory variable transect depth for total conch (Figure 26). Since mature and 

juvenile conchs are subsets of the total conch it may be reasonably assumed that their 

residual pattern will be reflected in the residuals of the total. The residuals spread shown in 

each plot shows little to no residual patterning and most of the residual values fall within 

the range -1.5 and +1.5 therefore homogeneity can be reasonably assumed in the model.  

 

Figure 26. Residual plots of GAMM of total conch; (a) normalized residuals versus fitted 

values and (b) normalized residuals versus the explanatory variable transect depth. Both 

residual plots show very little residual patterning compared to the starting GAM. 
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4.4 Predictive models 

4.4.1 GAM predictive model 

The parameters of the optimal GAMMs estimating the realized niche were used to develop 

predictive models of the abundance and distribution of Queen conch on the Pedro Bank. 

The GAM predictions produced here are predicted probabilities of abundance and, may be 

cautiously interpreted as relative indices of environmental suitability (Guisan, et al., 2002; 

Phillips et al., 2006). A predictive habitat map of total conch across the bank showed that 

there are fairly suitable conch habitat in most areas and thus the potential for relatively high 

abundances as well (Figure 27). Predicted abundances were highest in the southeastern 

region of the bank, while lowest predicted abundances occurred in those areas mainly 

around the periphery of the bank and in the northeast.  

 

Figure 27. Habitat map of the Pedro Bank showing generalized additive mixed model 

(GAMM) predicted abundance of total conch. 

For mature conch, the highest abundance and most likely suitable habitat corresponded 

largely with high abundance areas for total conch overall in the southeastern section of the 

bank (Figure 28). Other areas of the bank had a lower predicted abundance but were in 

general only slightly lower.  
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Figure 28. Habitat map of the Pedro Bank showing generalized additive mixed model 

(GAMM) predicted abundance of mature conch. 

Habitats with highest predicted abundance and suitable conditions for juvenile conch 

corresponded with much of the area below the 20 m depth contour as well as a few areas to 

the extreme west and northwestern of the bank (Figure 29). These areas are those 

consisting of seagrass as well as sand and sediment. 

 

Figure 29. Habitat map of the Pedro Bank showing generalized additive mixed model 

(GAMM) predicted abundance of juvenile conch. 

4.4.2 MaxEnt predictive model 

A habitat suitability map for Queen conch on the Pedro Bank was also produced using the 

Maxent model. The predictions here were produced mainly to provide a comparison with 

the GAMM predictions and test its suitability for providing useful species distribution 

information specifically for this area and species. The model was based on total conch 

sampled (inclusive of all size classes) and revealed that the most suitable habitat lay to the 

southeastern and central areas of the bank, similar to the predictive GAMM (Figure 30). 

These areas also correspond to most areas below the 20 m contour as well where 
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probability of suitable habitat is largely above 0.4. The maxent model also point to a few 

additional areas of relatively high probability of suitable habitat which were not shown in 

the predictive GAMM. These include small isolated areas to the extreme east and on the 

south and southwestern edges of the bank. The rest of the bank to the deeper northeast 

section had the lowest levels of habitat suitability where probabilities were largely less than 

0.5.   

 

Figure 30. Map of the Pedro Bank Jamaica showing Maxent predicted probability of 

suitable habitat conditions. 

Other output of the the Maxent prediction revealed that the variables substrate type, depth 

and chlorophyll-a concentration had percentage contributions of 4.66, 33.36 and 61.98 to 

the model prediction respectively (Figure 31). This does not necessarily indicate there 

importance in and ecological sense but rather their relative role in producing the Maxent 

model predictions. 

  

Figure 31. Precentage contribution of explanatory variables to the Maxent model 

prediction. The percentages given here does not necessarily reflect the ecological 

importance of the variables but their contribution to predictions in the maxent algorithim. 

The change in predicted probabilty of suitable conditions at different values of each 

covariate was examined using response curves (Figure 32). These curves show how each 
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variable affects the prediction when all other variables are kept at their average sample 

value (Phillips and Dudik, 2008).  

 

Figure 32. Response curves of the environmental variables depth (m), substrate and 

chlorophyll-a concentration (mg/m³). The substrate variable id coded: 1=Coral Reef, 

2=Deep Coral, 3=Deep Ocean, 4=Land, 5=Macroalgal Hardground, 6=Sand and 

Sediment, and 7=Seagrass. 

The response curve for depth showed a general decreasing probability of habitat suitabilty 

with increased in depth. Different substrate types also showed different responses as well 

with coral and deep coral areas having the highest probability of around 0.5. Other 

substrate types had probability values below but very close to 0.5. Positive chlorophyll-a 

concentrations seem to cause a sharp increasing response within short range of values then 

quicly reaches an asymptote.  

The Maxent model predictions were evaluted using the AUC (Area under a receiver 

operating characteristic (ROC) curve) metric along with true positive rate (TPR) and false 

positive rate (FPR) derived from confussion matrices which are often used to assess model  

sensitivity (Raven, 2002). AUC values were computed for five different subdivisions of the 

data (k-fold cross validation), their values ranged between 0.61 and 0.70 (Table 10). In 

each case the AUC was better than random (0.5) and thus indicate that the model 

discriminates fairly well between suitable and unsuitable/random habitat classification. In 

other words, the model predictions are reasonably acceptable as long as they are properly 

interpreted.  

Table 10. Maxent model evaluation summary for k-fold cross validation. 

Evaluation  

statistic 

k-fold  

1 2 3 4 5 

Presences  45 43 45 45 47 

Absences 136 136 136 136 136 

AUC 0.64 0.70 0.66 0.61 0.67 

Correlation 

coefficient  

0.17 0.28 0.24 0.17 0.27 
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5 Discussion 

5.1 2015 conch abundance survey 

The 2015 conch survey results appear to be in line with the trend of recovery and 

consistently healthy levels of overall Queen conch densities since implemention of a strict 

management regime in 1994 (Aiken et al., 2006; Fisheries Division, 2013). The figure of 

409 conch/ha in fact represents the highest mean total conch density recorded since the first 

survey by Appeldoorn (1995) in 1994, and is also a sizeable increase from the 370 

conch/ha reported in 2011 (Fisheries Division, 2013). The stock therefore appears to be 

well managed in terms of its density and population structure and suggests that the bases on 

which the integrated management regime of ecosystem-based research and monitoing was 

well-founded. 

In terms of the population structure, overall densities continue to improve but the 2015 

survey showed also showed the dynamics of relative density of the various size classes. In 

this survey for instance the larger size classes, particularly the adults and stoned conch, 

accounted for most of the total conch abundance and density observed, both overall and 

within each depth zone (Figures 8 and 9). Total density in 2011 was also found to be driven 

by juveniles especially by small juveniles (Fisheries Division which prehaps explains the 

high density of adults observed in this survey as juvenile cohorts’ progress into adulthood. 

Appeldoorn (1995), Tewfik and Appeldoorn (1998) and Smikle and Appeldoorn (2003) 

reporting on the first three surveys of 1994, 1997 and 2002 noted that total density on the 

bank was largely driven by juveniles however each by different extents.  

The spatial distribution of sites with the highest total density observations favoured the 

shallower regions to the south and southeast of the bank where the substrate is dominated 

by seagrass, sand, coral reefs and algal hardground areas (Figure 10). Appeldoorn (1995) 

and Tewfik and Appeldoorn (1998) also reported that overall densities on the Pedro Bank 

were highest in algal plains and seagrass habitat in the shallows below 20 m. This is 

perhaps indicative of the basic substrate complex required by conch whcih are able to 

adequately facilitate the important activities of feeding and reproduction. In other words 

this are may represent the intersection of ecological and environmental factors for that time 

of the year. Regarding the period of the survey which was in October correspond to the 

period of year (around September) when mature adults conch would be moving from their 

sandy spawning grounds to habitat associated with their macroalgal food; that is, seagrass, 

hardsubstrat and coral reef areas (Stoner and Sand, 1992).  

High juvenile density on the shallow southeastern edge of the bank was also reported as 

such in the previous surveys of the Pedro Bank as well (Fisheries Division, 2013). It is 

perhaps likely that the area is an important nursery site for Queen conch on the bank. 

Juvenile conch nurseries, as is the case here, are often associated with high density 

aggregations of juveniles in relatively close proximity to the edges of banks where pelagic 

larvae preferentially settle then move to their prefered  sheltering and feeding habitat 

(Stoner, 2003; Stoner et al., 1996a). The immediate area around the southern edge of the 
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bank where juvenile conch is highest largely consist of coral reefs (Figure 12) and not 

seagrass (Thalassia testudinum, Banks ex König, 1805) that is often reported as typical 

nursery habitat in the Caribbean (Stoner and Sandt, 1991). It has been suggested that larval 

settlement sites and juvenile nursery area may not necessarily be the same as juveniles are 

believed to make their (largely food-driven) habitat choice after settlement (Stoner, 2003). 

In the case of the Pedro Bank it would appear that this preference is for sections of seagrass 

and marcoalgal hardgrounds that are used as nurseries. 

Stoner and Sandt (1991) suggested from their study in the Bahamas that algal plains may 

be unsuitable for juveniles, and in the case of the Pedro Bank would explain the relatively 

low juvenile abundance and density observered in the deeper depths. Tewfik and 

Appeldoorn (1998) during the second survey suggested that marcoalgae may have replaced 

somewhat the use of seagrass by conch as the main nurseries in some of the shallower 

areas. There may be substance to this as during cross-checking of the Schill habitat map 

(Baldwin et al., 2014) with field data it was found that there were mant shallow sites (<20 

m) that were covered by filatmentous marcoalgae species. Thalassia testudinum was not 

found at any of the 80 sites.  

The observed high density juvenile sites are likely such due to site-specific ecological 

interactions and factors such as tidal retention of larvae which are often difficult to 

measure. These include factors not necessarily related to just habitat features and adaptive 

mechanisms aimed at reducing mortality and increasing overall survivorship (Stoner and 

Lally, 1994). 

The observation that both juveniles and mature conch had highest densities in generally 

similar habitat on the Pedro Bank may be somewhat surprizing (Figures 11 and 12). This 

given that these shallower habitats are subject to the highest level of conch fishing on the 

bank. It suggest therefore that some of the negative effects of fishing; namely, the removal 

of individuals and leaving of dead conch shells on the seafloor may not have had the 

serious negative effects feared by some. Tewfik and Appeldoorn (1998) cautioned about 

the possible physiological effects that the presence of dead conch shells could lead to live 

animals avoiding these areas thus reducing the amount of suitable habitat. In other areas of 

the region such as in the Bahamas marked reduction in especially adult conch densities 

have been observed in shallower heavily fished waters less than 10 m (Stoner and 

Schwarte, 1994). This has not been the case observed on the Pedro Bank where the stock 

likely benefits from an extremely cautious annual harvest rule of only eight percent of 

estimated biomass (Smikle, 2010). The stock therefore is able to sustain relatively high 

densities and support sustained annual fishing pressure. 

 

5.2 Distribution modelling  

The importance of selected environmental variables; depth, substrate and the year of the 

survey, in determining the distribution of mature and juvenile conch on the Pedro Bank 

was further examined using general additive nixed models (GAMM). The resulting 
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descriptive realized niche models revealed that depth is indeed important in the overall 

conch distribution (total conch) particularly driven by mature conch which was statistically 

significant (Tables 9a-b). The abundance of conch overall (total conch) and mature conch 

increases with depth according to the model (Figure 23), this as the less vulnerable adults 

are able to utilize a wider area and also cover a wider spatial range for food and 

reproductive activity. In the case of juveniles depth is less of a factor perhaps due to their 

preference for specific nursery areas in the shallow waters (<10 m) (Stoner, 2003).  

The models also showed that the nominal variables substrate type and survey year were 

statistically significant for all groups which suggest that conch abundance on the Pedro 

Bank changes with respect to the level of each variable. With respect to substrate type 

seagrss, sand and sediment as well as marcoalgal hardground account for the highest 

overall abundance (Figure 24). Mature conch abundance was disproportionately higher in 

seagrass which may be explained by the fact that the survey was conducted at a time of 

year (October) when adult move in mass from spawning grounds to feeding grounds 

(Stoner and Sand, 1992). Interestingly though the 2015 survey was conducted in October 

yet there were relatively large adult abundances in other less productive habitat such as 

deep coral as well as sand and sediment perhaps still being used for reproductive activity 

(Brownell and Stevely, 1981). Scientific divers conducting the 2015 survey reported 

observations of reproductive behavior; that is, coupling, mating and egg masses on the 

substrate and in the water column. The most important substrates for juvenile abundance 

according to the model were seagrass, sand and sediment, deep coral closely followed 

marcoalgal hardground areas all of which are normally associated with ample amounts of 

food.  

5.3 Predictive models 

Predictive habitat maps of the potential abundance of Queen conch on the Pedro Bank were 

also produced from the results of the GAMMs. The models generally revealed that there is 

a relatively high potential for high overall abundance of the species across much the bank 

particularly areas below the 20 m depth contour (Figure 27). These areas correspond 

largely with high density areas from the results of the 2015 which lay to the east and 

southeastern regions of the dominated by seagrass, sand and sediment, and macroalgal 

hardground substrate. The areas of lowest predicted abundance according to the model 

were those to the northwest and around most of the periphery of the bank.  

The areas of highest potential abundance for mature conch were shown to be very distinct 

areas that corresponded to areas of seagrass (mixed with macroalgae) surrounded by sand 

and sediment areas located to the southeast of the bank (Figure 28). It should be noted from 

the previous section however that mature conch also had fairly high aggregations in other 

areas and on other substrates as well. It is perhaps the substrate complexity as opposed to 

any one substrate type, which is favoured by mature conch and brought out in the model 

predictions. In other words, it is the proximity of feeding grounds (marcoalgae and 

seagrass) and spawning grounds (sand and sediment) that is the important driving factor for 

mature conch distribution in the shallow areas of the Pedro Bank.  

The predictive habitat map for juveniles showed that potential abundance was highest in 

areas of sand and sediment which covers most of the substrate below the 20 m depth 
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contour as well as large sections of the extreme west and northwest of the bank (Figure 29). 

The potential for juvenile nurseries occurring in these deeper and remote parts of the bank 

is somewhat surprising and encouraging as well. These areas may represent future 

management areas that can facilitate protected area designation for conch or at the very 

least lead to further exploration of their use in managing the stock. Another very important 

revelation of the map is that the spatial extent of potential high abundance (potential conch 

nurseries) is much larger than the observed juvenile distribution. Only a relatively small 

portion of potentially “optimal” habitat was shown to have large aggregations of juveniles 

(Figure 12). This further serve to underscore the complexity of distributional factors at 

work in juveniles and the need to properly manage and protect these preferred nursery 

areas. Stoner et al., (1996b) in their study of juvenile distribution in the Bahamas also 

found that large aggregations of juveniles occupied only a small proportion (1.5%) of 

potentially suitable habitat.    

An additional prediction was made of the total conch distribution using the Maxent 

programme in order to estimate habitat suitability of the bank. The Maxent was used here: 

(i) to have another prediction algorithm for comparison with the GAMM predictions, (ii) to 

incorporate an additional variable (chlorophyll-a), (iii) estimate the extent of potentially 

suitable habitats, and (vi) explore the effectiveness of Maxent as a management tool given 

the high cost associated with obtaining abundance data. Featuring as many covariates as 

possible was important as simple variables such as substrate and depth alone may not be 

sufficient to explain conch distribution (Stoner, 2013). The model included the variables 

depth, substrate and chlorophyll-a concentration of the water column which was included 

as a proxy variable for primary productivity, an important factor in the availability of the 

speciesʼ macroalgal food. The resulting habitat suitability predictions favour similar areas 

indentified as high probabily of abundance by the GAMM predictions (Figure 30). The 

least suitable habitats were found to occur in much of the deeper northwestern areas of the 

bank. There were a few differences however as as the maxent predictions indicated that 

there were areas of high potential suitability in a few isolated areas to the extreme east and 

on the extreme southern tip of the bank. This difference is brought out as a result of the 

additional variable, chlorophyll-a, which the model ranked as more important to itsʼ 

perdiction than the other covariates; depth and substrate type.    
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6 Conclusions and management 
implications 

The relationship between habitat and species abundance is fundamental to species 

distribution models (SDM) however this relationship can rarely be tested with absolute 

confidence as the exact requirements of a species is usually poorly understood (Stoner, 

2003), and attempting to measure or even quantify these requirement are either impractical 

or not cost-effective (Robinson et al., 2011). Despite these limitations, the use of SDMs 

here has shown yet again its usefulness in facilitating a better understanding of species-

environment relationships as well as identifying important knowledge gaps that may be 

cruial in the the management of Queen conch on the Pedro Bank. These are important 

given the numerous threats faced by speciesʼ partticularly habitat loss and the direct 

removal of individuals through fishing. Futunately there is a concerted drive by the 

authorities in Jamaica to address these threats through sound ecosystem based management 

(ESBM). The findings here are relevant to this management approach and may be fed 

directly into the general fisheries management of the species as well as other initiatives for 

the conservation of biodiverity on the Pedro Bank.  

From the results of the models it is clear that the factors determining the distribution of 

Queen conch over space and time on the Pedro Bank are very complex. These factors likely 

represent an intercept among various ecological, environmental and biological processes 

that are site-specific. There were many patterns observed here that did not those observed 

in other areas of the Caribbean and also instances where the species did not occupy 

seemingly optimal environments. This is probably due to unquie differences in 

habitat/substrate structure of the bank as well as local differences in food availability and 

predation for example.  

In terms of management therefore the focus should be on site-specific and conch-specific 

approaches that consider environmental variables used here as well as other potentially 

important factors affecting the species and the quality of its habitat. This is opposed to 

general conservation strategies or strategies developed from different localities. This 

approach will hopefully increase tremendously the explanatory power of the models and 

provide an even greater understanding of the species-environment relationship that can 

guide specific management decision and action. Other factors also be incorporated if 

possible including, but not limited to: (i) direct and reliable measures of fishing effort and 

other anthropogenic causes of habitat change, (ii) more precise temperature measurements, 

(iii) measures of the relative size of different substrate utilized by the population, and (iv) 

measures of larval settlement and recruitment. Ideally, these variables should also 

incorporate a dynamic or temporal aspect which goes further than just collecting static data 

such as from surveys or remote sensing. The management approach should additionally 

incorporate important biological and ecological processes if possible such as the daily and 

seasonal migrations of the species between different habitat types for the purposes of 

feeding and reproduction.  
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It is however recognised that there are many issues involved in the implementation of such 

an intensive management strategy considering Jamaica is a small island developing state 

having to deal with prolonged resource limitations and other major competing priorities. 

Regardless, this a worthwhile strategic direction for the speciesʼ sustainable management 

and development on the Pedro Bank and more general management plans considering its 

various other resources and stakeholders. 

In terms of priority areas for improving the ecosystem based management (ESBM) regime 

for the species, it would be a sensible approach to focus on conservation and preservation 

of those high density areas as revealed by the descriptive models as well as those high 

potentially suitable and abundant habitats as revealed by predictive models. Information 

from these areas should help to form the basis of future management of the species and the 

relationship with itsʼ habitat. Some suggested specific uses of this information from this 

study includes: 

(i) Incorporation into the on-going Pedro Bank marine spatial planning (MSP) 

process and similar plans aimed at the establishment of protected areas and 

management of Jamaicaʼs coastal and marine zones.  

(ii) Guiding the design/improvement of conch-specific and site-specific habitat 

monitoring programme aimed at conserving critical nursery areas, spawning 

grounds and feeding areas. 

(iii) Incorporation into a revised and updated conch fishery management plan for the 

Pedro Bank. 

(iv) Guide the design/improvement and prioritization of fishery management areas 

for conch aimed at, among other things, ensuring minimal negative impact of 

fishing activity on their habitat and also ensuring that high-density aggregations 

are not depleted.  

(v) Add to the national marine spatial literature databases for use by public and 

private bodies in the furtherance of sustainable ESB management of Jamaica´s 

marine resources. 

. 
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