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Ingibjörg Ósk Jónsdóttir

August 2017

Abstract

In video games, interactive storytelling systems often use a player model to tailor the
storyline to a player’s preferences, personality, or skills. The player’s in-game actions
are often used as an input for the model, but their emotions can also offer useful knowl-
edge. People often find it hard to describe their emotions and therefore, we aim to mea-
sure them through their physiological response. Since players are usually not equipped
with such devices in their natural gaming environment, we seek to render the devices un-
necessary by developing a method to predict a player’s emotions from their in-game ac-
tions. Our method involves a user study where the player’s actions are tracked and their
physiological response is recorded. We then compute three emotion features (arousal,
valence, and dominance) and train several machine learning algorithms to predict those
features from the player’s in-game actions. Our results show that our method can predict
a player’s emotion features from their in-game actions more accurately than the results
of a uniform random predictor.



Spáð fyrir um tilfinningar spilara út frá hegðun þeirra í
tölvuleik

Ingibjörg Ósk Jónsdóttir

ágúst 2017

Útdráttur

Gagnvirk sögukerfi í tölvuleikjum notast oft við líkan af spilurum til þess að aðlaga
söguþráðinn að áhugasviði þeirra, persónuleika eða færni. Hegðun spilara í tölvuleik er
oft notuð sem vísir í gerð spilaralíkansins en tilfinningar þeirra geta einnig veitt gagn-
legar upplýsingar. Fólki finnst of erfitt að lýsa tilfinningum sínum og þess vegna stefn-
um við að því að mæla þær með lífeðlisfræðilegri svörun spilaranna. Þar sem spilarar
eru yfirleitt ekki búnir slíkum tækjum í sínu náttúrulega leikjaumhverfi miðum við að
því að gera þau óþörf með því að þróa aðferð sem spáir fyrir um tilfinningar spilara út
frá hegðun þeirra í tölvuleik. Aðferðin felur í sér notendarannsókn þar sem við rekj-
um aðgerðir spilaranna og mælum lífeðlisfræðilega svörun þeirra við spilun tölvuleiks.
Við reiknum síðan gildi þriggja tilfinningalegra eiginleika (örvun, löð og styrkleika) og
þjálfum nokkur vélnámsreiknirit til þess að spá fyrir um gildin út frá hegðun spilaranna.
Niðurstöður okkar sýna að aðferðin okkar getur spáð fyrir um tilfinningalegra eigin-
leika spilara út frá hegðun þeirra í tölvuleik með meiri nákvæmni heldur en niðurstöður
samræmdrar handahópsspár.
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1

Chapter 1

Introduction

You can’t stay in your corner of
the forest waiting for others to
come to you. You have to go to
them sometimes.

A.A. Milne, Winnie-the-Pooh

Storytelling is an art form that has engaged humanity for tens of thousands of years.
We have become addicted to storytelling as a species, as even in our sleep, our mind
continues telling itself stories. Humans are perhaps the only animal that creates and
tells stories, and thus it may be that storytelling is what makes us human [1]. Story-
telling has taken on many different forms as humanity has developed. Some archeol-
ogists believe that even before we had developed writing, rock art was used as a form
of storytelling [2]. Before modern technology, people would gather around and listen
as a storyteller would use words and gestures to take their mind on a journey explor-
ing a story world. As the story progressed, the audience would voice their opinions or
questions which allowed the storyteller to learn about their interests and emotions, and
adapt the story accordingly (e.g., by diving deeper into certain aspects of the story).
Interactivity enabled the people to get even more invested in the stories as they took
part in shaping them. For centuries, books have been a popular storytelling form, but
most have omitted the interactive aspect of stories. In 1969, Packard wrote a series
of interactive novels called Adventures of You which were later rebranded by Bantam
Books as Choose Your Own Adventure [3]. The novels were formulated such that every
few pages, the readers would have to choose between several options, leading them to
different storylines. With modern computers, interactive storytelling has made its way
into video games, which allows them to offer a personalised experience in which the
player’s actions influence how the story pans out.

In recent years, the study and development of interactive narrative experiences in
video games has received increased attention. Intelligent storytelling systems enable
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video games to expand the typical one-way storyline and to create narratives that appeal
to a greater number of players (e.g., through automatic personalisation [4]). This can be
achieved by collecting data about the player through player models which can then be
used to adjust the storyline according to the player’s preferences, personality, or skills.
Hence, players who prefer fighting may find themselves more often than not in a war,
while players who prefer tactics can engage in meaningful conversations where hard de-
cisions have to be made. Consequently, players are offered a potentially more enjoyable
experience suited to their preferences. Various player modelling techniques have been
used in the past to identify player preferences, with different player inputs being used to
build a player model [5], [6]. The player’s narrative decisions (i.e., a decision within a
dialogue) in a video game offer a strong indication of their preferences. Other indicators
such as game telemetry (i.e., a time-stamped history of the player’s in-game actions) are
also valuable. For example, if the player hesitates before taking an action, the action
can have a smaller influence on the player model than if they had not hesitated [6].

By considering only the player’s narrative decisions and telemetry for player mod-
elling purposes, we risk missing valuable information. Interactive narrative video games
are usually designed to offer an emotional experience and aim to allow the player to fully
immerse themselves in a captivating storyline [7]. The player’s narrative decisions and
other in-game actions are driven by their thinking, and how they feel has a direct impact
on what they think. The player’s feelings during a narrative decision can, therefore, of-
fer a valuable contribution to the player model. People often find it hard to control how
they feel, since our emotions occur in our body without us realising it (e.g., we may
feel an aching stomach without understanding it is caused by anxiety). Feelings and
emotions have often been considered to be the same thing, but they are different [8].
Emotions are our physiological response and feelings are purely our interpretation of
our emotions. Therefore, to evaluate a player’s emotions, we cannot rely solely on self-
assessed emotion questionnaires, since what they feel may not reflect their emotional
state accurately. To assess the player’s emotions, we must measure their physiological
response. Since the player’s actions are influenced by their feelings and their emotions
power their feelings, we could potentially model the player more accurately by incorpo-
rating the player’s emotions into the player model in addition to their narrative decisions
and game telemetry.

Various techniques for measuring physiology can be used to estimate a player’s
emotions. A physiological response such as increased heart rate tells us the player is ex-
periencing high arousal which could indicate excitement [9]. Techniques to evaluate a
wider range of emotions than arousal include facial electromyography (EMG) and elec-
troencephalography (EEG). Facial EMG records the electrical activity of facial muscles
and can be used to extract the player’s emotional features [10]. The technique mea-
sures facial EMG via electrodes that are positioned on the player’s face. EEG is a data
collection method which records the brain’s electrical activity. The method involves an
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EEG cap that must be placed on the player’s head. The cap measures electrical activity
through its electrodes which are filled with conductive gel. By applying feature extrac-
tion techniques to the recorded EEG signal, we can estimate emotion features including
arousal, valence, and dominance. Arousal is the physiological state of being awake or
excited. It can indicate emotional calmness or excitement [11]. Valence classifies emo-
tions as positive or negative (e.g., sadness is a negative emotion). Dominance reflects
the power of the emotion (i.e., how strongly we experience the emotion). These values
can then be used to classify emotions such as excitement, anger, sadness, and calm (e.g.,
high arousal, negative valence, and high dominance classifies as anger) [12].

To record a physiological response (e.g., with EEG), the recording devices must be
placed on the player’s body. Generally, players do not wear such devices while playing
commercial video games. Therefore, recording physiological response during gameplay
can be intrusive and possibly reduce enjoyment [9]. We therefore cannot rely on being
able to collect physiological data during actual gameplay in the player’s natural gaming
environment. To overcome the need for recording devices, could we use the player’s
game telemetry to predict their emotional state?

In this dissertation, we aim to answer the question: Can players’ game telemetry be
used to predict their emotions? We present a detailed methodology for doing so in this
work, offering a strong base for future efforts to improve player experiences by predict-
ing player emotions.

This dissertation is structured in the following way: We start by providing back-
ground knowledge needed to better understand our work. We discuss the challenges
involved in this study and give criteria for its success. Then, we explore related work
and present our proposed methodology for predicting player emotions. We evaluate our
approach, and finally, we discuss our contribution and future work.

1.1 Background
The work we present in this dissertation involves several academic disciplines. It con-
sists of neuroscience, psychophysiology, computer science, intelligent narrative tech-
nologies, and user experience. In particular, we draw upon the intersections of these
disciplines as they occur in interactive storytelling, player modelling, and electroen-
cephalography (EEG). In this section, we present the theoretical foundation upon which
our work is built.

1.1.1 Interactive Storytelling in Video Games
Storytelling hasn’t always been an important part of video games. Early video games
had a simple user interface consisting of pixels which you could move around on the
screen. The games had clear goals that could lead the player to victory, but a storyline
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was absent. Pong, a simulation of the game of table tennis, is one example [13]. The
goal was clear, but no story was involved. Storytelling was later brought into video
games with games like Colossal Cave Adventure [14]. The game was a simple story
where the player used text commands to explore a cave which was thought to be filled
with treasures. In the early 90’s, the concept of interactive storytelling in video games
started to form with Chris Crawford’s Dragon Speech at the Game Developers Con-
ference in 1992 [15]. Crawford claimed that the industry was recycling old ideas and
informed them of his plan to focus on implementing interactive storytelling systems.
This speech has been considered a turning point in the game industry as it started to
explore the field of interactive storytelling.

Façade was considered a significant advance in interactive storytelling systems when
it was released in 2006 [16]. The game consisted of an interactive drama in which the
player interacted with a couple that was going through a rough patch in their relation-
ship. The player had the ability to interact with the non-player characters (NPCs) via
written language. Depending on the player, they could either mend the relationship or
help destroy it. Façade’s architecture consisted of a character authoring language and
a drama manager. A drama manager is an AI agent that is used in many interactive
storytelling systems. The drama manager knows everything about the game world and
determines what should happen next in the storyline depending on different factors such
as the player’s knowledge or a player model.

Interactive storytelling systems can differ in the agency that is given to their players
(i.e., how much control they have over the story and how much is simply an illusion
of control). In systems with high player agency, the narratives are often branching sto-
ries where the storyline changes depending on the player’s actions in the game world.
One of the greatest challenges facing interactive storytelling systems is the burden of
authoring. With branching storylines, every branch must be authored, which is expen-
sive for game development. Studies in the field have presented various authoring tools
that aim to solve the issue. The Thespian framework seeks to use automation to ease
the programming burden of authoring by making it a creative exercise for non-technical
authors [17]. The characters created with Thespian show great promise as they can gen-
eralise a script and respond to events that occur in a different order from the original
script. The framework enables the reuse of characters and simple character reconstruc-
tion without altering story details. Fendt et al. suggested that the storyline might be
kept linear while offering a similar amount of player agency as branching stories [18].
Successful commercial video games such as L.A. Noire [19] and The Walking Dead [20]
provide a relatively linear storyline even though they achieve the illusion of high player
agency. Those games may trick the player the first time they play the game, but the next
time, the game could leave the players disappointed when they discover how little effect
they have on the storyline.
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1.1.2 Player Modelling

The game industry has changed a lot over the past 25 years. The spectrum of players
has expanded from being an isolated group of young white males to a diverse group
of people [21]. The task of modelling players has, therefore, become an even more
challenging task. Player modelling techniques can be split into three categories: 1) sub-
jective, 2) objective, and 3) gameplay-based [9].

Subjective methods involve asking the player about their game experience. One
technique is to ask the players questions throughout the experience [4]. This is very
likely to affect the player’s immersion negatively by pulling them out of the experience
repeatedly. Another technique is to ask the players questions at the end of the experi-
ence [5]. This method relies on memory rather than catching the player’s thought at the
desired moment in time. Both techniques constrain the experimenter to a formulated
questionnaire in which wording may bias the answers or limit them to a set of prede-
fined answers.

Objective methods involve measuring physiological responses from the player dur-
ing gameplay, especially during events that are expected to have an emotional effect on
the player. The physiological response can be obtained in various ways. Facial elec-
tromyography (EMG) records the electrical activity of facial muscles and can be used
to extract the player’s emotional features [10]. Galvanic skin response (GSR) measures
the conductivity of the skin and has been shown to correlate with the subject’s level of
arousal [22]. Blood volume pressure (BVP) sensor is an optical sensor that measures
the changes in blood volume [23]. Heart rate variability can be calculated from the BVP
measurement which has been associated with valence [24], [25]. Increased heart rate
indicates high arousal and can be measured with a heart rate monitor such as a heart rate
wristband [9]. EEG records the brain’s electrical activity and has been used to assess
the emotional state of the player [26], [27]. These methods have several limitations.
Methods recording electrical activity are sensitive to noise (e.g., in the case of EEG, the
player’s muscle movements and electrical devices used in the experiment). Moreover,
the recording devices must be placed on the player’s body. For this reason, the objective
method can be intrusive and affect the player’s experience negatively.

Gameplay-based methods involve obtaining data from the player’s actions in the
video game. This approach allows for real-time player modelling since data can be
gathered during gameplay. The player’s decisions in the game can then been used to
predict the player’s preferences [5]. Thue et al. proposed PaSSAGE, an interactive sto-
rytelling system that learns the player’s style of play based on their in-game actions. The
player’s in-game actions play a major role in predicting the player’s preferences. The
actions can include the decision the player makes in a dialog with an NPC, the objects
they choose to bear (e.g., a favourite sword), and their actions such as stealing. Thue
et al. used the player’s actions as a contributor to the weight of different player types.
They categorised players as follows: Fighters, Power Gamers, Tacticians, Storytellers,
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and Method Actors. El-Nasr et al. took another approach to player modelling and based
their model on the player’s personality traits: reluctant hero, violent, self-interested,
coward, truth-seeker [6]. Like Thue et al., they observed the player’s in-game actions,
but also added a temporal measurement into the player model which indicated if and
how much the player hesitated in taking a particular action. This measurement reflected
was used to estimate how confident the player felt about the chosen action [6].

Figure 1.1: An example of an EEG recording with 32 electrodes.

1.1.3 Electroencephalography (EEG)
Psychophysiological methods have been applied successfully in studies of human com-
puter interaction (HCI) [9]. The methods utilise physiological data to infer information
about the subject’s state of mind. One of these methods is EEG, which records electrical
brain activity [28]. Since 1924, EEG has been used to record the electrical activity of the
brain [29]. EEG has been studied in many different fields, which has resulted in its abil-
ity to differentiate between a wide range of psychological and physiological phenomena.
EEG has been studied to a great extent for medical purposes, but in recent years it has
attracted the interest of other fields, (e.g., the application of EEG in HCI [30]). In com-
parison with other recording methods, EEG is relatively non-intrusive. Recording of
parameters such as blood volume pressure or galvanic skin resistance require the place-
ments of sensors on hands, which restrict the natural hand movements of the player.
While non-intrusive wristbands are available for optical detection of heart rate, they



1.1. BACKGROUND 7

lack accuracy [31]. Facial EMG can provide a good measurement of a player’s emo-
tions, but the most accurate recording method requires placing sensors with wires on
the face. We conducted this research at Reykjavik University which has a well equipped
EEG laboratory. For these reasons, we used EEG to measure player’s emotions. The
plot in Figure 1.1 represents an EEG recording and shows the change in voltage during
some amount of time.

Joy
Anger

Fear

Surprise

Sad

Disgust

Arousal

Valence

Dominance

Figure 1.2: Positions of emotional states within an Arousal-Valence-Dominance plot.
The black dot shows the position of the emotion and the white dot shows how it is
positioned within the Arousal-Valence plane.

Emotion features have been extracted successfully from EEG recordings [12], [27],
[32], [33]. The features extracted are values of arousal, valence, and dominance which
can be mapped to certain emotions (see Figure 1.2). Moreover, EEG has been used to
detect player emotions during gameplay [11], [26], [34]. Some studies have measured
the accuracy of their methods by comparing the results to a self-assessed emotion ques-
tionnaire presented to the subject [35]. That is not entirely suitable, since the wording
of the questionnaire might influence the answers. Also, many people aren’t good at as-
sessing their emotions. Presenting questions to the player during gameplay is likely to
break the player’s immersion. However, if the questionnaire is presented at the end of
the gameplay, the player must rely on memory. Ramirez et al. presented their subjects
with acoustic emotional stimuli sounds to evoke emotions and recorded an EEG signal.
They did not verify their results with questionnaires but depended on emotional ratings
(pleasure, arousal, dominance) provided with each sound from the International Affec-
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tive Digitized Sounds (IADS) library [27]. Ramirez et al. proposed that their methods
could be improved by incorporating self-assessed emotions into their classifiers.

Wave Frequency Interval (Hz) Origin Properties
δ 0.5-3.5 Thalamus Deep sleep
θ 3.5-7.5 Hippocampus Drowsiness and meditation
α 7.5-12.5 Thalamus Working memory, alertness,

focus
µ 8-12 Parietal lobe Maintains physical stillness
β 12.5-30 Parietal lobe Busy thinking, anxiousness,

concentration
γ 30-100+ Hippocampus Memory process, problem-

solving, fear, and conscious-
ness

Table 1.1: Brain Wave Properties.

For our work, we aimed to extract features depicting the subject’s emotional state
during certain events in a video game. Our study focuses therefore on frequency analysis
of an EEG signal and event-related potentials (ERP). Fast Fourier Transform (FFT)
is a common frequency analysis algorithm in EEG analysis. An EEG signal over a
certain amount of time is fed to the algorithm, which divides the signal into time blocks
and outputs a frequency power spectrum [36]. The power spectrum is measured in
micro volts squared (µV 2) for the brain waves delta, theta, alpha, mu, beta, and gamma
(see Table 1.1). The alpha and beta waves are the most significant waves in regards to
emotion feature extraction [27]. The alpha wave originates in the thalamus and captures
information on alertness, the ability to focus, and working memory. The beta wave
originates in the parietal lobe and has been associated with busy thinking, anxiousness,
and concentration. Moreover, the activity in the beta wave relates to the salience of an
emotionally evoking stimulus [28]. Studies have used results from FFT to successfully
classify emotions from EEG signals [12], [27], [33], but none have tried to predict
emotions from game telemetry.

Summary
In this chapter, we described the art of storytelling and how it made its way into video
games. We described the architecture of interactive storytelling systems and addressed
the importance of using physiological response to model player emotions. We described
three different player modelling techniques; subjective, objective, and gameplay-based.
We introduced electroencephalography (EEG) as an option for objective player mod-
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elling which involves a physiological response from the players. As the technique in-
volves placing a recording device on the player’s body, we proposed to make the device
redundant by predicting the player’s emotions from game telemetry via physiological
responses.
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Chapter 2

Problem Formulation

We seek to develop a methodology that allows one to predict players’ emotions based
on their game telemetry. Interactive narrative video games often aim to offer an emo-
tional experience in which decisions affecting the narrative must be made by the player.
Therefore, we focus on these types of games. In this chapter, we list our requirements
or such a methodology and present criteria for evaluating its success.

2.1 Player Modelling

Various player modelling techniques have been introduced in recent years. Both the
player’s narrative decisions and game telemetry are good indicators of the player’s pre-
ferred experience, but what drives these actions is the player’s emotions. By incorporat-
ing the extra information provided by emotional state into player modelling techniques,
we can potentially provide a more compelling experience for the player.

A user experiment must be conducted to collect player data. Players will play an
interactive narrative video game offering an emotional experience. To reduce bias, the
players in the study must not have played the video game before. The game will prefer-
ably be easy to play such that it does not restrict us to participants that are experienced
gamers. A demographics questionnaire asking the players about background informa-
tion such as age and gaming experience can give us useful information during data
evaluation. The player’s narrative decisions and game telemetry must be recorded (e.g.,
with a mouse and key tracking software) so they can be associated with the player’s
physiological response that reflects their emotional state. The game telemetry data must
be processed after the study, and valuable features must be extracted (e.g., which narra-
tive decision the player chose at any point in time). To automatically predict the player’s
emotions from their game telemetry, a machine learning algorithm must be trained with
game telemetry as input and emotional state as output. The time stamps of narrative
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decisions in the game must be recorded to synchronise the physiological response data
and game telemetry.

2.2 Player Physiology

The player’s emotional state can be assessed by recording their physiological response
with devices such as EEG. The signal from the EEG can be used to classify arousal,
valence, and dominance which can then be mapped to the player’s emotions [12]. A
data acquisition protocol must be in place such that a high-quality EEG signal can be
achieved. Some EEG recording systems (including the one available to us) can only
record data up to 45 minutes. Therefore, the period of gameplay cannot last longer than
that. EEG is sensitive to noise such as muscle movements, and therefore, a video game
on a PC will give us better data rather than one on an entertainment console. A baseline
recording of the EEG must take place in which the signal is recorded when the player
is relaxed. By doing that we can better analyse the highs and lows of the signal during
gameplay by comparing it to the baseline. After the recording, the EEG signal must be
filtered from artefacts such as noise from electrical devices and eye blinks. Further anal-
ysis must include feature extraction to allows us to calculate values of arousal, valence,
and dominance. The range of these values can differ between subjects, and therefore,
we must normalise them. That will enable us to make a cross-player comparison.

2.3 Emotion Prediction Method

Since players are usually not equipped with an EEG recording device while playing
video games, we aim to render the device unnecessary during gameplay by using game
telemetry to predict the player’s emotions. To achieve this, we must use a machine
learning algorithm that takes game telemetry as input and outputs values which can
be mapped to emotions (e.g., arousal, valence, and dominance). We need to acquire
the player’s game telemetry and emotion features during narrative decisions in a video
game, as we expect the player to experience strong emotions at those events. The fea-
tures extracted from the game telemetry must be chosen wisely to ensure they contribute
valuable information to the machine learning algorithm. We can present the player with
a self-assessed emotion questionnaire to verify the results from our algorithm as sug-
gested by Ramirez et al. [27]. The questionnaire should be presented to the player at
the end of the gameplay, to preserve their immersion during gameplay. For a machine
learning task such as this, it’s helpful to acquire as much data as possible. However,
setting up and recording EEG data is very time-consuming. A balance between time
and data must be found.
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2.4 Criteria for Success
For us to argue that our method is successful, the results must show that a player’s
physiological response can be predicted from their game telemetry. We will declare our
methods successful if we achieve higher prediction accuracy than a uniform random
predictor would produce. We will estimate our predictor’s accuracy by training it on a
subset of the data and then testing it on the rest.

Summary
In this chapter, we described the methodological and practical challenges we face in
predicting emotions from game telemetry. We outlined the basic requirements for our
user study and noted that a data acquisition protocol must be in place for recording a
high-quality EEG signal. We addressed the type of video game needed and how we must
process the recorded data with game telemetry mining techniques to extract valuable
features for a machine learning algorithm. We also discussed how we could obtain
features from the EEG data, giving us values that we can associate with the player’s
emotions according to a certain model. Finally, we described how we would evaluate
our methods to determine their success.
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Chapter 3

Related Work

As mentioned in Section 1.1 our study involves several academic disciplines. In this
chapter, we discuss prior work that has also studied the intersection of these disciplines.
We start by presenting studies on emotion recognition with EEG. Then we review more
highly related studies that have explored emotion recognition with EEG in video games.

3.1 Emotion Recognition with EEG
One of our goals in this study is to measure a player’s emotions via EEG. Studies have
found correlation between EEG and emotions [32], [37], [38]. Schmidt et al. explored
whether the emotion features of valence and intensity could be distinguished within
EEG data [32]. They were able to associate patterns of frontal brain activity with both
features. They associated higher activity in the left frontal lobe to positive emotions,
especially for the alpha wave, and a higher activity in the right frontal lobe to negative
emotions. By examining patterns in the overall frontal brain activity, they were also able
to distinguish the intensity of the emotion.

Davidson et al. observed facial behaviour and measured EEG while their subjects
experienced the emotions, happiness, and disgust. One of their goals was to determine
whether the emotions could be associated with patterns of hemispheric activation in dif-
ferent regions of the brain. They collected EEG data from 37 right-handed subjects and
used short film clips as emotion stimuli that had been used in related emotion studies.
The subject’s facial responses were also recorded on a video. After each film showing,
the subject was asked to rate the emotions they had experienced. Davidson et al. ob-
served the video recordings after the experiment and rated the facial expressions with
the Ekman-Friesen Facial Action Coding System [39]. They compared EEG recorded
during a happy facial response and a disgusted one and were able to associate happiness
with less alpha power in the left frontal region when compared to disgust and disgust to
less alpha power in the right frontal region when compared to happiness. [37]. Davidson
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et al.’s findings have been utilised by other EEG emotion research [27], [33].
Baumgartner et al. studied the different effects that visual and musical stimuli have

on emotions [33]. In addition to recording EEG, they also collected other physiological
signals such as heart rate, skin conductance and more. Their methods involved collect-
ing data from twenty-four subjects while they listened to music and observed images
that were designed to evoke either fear, happiness or sadness. At the end of each ses-
sion, the subjects were asked to answer two questionnaires regarding their emotional
state. After collecting the data, they performed an FFT analysis on the EEG signal to
extract power density values for the alpha wave only, as it has been reported to have a
stronger correlation to behaviour than the other waves [40]. They analysed the alpha
power density values with analysis of variance (ANOVA) using four factors: emotion
(fear, happiness, sadness), modality (combined, visual, musical), region (anterior, pos-
terior) and hemisphere (left, right). The results showed higher accuracy in emotion
recognition when the modality was combined (i.e., both visual and musical stimuli).

Other studies have used a machine learning algorithm to learn patterns related to
emotions. Thammasan et al. conducted a study where they observed whether familiarity
affected an EEG signal, especially in EEG-based emotion classification systems [41].
They collected data from a WaveGuard EEG cap while subjects listened to eight fa-
miliar songs and eight unfamiliar songs. To determine whether familiarity affected the
EEG signal, they performed two different analyses: single-electrode-level power spec-
tral density analysis and functional connectivity analysis. They found in both cases that
familiarity does affect the EEG signal. Then, they observed the effects of familiarity in
an EEG-based emotion recognition system. To extract features from the EEG signal and
estimate the emotional state, they observed the fractal dimension value and power spec-
tral density values. To classify emotions, they used Russell’s arousal-valence emotion
model [42] and classified the values of arousal and valence into two classes, high and
low. Finally, they applied three classifiers on their data to classify values of arousal and
valence. Their results demonstrated a better emotion classification on data collected
when the subject listened to an unfamiliar song than to a familiar one. These results
support only including players who have not played the video game used in our study.

Using machine learning algorithms as well, Ramirez et al. applied two classifiers
on an EEG recording they obtained from six participants using consumer mass-market
grade equipment [27]. The participants listened to twelve sounds provided by the IADS
library that had already been classified with certain emotions. After filtering the EEG
signal, Ramirez et al. performed an FFT analysis to extract values for calculating the
arousal and valence. They measured arousal by computing the ratio between alpha and
beta values in electrodes in the prefrontal cortex. To calculate valence, they compared
the activation levels of the two cortical hemispheres since left frontal inactivation indi-
cates a negative emotion, and right frontal inactivation a positive one as proposed by
Davidson et al. [43]. They then trained and tested two classifiers which, given the EEG
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data at a particular point in time, were meant to predict arousal as one of two classes
(high or low) and valence as one of two other classes (positive or negative). The clas-
sifiers were able to classify arousal with 83.35% accuracy and valence with 86.33%
accuracy. Compared to a uniform random predictor which correctly classifies 50% in-
stances on average, they were able to show that their methods can link EEG patterns to
emotion features better than a random predictor. In our study, we use the same methods
for calculating arousal and valence. Unlike Ramirez et al., we also want to predict the
emotion feature dominance and our stimulus is also very different as we use events in a
video game to evoke emotions.

To calculate the value of dominance, we used the same equation as Blaiech et
al. [12], which was originally formulated by Liu et al. [44]. Blaiech et al. aimed to
implement an emotion recognition system by inducing emotions with methods such as
biographical reminders of the subject’s memories or social interactions. They conducted
a user study and obtained EEG data from six participants while inducing different emo-
tional states with various methods. They based their stimuli in various ways. They
induced sadness by asking the subject to recall an unhappy memory of theirs and they
induced disgust by showing a video tailored to trigger disgust. At the end of the study,
the participants answered a self-assessed emotion questionnaire to evaluate their emo-
tional state. Blaiech et al. then filtered the EEG signals, conducted an FFT analysis,
and computed the values of arousal, valence, and dominance. Finally, they used fuzzy
logic techniques to classify each emotion by using values of arousal, valence, and dom-
inance as input. They separated the values of each emotion feature into three categories
of small, medium, and large, like we do in our study. Their results showed satisfactory
classification of seven different emotions with the highest accuracy of 100% for neutral
emotion state and the lowest accuracy for a surprised emotion at 53.57%.

The studies by Ramirez et al. and Blaiech et al. both collected EEG data using the
Emotiv EPOC cap [45], developed for the consumer mass-market. The cap consists of
fourteen electrodes, whereas the cap we used had thirty-two electrodes. The Emotiv
EPOC cap has also been used in brain-computer interface studies [46], [47].

3.2 Emotion Prediction in Video Games
In our study, we aim to predict emotions during gameplay. Several studies have used
EEG to compute a player’s emotional state during gameplay [11], [48], [49]. Rodriguez
et al. conducted an exploratory study on emotion recognition with EEG during game-
play [11]. Using consumer-grade equipment, they obtained EEG data from thirty partic-
ipants and focused on extracting EEG data from different events within the game. After
analysing the EEG data, they labeled the data with results from self-assessed emotion
questionnaire which the players answered at the end of each game event. Rodriguez et
al. classified the emotions into four different types - one for each combination of high
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or low levels of arousal and valence. For extracting the emotion features, they used both
FFT analysis and calculated asymmetry index to build feature vectors which represented
the EEG data for each game event. They then trained and tested several classifiers with
data on emotions and the game’s event types. They achieved a best accuracy of 41.45%
in classifying four game events and 33.48% in classifying the combinations of levels of
arousal and valence. Rodriguez et al. concluded that they could have possibly gotten
better results by omitting the repeated questionnaires to preserve the player’s immersion.
In our study, we take this recommendation seriously and only present the participants
with a self-assessed emotion questionnaire at the end of their gameplay.

Chen et al. were aware of the importance of preserving the player’s immersion in
their study of relationships between game events and a player’s emotions [48]. They
hypothesised that emotion changes during gameplay are consistently triggered by game
events. The study recorded EEG signals for twenty players while they played three types
of video games. In addition to EEG, Chen et al. also recorded the player’s facial ex-
pression and their computer screen for syncing the game events together with the EEG
data. For each game, they annotated different game events with two different emotions:
excitement and frustration (e.g., when hitting a target while playing the video game Bat-
tlefield 4, the player would experience excitement, but frustration when they would die
or fail a mission). Chen et al. found a strong correlation between game events and peaks
within the EEG data. They concluded that games could be adapted to improve player
satisfaction by using emotion data triggered by game events. For adapting video games
in real-time, their proposed approach requires EEG data collection during gameplay, but
we wish to avoid that because players do not typically have access to such devices. In
Chen et al.’s study, they annotated the emotions themselves; but in our study, we aim to
compute them with the equations mentioned in Section 3.2. However, we utilise the fact
that game events trigger emotions in our study by analysing EEG data for each game
event separately - not the whole duration of the gameplay.

Game adaption based on emotions was also explored by Chanel et al. [49]. They
aimed to adapt the difficulty in video games by using values of boredom, engagement,
and anxiety. Their study acquired data from twenty players while they played the video
game Tetris several times at three levels of difficulty: easy (boredom), medium (engage-
ment), and hard (anxiety). In addition to EEG, they used several devices to measure
physiological response to classify emotions. They measured skin resistance, blood vol-
ume pressure, the temperature of the subjects’ palms, and extension of the abdomen.
Like Rodriguez et al., they asked the player to answer a self-assessed emotion question-
naire at the end of each session. After filtering the EEG signal, they conducted a feature
extraction by using an FFT analysis. Then, they trained and tested three classifiers to
predict one of the three emotional states: boredom (easy), medium (engagement), and
hard (anxiety), from the physiological response. The best performance for using EEG
as input was 56%, but it was 59% with the other signals. Combining the results of
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the signals improved the performance and accuracy was reported to be 63%. Chanel et
al. claimed that EEG is better suitable for short-term emotion assessment. We utilise
this fact in our study by only analysing five seconds of EEG data at a time, in accor-
dance with each game event. Chanel et al.’s way of asking the player questions between
sessions may have resulted in the player becoming more aware of their emotions dur-
ing gameplay which possibly affected their experience. Similarly to Chanel et al.’s
work, this study requires an EEG device during real gameplay, but we seek to use game
telemetry to predict the emotions such that we don’t need to rely on players owning
EEG recording devices.

Derbali et al. used EEG to predict the player’s motivational state during game-
play [50]. Their methods included a user study of thirty-three participants who played a
game called FoodForce. The goal of the game is to teach the player about world hunger,
and the player must feed as many people as possible with a low budget. Derbali et al.
used two cameras to record the player’s facial expressions and their in-game actions.
They also measured Galvanic Skin Response and Blood Volume Pulse with a sensor
which was attached to the player’s finger, leaving one hand free for interaction with the
computer. Before the play session, the researchers recorded a baseline from the physi-
ological response in which the player relaxed with their eyes closed for 60 seconds. At
the end of each session in the game, the player was asked to answer a questionnaire de-
signed to identify four components of motivation: attention, relevance, confidence, and
satisfaction. At the end of the study, the participants answered the questionnaire again
such that a final motivation value could be obtained. Like in the other EEG studies we’ve
discussed, Derbali et al. conducted an FFT analysis on the EEG data. Each 60-second
section of the EEG data corresponding to a mission in the game was analysed. Then,
they normalised the FFT values and used them to predict a player’s motivation. They
found that the theta wave in the frontal region and the high-beta wave in the left central
region provided a predictor for the player’s motivation. In our study, we also record a
baseline and normalise the FFT values. However, we do not aim to predict the player’s
motivational state, but instead the emotion features arousal, dominance, and valence.

None of the studies address the fact that we can usually not acquire a player’s phys-
iological response in their natural gaming environment. To the best of our knowledge,
the goal of our study to predict players’ emotions from their game telemetry has not
been explored before.

Summary
In this chapter, we discussed the two studies on which we base our arousal, valence, and
dominance equations (see Section 3.1). We also presented other work that has aimed
to use EEG to recognise emotions during gameplay. Finally, we reviewed work more
highly related to our study, which aimed to predict emotions during gameplay.
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Chapter 4

Proposed Approach

Our proposed methodology for predicting players’ emotions based on their in-game
telemetry involves three steps: data acquisition, feature extraction, and training and
testing a machine learning algorithm on our data.

Figure 4.1: Schematic diagram of our emotion prediction methodology showing the
three steps: data acquisition (orange), feature extraction (green) and machine learning
(blue).

To acquire data, we conducted several play sessions in which human participants
played through half an hour of an interactive storytelling video game called The Wolf
Among Us by Telltale Games [51]. As shown in the schematic diagram given by Fig-
ure 4.1, we recorded the players’ physiological response with an EEG cap and tracked
their mouse and keyboard events using a telemetry tracking tool [52]. The latter al-
lowed us to determine the players’ game telemetry. The feature extraction step involved
analysing the game telemetry and extracting features about the players’ actions that
would be valuable to a machine learning algorithm that predicts the players’ emotions.
This part also included processing the acquired EEG data and extracting the emotion
features arousal, valence, and dominance. Finally, we trained several machine learning
algorithms to predict the values of arousal, valence, and dominance from game teleme-
try.

In this chapter, we explain how we acquired the data required for training and test-
ing the machine learning algorithm (Section 4.2). We provide a detailed description
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of the features we extracted from the game telemetry and the EEG data (Section 4.3),
and then present our emotion prediction methods (Section 4.4). We begin with a brief
introduction to the game from which we acquired our data.

Figure 4.2: Game Events in The Wolf Among Us [51]. Top: Dialogue event with a red
timer bar below. Bottom left: Exploration event. Bottom right: Action event.

4.1 The Video Game
To obtain an emotional EEG recording, we needed to choose a video game offering an
emotional experience. We decided to use the first episode of the interactive storytelling
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game The Wolf Among Us by Telltale Games [51]. The game has received "Overwhelm-
ingly Positive" reviews on the entertainment platform Steam [53], and is designed to
offer an evocative experience. It is structured like a television show in which the player
plays the main character and can influence the storyline by making decisions on the
character’s behalf. By choosing this game, we made sure that each player would be
presented with emotionally evoking content. It also allowed us to include inexperienced
game players in the study since it is relatively easy to play. The only controls are the
mouse and the traditional keyboard game scheme using the WASD (and Q) keys to move
around. The player interacts with different NPCs throughout the game and can explore
the game world (see Figure 4.2). We extracted features from both the recorded game
telemetry and the EEG.

The video game consists of three kinds of interactive events, as shown in Figure 4.2.
One is a dialogue event with an NPC. In this event, the player chooses between two
or four different responses by clicking the desired response within a given time limit
ranging from 5-10 seconds (Figure 4.2, Top). If the timer expires, the player’s character
gives a silent response, and the dialogue continues. Another kind of game event is the
exploration event in which the player has unlimited time to explore some aspects of the
game world (Figure 4.2, Bottom left). The player can walk around using the keys W, A,
S, D, and use the mouse to take actions (e.g., open a door). The third kind of game event
is when the player is instructed to move quickly in certain directions using the keys W,
A, S, D or to use force by hitting the key Q repeatedly (Figure 4.2, Bottom right). In
this study, we focused on the dialogue events since the other two included keyboard
events which were more likely to contaminate the EEG signal with muscle artefacts.
Each player in the experiment went through the same twenty-eight dialogue events.

4.2 Data Acquisition
We collected data via several play sessions in a laboratory used for HCI research at
Reykjavik University. We conducted a pilot study with two participants to help shape
the design and scheduling of the data collection. In addition to the two participants
of the pilot study, twenty others partook in the play sessions. The participants all had
sufficient computer skills and had a median age range of 25-29 years. We recruited
participants via advertisements placed at the student union of those studying computer
science at Reykjavik University, the student community at Reykjavik Academy of Dig-
ital Entertainment, and a local software company.

We divided the data acquisition into three parts; a demographics questionnaire, data
collection from EEG and game telemetry during gameplay, and a self-assessed emotions
questionnaire. We acquired the players’ background information regarding their gender,
age, etc. with a demographic questionnaire (see Questionnaire A.1). We recorded the
EEG data with a CA-201 WaveGuard EEG cap. The cap consists of 32 electrodes and
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two reference electrodes. The electrode placement scheme is an extension of the 10/10
system proposed by the American Clinical Neurophysiology Society [54]. The elec-
trode locations are Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, M1, T7,
C3, Cz, C4, T8, M2, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, Oz, and O2
(see Figure 4.3) [55]. The EEG data was transferred from the cap through an amplifier
to a tablet. This setup prevents any data loss since the amplifier and tablet are connected
directly to one another, and do not rely on WiFi or other wireless connections.

Figure 4.3: Cap Layout of 32 Channel WaveGuard EEG.

For machine learning tasks such as ours, it would be ideal to acquire as much data as
possible. However, recording EEG data and preparing to do so is very time-consuming.
Light et al. formulated a base protocol for setting up EEG studies in which they stated
that standard EEG studies have 16-20 participants for each group of interest [56]. They
suggested that each study should also review the related literature to decide on a number
of participants. Since most of the EEG studies we discuss in Chapter 3 used twenty par-
ticipants in their data acquisition [26], [48], [49], we decided to also obtain data from
twenty players.

The device that we used for gathering the EEG data is only capable of recording for
less than 45 minutes at a time. Therefore, we asked the players to play the first 30 min-
utes of the game, stopping them all at the same point in time. Up until that point, each
player went through the same twenty-eight dialogue events from which we acquired the
game telemetry. We left the players alone in the laboratory during gameplay to prevent
any interference with their immersion (see Figure 4.4). We collected game telemetry
with our custom built key and mouse tracking software called Telemetry Tracker. We
also recorded the computer screen during gameplay with the open source video record-
ing software OBS Studio [57] to allow for verification with the analysed mouse tracking
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data; we verified the time stamps of the dialogue events by comparing the times of both
the mouse clicks in the telemetry and the relevant frames in the video. After playing,
the participant self-assessed their emotions during the game by answering a Positive
and Negative Affect Schedule Questionnaire (PANAS) [58] related to every scene in the
game, where each scene consisted of several dialogue events (see Questionnaire A.2).
The total duration of the data collection session was roughly one and a half hours, as we
describe in Section 4.2.2.

Figure 4.4: A participant playing the video game The Wolf Among Us while wearing an
EEG cap. The pink device on the left is an amplifier that connects the EEG cap to the
tablet.

4.2.1 Telemetry Tracker
For tracking the player’s game telemetry, we adapted the Mouse’n’Key tracker tool [52],
written in Python 3. The tool tracks and saves mouse and keyboard input on a Windows
machine by using the PyHook package [59]. We developed the Telemetry Tracker [60]
by altering the Mouse’n’Key tool to track the mouse input of interest and to log the
desired values to a file. The values from each mouse event included a time stamp,
cursor coordinates, and the type of mouse event (i.e., a mouse movement or a mouse
click). We also recorded each keyboard event and logged it to a file.
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4.2.2 Data Acquisition Protocol
The following list represents the protocol that we followed while acquiring data from
players during gameplay.

1. Introduction & Demographic Questionnaire (10 minutes)
The participant was escorted into the laboratory and asked to sit on a chair facing
a computer screen. The researchers started by giving a detailed explanation of
the EEG cap and the data collection procedure. After receiving the participant’s
consent for the session, the EEG cap was then placed on their head, making sure
they were comfortable and that the electrodes were correctly laid down. While
the EEG cap was being connected with the amplifier to a tablet and set up for
recording in the software eego, the participant was asked to answer a demograph-
ics questionnaire regarding their age, etc. (see Questionnaire A.1). The EEG cap
was set to record at a 512 Hz sampling rate.

2. EEG gel insertion and game instructions (30 minutes)
The gel was inserted into the 32 electrodes on the EEG cap. Impedance was
measured through eego and the researchers made sure it was below 100 kΩ to
ensure a high-quality EEG signal. Meanwhile, the game controls were explained
thoroughly to the participant.

3. Baseline recording (1 minute)
A baseline recording was acquired to obtain the participant’s brain activity in a
relaxed state. EEG data was recorded while the participant relaxed with their eyes
open for 30 seconds. Another recording was done with eyes closed for another 30
seconds [61].

4. Analytics setup and take off (5 minutes)
The Telemetry Tracker and a screen recording were started. The participant was
advised to keep their head as still as possible while playing to minimise any mus-
cle artefacts in the EEG data. The EEG recording and the video game was started,
and the researchers left the room, allowing the participant to immerse fully into
the game.

5. Gameplay and emotion questionnaire (45 minutes)
The participant played through approximately half of the first episode of The Wolf
Among Us. Every participant played until they reached the same, predetermined
point in the game, which took them 32 minutes on average. The researcher then
entered the room and stopped the game and all recording devices. The participant
was then asked to fill out a self-assessed emotion questionnaire for each scene in
the game (see Questionnaire A.2).
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6. Head model taken with Xensor (5 minutes)
A head model was made with the software Xensor [62] to obtain accurate infor-
mation about the electrode positions in 3D.

7. Farewell (20 minutes)
The cap was removed and the participant was offered a towel and access to a
bathroom to clean the gel from their hair. Finally, they were thanked for their
participation, and the EEG cap was washed and dried.

4.2.3 Sample of Collected Data
The data files below show samples of mouse and keyboard data collected from the
Telemetry Tracker. A sample of EEG data is shown in Figure 1.1.

Mouse Events

event_type;pos_x;pos_y;time
mouse_move;1055;929;1487877919618
mouse_move;1054;933;1487877919626
mouse_move;1054;935;1487877919634
mouse_move;1053;937;1487877919642
mouse_move;1053;937;1487877919651
[...]

Each mouse event in the sample data above includes the following information:

• event_type: The type of mouse event (i.e., mouse movement or mouse click).

• pos_x: The x (horizontal) coordinate of the cursor.

• pos_y: The y (vertical) coordinate of the cursor.

• time: The time stamp in milliseconds since Jan 1, 1970 00:00:00 UTC.

Keyboard Events

event_type;key_code;key_code_readable;scan_code;alt_pressed;time
key_up;65;A;30;False;1487878336874
key_down;65;A;30;False;1487878336938
key_up;65;A;30;False;1487878337018
key_down;65;A;30;False;1487878337098
key_up;65;A;30;False;1487878337242
[...]
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Each keyboard event in the sample data includes the following information:

• event_type: The type of keyboard event (i.e., key down or up).

• key_code: The ASCII value of the key.

• key_code_readable: The character corresponding to the ASCII value of the key.

• scan_code: The keyboard scan code of the key.

• alt_pressed: A boolean value indicating whether the key alt was pressed down.

• time: The time stamp in milliseconds.

4.3 Feature Extraction
In the following subsections, we describe how we processed the data and which features
we extracted from it to use in our emotion prediction method.

4.3.1 Game Telemetry
To obtain useful input for a machine learning algorithm that predicts the emotions, we
processed the data from the Telemetry Tracker with three custom built telemetry analysis
tools: the Telemetry Analyzer, the Telemetry Miner, and the Telemetry Compressor [60].

We developed the Telemetry Analyzer to analyse the mouse tracking data shown in
Section 4.2.3. The Telemetry Analyzer provided us with the decisions the player made
during each dialogue event in the game and the time at which each decision was made.
In developing the Telemetry Analyzer, we needed to know the time between dialogue
events because collecting the mouse clicks alone would give inaccurate data; the player
might use the mouse in other game events or even double click on a dialogue event.
Unfortunately, time intervals differed between dialogues depending on the chosen re-
sponse, and we were therefore unable to know the exact time intervals between dialogue
events for each possible case. Therefore, it was necessary to watch the screen record-
ings from each player to verify the output from the Telemetry Analyzer. The following
sample shows data acquired after running the Telemetry Analyzer on the mouse tracking
data shown in Section 4.2.3. As as illustrated example, we have made the first dialogue
decision in the sample bold and we will continue to show how this sample changes in
the next steps of the analysis by making the corresponding instance bold as well. The
highlighted decision represents the player’s response to an event in which they must
choose to confront or forgive one of the story’s characters (see Figure 4.2: Top).
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Dialogue Decisions - Telemetry Analyzer Output

event_type;dialogue_decision;time
dialogue;I’m looking at a 3 foot toad.;1488718608099
dialogue;Get it fixed.;1488718647355
dialogue;Silence...;1488718670019
dialogue;Alright, why’d you hit her?;1488718784819
dialogue;[threaten him];1488718795699
dialogue;Say that word again.;1488718934531
[...]

Each dialogue event in the sample data above includes the following information:

• event_type: The type of event which was always dialogue in this case.

• key_code: The chosen dialogue response.

• time: The time stamp in milliseconds.

Once we had acquired the player’s decisions and their time stamps, we developed
the Telemetry Miner to extract every mouse tracking event for five seconds up until the
player made a dialogue decision, for every such decision. We decided to use five sec-
onds because although the player had a ten second window to chose a response in most
of the dialogue events, in two cases the window was only 5 seconds. Also, the typi-
cal duration of emotions is approximately 0.5 to 4 seconds [63]. The Telemetry Miner
provides an array of all mouse events up until the decision for each dialogue event,
within the five seconds prior to the decision. Each mouse event includes eight values:
time stamp, coordinates of the cursor, mouse event type (click or movement), and four
boolean values (overA, overB, overC, and overD) which indicate over which dialogue
response the mouse was positioned (see Figure 4.5).

Mouse Events per Dialogue - Telemetry Miner Output

[[0, 960, 540, 0, 0, 0, 0, 1488718605443],
[0, 960, 540, 0, 0, 0, 0, 1488718605451],
[0, 962, 540, 0, 0, 0, 0, 1488718605459],
[0, 963, 541, 0, 0, 0, 0, 1488718605467],
[0, 964, 542, 0, 0, 0, 0, 1488718605475],
[...],
[1, 752, 839, 1, 0, 0, 0, 1488718608099]]
[...]
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The sample with mouse events per dialogue shows the output from the Telemetry
Miner, which consists of an array of mouse events for each dialogue event. Each mouse
event includes the following information:

• click: A boolean value stating whether the event type was a mouse click.

• x: The x coordinate of the cursor.

• y: The y coordinate of the cursor.

• overA: A boolean value stating whether cursor was over area A.

• overB: A boolean value stating whether cursor was over area B.

• overC: A boolean value stating whether cursor was over area C.

• overD: A boolean value stating whether cursor was over area D.

• time: The time stamp in milliseconds.

Figure 4.5: Dialogue options in The Wolf Among Us with annotations (A, B, C, D, and
E).

We used the Telemetry Compressor to compress the output from the Telemetry Miner
into an array of features. The array consisted of twenty-four game telemetry features for
each dialogue event. For each response box and the area outside of the boxes, we stated
whether the area was visited or not, the total time spent in the area, the total mouse
velocity, and the visit frequency (i.e., how many times the player visited the area in
total). The array also included information on which box, if any, was selected (i.e., top
left, top right, bottom left, bottom right, or none, noted as A, B, C, D, or E in Figure 4.5).
We also noted the total velocity of the mouse cursor before the player made a dialogue
choice and the total visit frequency to each area. Finally, we included the total time
before the player started enacting a dialogue decision (i.e., the time before the player
started moving the mouse to select a response).
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Final Game Telemetry - Telemetry Compressor Output

[1, 464, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 8, 51, 1, 65, 56, 2, 8]
[1, 1985, 24, 2, 1, 360, 10, 1, 1, 680, 5, 1,
0, 0, 0, 0, 1, 8, 6, 3, 66, 45, 7, 8]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 83, 0, 1, 0]
[0, 0, 0, 0, 1, 416, 8, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 8, 84, 1, 66, 92, 2, 8]
[1, 472, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 8, 51, 1, 65, 59, 2, 16]
[1, 345, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 8, 5, 1, 65, 9, 2, 24]
[...]

Figure 4.6: Game Telemetry Feature Array.

We compressed each array of mouse events in the Telemetry Miner to an array of de-
sired game telemetry features with the Telemetry Compressor. Each array in the sample
data above represents twenty-four game telemetry features (see Figure 4.6). The arrays
include the following information:

• visited<A, B, C, D, and E>: A boolean value stating whether the area was visited.

• totalTime<A, B, C, D, and E>: The total time spent in the area in milliseconds.

• totalVelocity<A, B, C, D, and E>: The total mouse velocity in the area.

• totalVisits<A, B, C, D, and E>: The total visits to the area.

• click: The decision in a dialogue (i.e., A, B, C, D, or E for silence).
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• totalVelocity: The total mouse velocity before the dialogue decision.

• totalVisits: The total visits to each area.

• timeToDecision: Total time before the mouse was moved to make a decision, in
milliseconds.

4.3.2 EEG
We exported each player’s EEG data from eego [64] and imported it into the EEG analyt-
ics software ASA [65]. We also imported a standard head model and electrode positions
into ASA to prepare for analysing the data. In this step, it would have been ideal to have
used the 3D head models acquired from each participant instead of the standard one, but
unfortunately, a misunderstanding resulted in the acquired models being unusable.

Figure 4.7: EEG recording displaying a contaminated electrode M2.

We started processing the EEG data by visually inspecting it for any obviously con-
taminated electrodes. In those cases, we removed the electrode from the data set before
conducting further analysis (see Figure 4.7). We filtered the EEG data with a Band-Pass
filter from 0.3 Hz to 45 Hz, which resulted in the removal of undesired frequencies.
We also filtered the data with a Band-Stop Filter from 49 Hz to 51 Hz. This filter, also
known as a notch filter, is used to remove noise caused by electrical equipment. Next,
we detected artefacts by testing for amplitudes with upper and lower limits of -100 mi-
crovolts (µV) and +100 µV and rejected them from our data set. An example of eye
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blink artefacts identified in ASA can be seen in Figure 4.8.

Figure 4.8: EEG recording with eye blink artefacts (marked with a pink shade).

For each dialogue event in the game, we performed a Fast Fourier Transform (FFT)
analysis. We used the 28 decision time stamps acquired from the Telemetry Analyzer
and defined the corresponding time intervals containing five seconds up until a player
chose a response in a dialogue event. The block length of the FFT was set to 1.024 s
to keep the variables during processing to a minimum, resulting in quick measurement
repetitions with a coarse frequency resolution. We rejected artefacts within the FFT
and normalised the power spectra. Finally, we exported the FFT analysis for each event
for the two bands of interest, alpha (7.5-12 Hz) and beta (12.5-30 Hz), and extracted
emotion features (see sample data in Section 4.3.3). We based our emotion feature
extraction approach on methods presented by Ramirez et al. [27] which were later ex-
tended by Blaiech et al. [12]. The EEG cap they used was the Emotiv EPOC cap [45];
it consists of 14 electrodes and two reference electrodes, and is based on the 10/20 elec-
trode placement system. As our EEG cap is based on the 10/10 system and contains 32
electrodes instead of 14 [66], we mapped the electrodes Blaiech et al. used for feature
extraction to our electrode layout. The electrodes of interest on the Emotiv cap were
six electrodes in the frontal lobe: AF3, AF4, F3, F4, FC6, F8, and one location in the
parietal lobe: P8 (see Figure 4.9).
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Figure 4.9: Electrode positions on the Emotiv EPOC cap. The grey text shows the
location of the electrodes Fp1 and Fp2, which correspond to AF3 and AF4 in our study.

The 10/10 system is backwards compatible with the 10/20 system except for minor
differences [67]. We mapped the electrodes AF3 and AF4 to the electrodes Fp1 and
Fp2 as those electrodes were the closest to the positions of AF3 and AF4. To calculate
arousal, valence, and dominance, we used the equations proposed by Ramirez et al. and
Blaiech et al. [12], [27]. To calculate arousal, one calculates the ratio between beta (β)
and alpha (α) waves; it is identified by a high beta power as well as coherence in the
parietal lobe, and a low alpha activity.

Arousal = α(Fp1 + Fp2 + F3 + F4)/β(Fp1 + Fp2 + F3 + F4) (4.1)

Valence is identified by comparing activation levels in the left prefrontal and the right
prefrontal lobes. Inactivation in the left one indicates a negative emotion and inactiva-
tion in the right one indicates a positive emotion [43]. The inactivation is associated with
a high alpha activity, because that is an indication of low brain activity and a decrease
in beta waves.

V alence = αF4/βF4− αF3/βF3 (4.2)

Dominance is identified by an increase in the ratio between beta and alpha activity in
the frontal lobe as well as an increase in beta activity in the parietal lobe.

Dominance = (βFC6/αFC6) + (βF8/αF8) + (βP8/αP8) (4.3)
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To obtain the minimum value of arousal for each player, we performed the same calcula-
tion for arousal on the EEG baseline recordings of both eyes closed and eyes open [61].
Then, we normalised the values of arousal acquired from the baseline and the game-
play recording to values between 0 to 1 for each player. The baseline does not provide
the minimum values of valence and dominance. Therefore, to normalise valence and
dominance, we used the minimum values for each during the gameplay instead of the
baseline. This normalisation allowed us to use values from multiple players, as the
numeric values obtained from the FFT analysis differed greatly between each player.
Sample calculations of arousal, valence, and dominance are presented in Section 4.3.3.

4.3.3 Sample of EEG Data
The following data sample shows results from an FFT analysis conducted on filtered
EEG data for a five-second dialogue event. The fields in ValuesTransposed show FFT
analysis for each electrode in the alpha and the beta band (marked as 0.000e+000 and
9.771e-001). The highlighted values are the ones we use to calculate the three emotion
features (arousal, valence, and dominance).

EEG Data - FFT Power Spectrum Normalised

# Time Frequency Data Export
SpectrumType FFTPowerSpectrumNormalized
StartTime= --:--:--.---
EndTime= --:--:--.---
SamplingFrequency= 5.120000e+002
EpochLength= 1.024000e+000
NumberOfEpochs= 1
BandsName= 2 Bands (Alpha-Beta)
BandsDescription=
two bands 7.5 to 12.5 Hz (Alpha) and 12.5 to 30 Hz (Beta)
NumberOfBands= 2
BandsData
7.50 12.50
12.50 30.00

BandsNames
7.5 - 12.5 Hz
12.5 - 30.0 Hz
NumberOfChannels= 32
UnitMeas
ValuesTransposed
0.000e+000: 1.1007e-001 1.1404e-001 1.2539e-001 1.3815e-001

5.3200e-002 5.2164e-002 6.5276e-002 1.3197e-001
7.3727e-002 2.2893e-002 3.0865e-002 9.7599e-002
1.3295e-001 9.7604e-002 3.0026e-002 7.8630e-003
5.1545e-002 1.1612e-001 1.4499e-001 4.3226e-002
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4.5867e-003 5.0144e-003 7.8908e-002 6.4002e-002
5.5455e-003 7.7527e-003 3.9665e-002 1.9489e-001
4.9524e-002 8.2759e-002 4.6000e-002 5.3284e-002

9.771e-001: 7.4231e-002 8.1237e-002 9.2017e-002 6.3959e-002
3.1600e-002 3.8681e-002 6.6716e-002 9.9810e-002
3.1671e-002 1.7792e-002 2.2243e-002 8.7542e-002
6.5330e-002 2.3061e-001 1.4624e-002 6.8285e-003
2.0024e-002 6.1163e-002 7.3708e-002 3.9870e-002
3.0001e-003 2.9987e-003 2.7836e-002 6.7414e-002
3.3141e-002 3.8817e-003 1.5593e-002 4.2857e-002
2.2614e-002 6.2334e-002 4.3809e-002 5.6550e-002

NumberOfDataSets= 1
DataSets
C:\path\to\data\eeg-data.cnt
Labels
Fp1 Fpz Fp2 F7 F3 Fz F4 F8 FC5 FC1 FC2 FC6
M1 T7 C3 Cz C4 T8 M2 CP5 CP1 CP2 CP6 P7
P3 Pz P4 P8 POz O1 O2 Oz
NumberEpochsPerChannel
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
NumberOffsetEpochsPerChannel
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NumberDataSetsPerChannel
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

From the data sample above, we can calculate arousal, valence and dominance with
Equations 4.1, 4.2, and 4.3:

Arousal = 0.110070+0.125390+0.053200+0.065276
0.074231+0.092017+0.031600+0.066716

= 1.337809

V alence = 0.065276
0.066716

− 0.053200
0.031600

= −0.705128

Dominance = 0.087542
0.097599

+ 0.099810
0.131970

+ 0.042857
0.194890

= 1.873168

Values after applying normalisation with minimum and maximum values
{0.281725; 2.874338} for arousal, {1.449725; 1.058190} for valence, and {1.317771; 9.962032}
for dominance:
Arousal = 0.407343
V alence = 0.296899
Dominance = 0.064250

These values thus represent the estimates of the player’s emotion features during the
dialogue event that we have been using as our example.
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4.4 Emotion Prediction
We trained and tested three machine learning algorithms with the game telemetry data
and the values of the emotion features (arousal, valence, and dominance). We aimed for
the algorithm to predict the emotion features from the game telemetry. Due to artefact
rejection in the EEG analysis, we had to remove the corresponding dialogue events from
the player’s data. As a result, we had 26.5 dialogue events per player on average instead
of 28. We preprocessed the game telemetry data to account for the differences in the
units, scaling our data between values of zero and one for each player separately. We
categorised the values of arousal, valence, and dominance into three categories: 0, 0.5,
and 1, to represent low, medium, and high values. We classified every feature value less
than 0.33 as a 0, values equal to or greater than 0.33 and less than 0.66 as a 0.5, and
every value equal to or greater than 0.66 as a 1. We’ll refer to these categories as Low,
Medium and High in Chapter 5.

Since our data set was fairly small, we decided to classify the data by using Deci-
sion Tree, Nearest Neighbour, and Naive Bayes classifiers. We trained and tested the
classifiers in two ways. First, we randomly removed two players’ data sets which each
had twenty-eight dialogue events in total from the training data and trained on data from
the remaining eighteen players, and tested the classifier on the two data sets we left out.
We also trained and tested all of the twenty data sets via a 10-fold cross validation. We
present our reasons for doing so in Section 5.2. To classify the data, we set up two dif-
ferent problems. We trained classifiers for each emotion feature separately, and we also
trained a multi-target classifier for predicting the values of arousal, valence, and domi-
nance in conjunction. As no other research has been conducted on a problem like ours,
we strove to achieve better results than a uniform random classifier would produce. We
present the results of our tests in Chapter 5.

Summary
In this chapter, we explained and exemplified our methodology for predicting players’
emotions from their game telemetry. We started by discussing why we chose to use
the video game The Wolf Among Us in our user study. We gave a detailed description
of our data acquisition protocol which consisted of obtaining data on demographics,
EEG recording, mouse tracking, screen recording, a self-assessed emotion question-
naire, and a 3D head model. We presented our feature extraction methods for both the
game telemetry and the emotion features from the EEG recording. Finally, we described
how we used machine learning algorithms to predict emotion features from the game
telemetry.
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Chapter 5

Evaluation

We evaluated our emotion prediction method by comparing its results from the machine
learning tasks to the results of a uniform random predictor. Due to artefact rejection
in the EEG analysis, EEG data from some dialogue events was unavailable for some
players, and we were forced to omit those events from our data set. This resulted in
26.5 dialogues per player on average instead of 28, and left us with 530 data samples in
total.

5.1 Demographics

Twenty participants took part in our study. 13 participants were male and 7 were female,
with a median age of 25-29 years (see Figure 5.1). Most of the participants were right
handed, but 15% were left handed. Language processing for left handed people tends
to take place in different brain hemispheres than for right handed people. Therefore,
many EEG studies exclude left handed people from their studies [68]. Studies have also
suggested that emotions may be measured differently for left handed people [69]. We
tested our data for such effects by excluding the data from the three left handed people
in our study and found no improvement in correctly classified instances. Therefore, we
concluded that the data did not affect the prediction negatively and kept the data from
the left handed people in our data set. Most of the participants (65%) said they spent
one hour or more per day playing video games and the same percentage had not played
a video game from Telltale Games before. Only one participant claimed to be an expert
at games from Telltale Games. As stated before, none of the participants had played
The Wolf Among Us before, since this was a prerequisite for taking part in the study.
Another requirement was to be 18 years of age or older, since the video game’s ESRB
content rates the game as "Mature," stating that the content is suitable for ages 17 and
up [70].
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Figure 5.1: Statistics from the demographics questionnaire.

5.2 Emotion Prediction Results
For each emotion feature (arousal, valence, and dominance), we trained and tested
three different machine learning algorithms: a pruned C4 Decision Tree [71], a Naive
Bayes classifier, and a Nearest Neighbour classifier in the machine learning workbench
Weka [72]. We also conducted a multi-target classification for predicting arousal, va-
lence, and dominance at the same time with a Bagging MT classifier [73] in the machine
learning toolkit Meka [74]. For all of the classification instances, we fed twenty-four
game telemetry values as input to the algorithms and the emotion features as output,
for all of the dialogue events that were recorded. We trained and tested the data in two
different ways. Firstly, we partitioned the data samples into a training set from eighteen
players to train the classifiers and a test set from two players for evaluation. To ensure
that we would evaluate the classifiers’ accuracy using every dialogue event in the game,
we made sure that the data from players in the test set had twenty-eight dialogue events
each. The other method we used was a repeated 10-fold cross-validation of the data.
This method also partitions the data into a training set and a test set but does it ran-
domly into ten equal samples. One sample is retained as test data, and the remaining
samples are used as training data. This training and testing method is then repeated ten
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times such that each of the 10 partitions are used once as a test set. The results from the
10 classifiers are then averaged to produce a single estimation.

When training the Decision Tree, we pruned the tree with different values of con-
fidence factors and a minimum number of instances per leaf [71]. The value of the
confidence factor can be between 0.0 to 0.5. Lower values incur more pruning to the
tree. The value of the minimum number of instances per leaf is used to determine how
often the branches of the tree can be split into different leafs. The default settings for
these values in Weka are 0.25 for the confidence factor and two is the minimum number
of instances per leaf. We report the results of using these values to train the Decisions
Tree in Tables 5.1 to 5.6. We also report the best results of changing these values to
incur heavier or lighter pruning to the tree. The different values we used are reported in
the tables as C for confidence factor and M for minimum number of instances per leaf.

A common rule of thumb for determining the number of neighbours to use in a Near-
est Neighbour classifier is to use the square root of the total number of samples in the
training set [75]. However, this rule does not always provide the highest accuracy and
therefore we tried different numbers of neighbours to see which one gave the highest
accuracy. In our training and test split of the data, we had 474 data samples in the train-
ing data. According to the rule of thumb, we should use 21 neighbours. We used this
value as a reference to determine the optimal amount of neighbours which are listed in
the results in Tables 5.1 to 5.6.

The data distribution for values of arousal, valence, and dominance is shown in Fig-
ures 5.2, 5.4 and 5.3. Most instances for arousal and dominance were Low. Due to
this bias, a simple predictor could predict arousal as Low with 58.9% accuracy and
dominance as Low with 65.3% accuracy. The values of valence were distributed more
evenly between the classes with the highest percentage as Medium (40.0%). Therefore,
a simple predictor would achieve similar results as a uniform random predictor when
predicting valence.
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Figure 5.2: Distribution of arousal.
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Figure 5.3: Distribution of dominance.
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Figure 5.4: Distribution of valence.

The results from each classifier are presented in Tables 5.1 to 5.6. We determined
the accuracy of each classifier by calculating the sum of correctly classified instances
divided by the total number of classifications. We also calculated the weighted average
precision and recall (or sensitivity) for each class (Low, Medium, and High). We ob-
tained precision by dividing the number of true positives by the number of true positives
and false positives [76]. Recall is the number of true positives divided by the number of
true positives and the number of false negatives [76]. We did these calculations for each
classifier except the multi-target classifier because Meka [74], the software we used to
run the classification, did not report enough information for us to calculate the precision
or recall.We compared our results with the results of a uniform random predictor, which,
in our case of predicting three classes for each feature, would achieve 33.3% accuracy.
We also compared them with the results that the simple predictors that we discussed
previously would achieve.

The highest accuracy for predicting arousal with our custom training and testing split
was with the Nearest Neighbour classifier of 21 neighbours (see Table 5.1). It correctly
classified 75.0% of the instances of arousal and also reported high precision overall but
a rather low recall for the class Medium. None of the classifiers achieved satisfactory
results in classifying values as High.
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Precision Recall
Classifier Low Medium High Low Medium High Accuracy
Decision Tree
C=0.25, M=2 75.9% 16.7% 0.0% 53.7% 65.5% 0.0% 44.6%

Decision Tree
C=0.10, M=2 74.1% 50.0% 0.0% 97.6% 7.7% 0.0% 73.2%

Naive Bayes 81.8% 24.0% 0.0% 43.9% 46.2% 0.0% 42.9%
Nearest Neighbour
k=21 74.5% 100.0% 0.0% 100.0% 7.7% 0.0% 75.0%

Bagging MT N/A N/A N/A N/A N/A N/A 57.1%

Table 5.1: Results per class (Low, Medium, and High): Arousal - Training / Testing
Split.

The highest accuracy for predicting arousal with the 10-fold cross-validation was
with the Nearest Neighbour classifier of 29 neighbours (see Table 5.2). It correctly clas-
sified 59.1% of the instances of arousal. However, the Decision Tree with a confidence
factor of 0.10 and a minimum number of two instances per leaf achieved a better per-
formance overall. It achieved a lower accuracy of 58.1% but reported higher precision
and recall overall.

Precision Recall
Classifier Low Medium High Low Medium High Accuracy
Decision Tre
C=0.25, M=2 59.6% 30.9% 17.4% 68.9% 25.3% 11.8% 49.2%

Decision Tree
C=0.10, M=2 59.5% 35.3% 22.2% 96.2% 4.0% 2.9% 58.1%

Naive Bayes 58.8% 25.9% 9.9% 61.9% 14.0% 17.6% 42.6%
Nearest Neighbour
k=21 59.3% 25.0% 0.0% 98.4% 0.2% 0.0% 58.5%

Nearest Neighbour
k=29 59.0% 100.0% 0.0% 100.0% 0.1% 0.0% 59.1%

Bagging MT N/A N/A N/A N/A N/A N/A 48.3%

Table 5.2: Results per class (Low, Medium, and High): Arousal - 10-fold Cross-
validation.

As mentioned before, a simple predictor could predict arousal as Low with 58.9%
accuracy. Our results with our custom training and testing split with the Nearest Neigh-
bour classifier of 21 neighbours report a higher accuracy (75.0%) than both the results
of a simple predictor and a uniform random predictor.
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The classifiers did not perform as well when predicting valence (see Tables 5.3 and
5.4). The highest accuracy with our custom training and testing split was achieved with
the Bagging multi-target classifier (58.9%) (see Table 5.3). Of the separate classification
models, the Decision Tree with a confidence factor of 0.10 and a minimum number of
two instances per leaf achieved the highest accuracy (53.6%) and overall precision and
recall.

Precision Recall
Classifier Low Medium High Low Medium High Accuracy
Decision Tree
C=0.25, M=2 25.0% 57.1% 53.3% 12.5% 19.0% 88.9% 51.8%

Decision Tree
C=0.10, M=2 50.0% 55.6% 53.3% 12.5% 23.8% 88.9% 53.6%

Naive Bayes 16.7% 37.5% 33.3% 25.0% 57.1% 14.8% 32.1%
Nearest Neighbour
k=21 8.3% 43.5% 42.9% 12.5% 47.6% 33.3% 35.7%

Bagging MT N/A N/A N/A N/A N/A N/A 58.9%

Table 5.3: Results per class (Low, Medium, and High): Valence - Training / Testing
Split.

The highest accuracy with the 10-fold cross-validation for predicting valence was
achieved with the Decision Tree with a confidence factor of 0.4 and a minimum number
of two instances per leaf achieved (see Table 5.4). It achieved accuracy of 38.3% and a
high percentage of precision and recall overall.

Precision Recall
Classifier Low Medium High Low Medium High Accuracy
Decision Tree
C=0.25, M=2 29.6% 42.0% 38.8% 34.4% 39.6% 36.9% 37.4%

Decision Tree
C=0.40, M=2 30.5% 43.3% 38.5% 32.8% 43.9% 35.8% 38.3%

Naive Bayes 27.7% 45.5% 35.3% 76.3% 21.7% 12.8% 32.1%
Nearest Neighbour
k=21 21.8% 39.7% 39.0% 16.8% 48.1% 35.8% 36.0%

Bagging MT N/A N/A N/A N/A N/A N/A 34.0%

Table 5.4: Results per class (Low, Medium, and High): Valence - 10-fold Cross-
validation.
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Valence was more evenly distributed than arousal and therefore a simple predictor
would achieve similar results as a uniform random predictor, or 40.0% accuracy. Our
results with the custom training and testing split with the multi-target classifier (58.9%)
show that we achieve higher accuracy than the uniform random predictor and the simple
predictor.

The highest accuracy for predicting dominance with our custom training and testing
split was achieved with the Bagging multi-target classifier (51.8%) (see Table 5.5). Of
the separate classification models, the Decision Tree with a confidence factor of 0.20 and
a minimum number of two instances per leaf achieved the highest accuracy (50.0%) and
overall precision and recall.

Precision Recall
Classifier Low Medium High Low Medium High Accuracy
Decision Tree
C=0.25, M=2 49.1% 0.0% 0.0% 96.4% 0.0% 0.0% 48.2%

Decision Tree
C=0.20, M=2 50.0% 50.0% 0.0% 96.4% 4.8% 0.0% 50.0%

Naive Bayes 50.0% 0.0% 0.0% 89.3% 0.0% 0.0% 44.6%
Nearest Neighbour
k=21 50.0% 0.0% 0.0% 100.0% 0.0% 0.0% 50.0%

Bagging MT N/A N/A N/A N/A N/A N/A 51.8%

Table 5.5: Results per class (Low, Medium, and High): Dominance - Training / Testing
Split.

With the 10-fold cross-validation, the Nearest Neighbour classifier with 28 neigh-
bours achieved the highest accuracy (65.5%) for predicting dominance (see Table 5.6).
It also achieved the overall highest precision but a low recall for predicting values as
Medium.
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Precision Recall
Classifier Low Medium High Low Medium High Accuracy
Decision Tree
C=0.25, M=2 65.2% 25.8% 0.4% 76.9% 18.2% 2.1% 55.1%

Decision Tree
C=0.20, M=2 65.4% 18.9% 7.1% 87.6% 7.3% 2.1% 59.2%

Naive Bayes 65.7% 30.1% 9.5% 18.8% 22.6% 66.0% 24.0%
Nearest Neighbour
k=21 65.1% 16.7% 0.0% 98.6% 1.0% 0.0% 64.5%

Nearest Neighbour
k=28 65.4% 100.0% 0.0% 100.0% 1.0% 0.0% 65.5%

Bagging MT N/A N/A N/A N/A N/A N/A 58.4%

Table 5.6: Results per class (Low, Medium, and High): Dominance - 10-fold Cross-
validation.

The two samples we provided to the test set may not have reflected a typical domi-
nance response, which could explain why 10-fold cross-validation gave us better results
when predicting dominance (see Table 5.6). Our results with the Nearest Neighbour
classifier with 28 neighbours achieved higher accuracy (65.5%) than the accuracy of
a uniform random predictor. However, a simple predictor could predict dominance as
Low with 65.3% accuracy. Our results are only slightly better than the results of this
simple predictor.

Summary
In this chapter, we presented the work we conducted to evaluate our emotion predic-
tion method. We discussed results from the demographics questionnaire and why we
included data from left handed people in the study. We presented the results from sev-
eral different classifiers on which we trained and tested our data, which showed that we
were able to predict arousal, valence, and dominance with highest accuracies of 75.0%,
58.9%, and 65.5% respectively.
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Chapter 6

Discussion

In this chapter, we discuss our proposed approach and its performance in four differ-
ent sections. Firstly, we discuss the results from our emotion prediction method (Sec-
tion 6.1). We then address the difficulties we faced in both our data acquisition phase
(Section 6.2) and the data analysis phase (Section 6.3). We present the sources of inac-
curacies in our data (Section 6.4) and finally, we present the limitations of our proposed
approach and suggest ways to improve it in future work (Section 6.5).

6.1 Evaluation Results
The aim of our work was to formulate a method that could predict players’ emotions
from game telemetry with a higher accuracy than the results of a uniform random pre-
dictor. As our results state in Section 5.2, our best accuracies for predicting the emotion
features were 75.0% for arousal, 58.9% for valence, and 65.5% for dominance. There-
fore, we have achieved our goal of predicting emotional features with better results than
a uniform random predictor and also the results of a simple predictor. By looking at
the data distribution in Figures 5.2, 5.4, and 5.3, we can see a bias toward Low arousal
and Low dominance. A simple predictor could classify arousal or dominance as Low
with 58.9% accuracy for arousal and 65.3% for dominance. Taking this into considera-
tion, our accuracy for arousal is still promising, but for predicting dominance, we only
achieve slightly higher accuracy than the results of a simple predictor. The result for pre-
dicting arousal may suggest that the game telemetry we used offers a good indication
of arousal levels (e.g., the player might move the mouse faster when arousal levels are
high). However, further work is needed since the cross-validation accuracy for arousal
was not as high. Our classifiers performed poorly when predicting dominance and our
method of splitting the data with 10-fold cross-validation gave better results than our
training and testing partitioning. The reasons for this may be that the two subjects we
used as a testing set may have presented an atypical expression of dominance, leading
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to poorer classification results. Also, we might have achieved better results by using
more data since the data we collected was biased towards Low dominance; data from
twenty players may not be sufficiently representative of a wide range of players. Our
classifiers had the lowest accuracy for predicting valence, although the result was satis-
factory since it was well above 33.3% and our data showed little distribution bias.

We did not use the self-assessed emotion questionnaire in our prediction method
or evaluation, due to a lack of foresight in the way it was set up. We only asked for
emotions during certain scenes in the game, but each scene included several differ-
ent dialogue events. Meanwhile, in our emotion prediction method, we predicted the
emotions for each dialogue event separately. Since the result from each scene might
have described a range of emotions that the player experienced across several dialogue
events, we concluded that the self-assessed emotions would not give us reliable data for
validating our methods. Furthermore, testing the calculations of arousal, valence, and
dominance was beyond the scope of this study.

6.2 Challenges during Data Acquisition
To conduct the EEG recording in the data acquisition phase, we needed to be trained by
a Technical Operator in The Icelandic Center for Neurophysiology at Reykjavik Univer-
sity. This technology is far from being "plug and play" and requires professional skills
to record a high-quality EEG signal. For example, the EEG cap we used in the study
was a wet electrode cap, meaning it required a certain amount of gel to be inserted in
each electrode to reach the desired impedance for conductivity. This procedure can be
very time-consuming, as all electrodes need to be filled correctly (32 in our case). Due
to a misunderstanding, we recorded the EEG data with an incorrect electrode layout. As
a result, we were unable to verify in eego the impedance of the electrodes we had filled
with gel as the electrodes in the software showed a different placement. This slowed
our process considerably, as sometimes it took extra time to find the electrodes in need
of more gel. This issue could have been detected and resolved in the pilot study, but due
to our inexperience, we only discovered it towards the end of the study. We ultimately
sought help from eego’s software support team to re-label our recorded EEG data to the
correct electrode layout.

The EEG recording device limited us to 30 minutes of gameplay, as it was unable to
record and store more data for each session. We do not believe this affected our results,
since the player experienced a broad range of emotional content during the 30 minutes
of our study.

In one of the play sessions, we did not press the recording button properly in eego.
As a result, we did not acquire any EEG recording from the gameplay and had to replace
the player and conduct a new recording. As presented in our Data Acquisition Protocol
in Section 4.2.2, there were many things to consider in the study, and this incident mo-



6.3. CHALLENGES DURING DATA ANALYSIS 51

tivated us to create a checklist such that mistakes like this would not happen again.
During one of the play sessions, we had to enter the laboratory because an inexpe-

rienced player had a hard time finishing a task in the game that required them to press
the key Q repeatedly. We explained the controls better to the player, and they continued
the game successfully. After this incident, we improved our explanation of the game
controls and did not have an issue with this again.

Most players reported to us after the study that the EEG cap did not cause them any
discomfort and that they forgot that they were wearing it after a few minutes of game-
play, which suggests that the cap did not seem to have affected the players’ immersion
or experience negatively, once the game was underway.

6.3 Challenges during Data Analysis
The analysis of the game telemetry was cumbersome. To analyse the data, we needed
to develop four separate tools. The process would have been easier if we had been able
to create a mod (i.e., an extension to a video game that alters some aspects of it) for The
Wolf Among Us. By creating a mod, we could have developed an extension to log the
player’s decisions and time stamps during game play. Such a mod would have rendered
our Telemetry Analyzer unnecessary, and we wouldn’t have to had to visually verify
the correctness of the time stamps from the Telemetry Analyzer by viewing the screen
recordings from each play session. Telltale Games, however, forbids the development
of mods for their video games. We were thus unable to implement a mod.

During the analysis of the EEG data, the user interface of ASA caused a significant
slow down of the process. We were able to automate most of our processes with scripts,
but it was not possible to automate exporting the FFT analysis that we conducted for the
530 dialogue events. Doing this step manually took a significant amount of time.

A common analysis method which we did not use in our EEG analysis is called
Independent Component Analysis (ICA) and is used for eliminating artefacts [77]. The
method decomposes the EEG recording into different components such that they can be
inspected for artefacts. This requires a visual analysis by a trained specialist, which we
did not have access to.

6.4 Sources of Inaccuracy
Due to several challenges in the study, the results might have been influenced by some
inaccuracies. As we explained previously, the 3D head models taken from each player
were unusable in the study. If we had been able to use them, they would have given
us the exact positions of electrodes for each player, which would have likely given us
more accurate results from the EEG analysis. To achieve the most accurate results, the
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impedance measured in each electrode should have been equal since differences in con-
ductance makes some signals stronger.

The equations we used to estimate the values of the emotion features arousal, va-
lence, and dominance were originally performed on an Emotiv EPOC cap that is based
on a different electrode placement system from the WaveGuard cap we used. We had
to map two of the electrodes that were used in the equations to electrodes that had a
slightly different placement on our cap. As the electrode placement was not completely
compatible, this might have introduced some inaccuracy to our results.

One of the game telemetry features that we acquired with the Telemetry Compressor
was the total visits to each area during a dialogue event. This feature also included vis-
its to the area outside of the response buttons (E). It might have given us more concise
information to exclude the total visits to the outside area (E), since this area does not
necessarily tell us if the player was considering multiple responses or not.

6.5 Limitations and Future Work
The main limitation of our method is that acquiring and processing EEG data is both
time-consuming and labour-intensive. As such, it was only feasible for us to gather data
from twenty players. This issue could be addressed in future work by using a larger
team to obtain more data. Preferably, the study would be conducted with a dry elec-
trode EEG cap to save time on gel insertions and impedance measures. Our data was
biased toward Low for arousal and dominance. Future work might address this issue
by not only including a large data set but also by normalising the distribution of the
data before splitting it into categories. As stated in Section 5.2, we did not exclude left
handed players from the data sets. Left handed players were only 15% of our sample,
and our tests showed that they did not affect the results in a significant way. One of the
left handed people was also the oldest of our players, and when we only excluded him,
we achieved better results. Future work might limit the players’ ages to a particular
range to achieve better results.

To account for possible inaccuracies in this study, conducting it again with correct
head models might improve our results for predicting the emotion features (arousal, va-
lence, and dominance). We decided to not use the results from the self-assessed emotion
questionnaire in our emotion prediction method. We might have been able to use them
if we had shaped the questionnaire to have it ask about the player’s emotional state for
every dialogue event instead of certain scenes in the game. By including the results in
our data set, we might have achieved higher prediction accuracies.

In this study, we only measured physiological response acquired with EEG. To
achieve a better understanding of the player’s emotional state, we might add more
physiological sensors such as Heart rate variability (HRV), Galvanic Skin Response
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(GSR) or EMG. McCraty et al. showed that positive emotions motivate alterations in
HRV [24]. HRV could therefore be used to strengthen our calculations of valence. GSR
measures arousal more directly, via skin conductance changes due to the amount of
sweating [22]. Adding EMG measurements might have also improved our results since
other studies have reported a high accuracy in classifying emotional features measured
with EMG [78], [79].

The game telemetry features used in this study may be revised and extended. For
example, it might strengthen the emotion prediction to classify each game event as be-
ing favoured by a particular player type or a personality (e.g., violent).

Our results show that it is possible to predict a player’s emotional features from
their game telemetry more accurately than a uniform random predictor. Incorporating
our method in an actual player model might give us a better idea of the feasibility of
our method in the context of player modelling. Once improved, our method could also
be utilised in user studies before releasing video games, to test the emotional experi-
ences that they evoke. In that way, the video game creators could understand better
which aspects of their video game create which emotions within their players and use
this information to improve players’ experience.
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Chapter 7

Conclusion

In this dissertation, we explored the interactive narrative aspect of video games and how
interactive systems use player modelling in various ways to adjust a storyline to suit a
player’s type, preferences, or personality. Player modelling techniques often take the
player’s in-game actions as an input, but the player’s emotions may also provide useful
information. The player’s in-game actions are highly influenced by their feelings, and
how they feel is the player’s interpretation of their emotions (i.e., their physiological
response). People are often not very good at describing their emotions and, therefore, to
evaluate a player’s emotions, we proposed to predict their physiological response from
their in-game actions.

Our proposed methodology predicts a player’s emotions from their game telemetry
(i.e., their in-game actions during a narrative decision). Our method consists of ac-
quiring a player’s game telemetry by tracking their mouse events and estimating their
emotions by measuring their brain’s electrical activity with EEG. Next, several machine
learning algorithms can be trained and tested with the game telemetry as input and emo-
tion features (arousal, valence, and dominance) as output.

To test our methodology, we conducted a study with twenty participants where they
played the video game The Wolf Among Us by Telltale Games. During gameplay, we
tracked their mouse and keyboard events and recorded their brain’s electrical activity
with an EEG cap.

The main limitation of our method was the time-consuming process of acquiring
and analysing EEG data. It remains challenging to gather a large enough data set to
represent a wide range of typical game telemetry and the corresponding emotions. Fu-
ture work might address this issue by using a larger research team and by using a dry
electrode EEG cap to save time on gel insertions.

We trained and tested three algorithms to predict each emotion feature separately
from game telemetry, but also together with a multi-target classifier. We achieved the
highest performance by predicting each feature separately with 75.0% accuracy of pre-
dicting arousal (custom training/testing split) and 65.5% for dominance (10-fold cross-
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validation). For predicting valence, we achieved the highest result of 58.9% (custom
training/testing split) with a multi-target classifier. Our results showed that for at least
one way of splitting our training and testing data, our method could predict players’
emotion features from their game telemetry with a higher accuracy than both the results
of a uniform random predictor and a simple predictor.
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Appendix A

Questionnaires

A.1 Demographics



14/03/2017 Demographics Questionnaire

https://docs.google.com/forms/d/1o2GoBc-8zLgQyUEf3uKD9P6UZJaki4ePS-YQex6aAYM/edit 1/2

Demographics Questionnaire
* Required

1. Please indicate your gender *
Mark only one oval.

 Female

 Male

 Other

2. Select your age group *
Mark only one oval.

 18  19

 20  24

 25  29

 30  34

 35  40

 41  45

 46+

 Other: 

3. What is your handedness? *
Mark only one oval.

 Right handed

 Left handed

 Ambidextrous

4. For how many years have you played video games? *
Mark only one oval.

 0

 0  5

 5  10

 10  15

 15 20

 20  25

 26+

 Other: 
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https://docs.google.com/forms/d/1o2GoBc-8zLgQyUEf3uKD9P6UZJaki4ePS-YQex6aAYM/edit 2/2

Powered by

5. On average, how many hours per day do you spend playing video games? *
Mark only one oval.

 0

 1

 2

 3

 4

 5

 6+

 Other: 

6. I enjoy playing adventure games *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

7. I enjoy playing action games *
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

8. Have you played any games from Telltale Games? *
Mark only one oval.

 Yes

 No

9. If yes, please rate your expertise at playing Telltale Games
Mark only one oval.

1 2 3 4 5

Beginner Expert
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A.2 Self-assessed emotions
The twenty questions below the first scene in the questionnaire were also applied to the
other scenes.



2017-6-19 Wolf Among Us Questionnaire

https://docs.google.com/forms/d/130-NTPzCQ8-ORgm2UsVBxT7UeriyCkMJhj1BlYbe9FM/edit 1/6

Wolf Among Us Questionnaire
For each of the following scenes, please indicate the extent to which you felt each of the listed 
emotions.

* Required

The interaction with Toad

1. Interested *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

2. Distressed *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

3. Excited *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely
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https://docs.google.com/forms/d/130-NTPzCQ8-ORgm2UsVBxT7UeriyCkMJhj1BlYbe9FM/edit 2/6

4. Upset *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

5. Strong *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

6. Guilty *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

7. Scared *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

8. Hostile *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

9. Enthusiastic *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

10. Proud *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely
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11. Irritable *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

12. Alert *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

13. Ashamed *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

14. Inspired *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

15. Nervous *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

16. Determined *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

17. Attentive *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely
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18. Jittery *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

19. Active *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

20. Afraid *
Mark only one oval.

1 2 3 4 5

Very Slightly or Not at All Extremely

The fight with Woodsman

...

The interaction with Faith
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...

Arriving home

...

The interaction with Colin
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Powered by

...

Finding Faith’s head

...
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