
Beefing Up the Buffer Cache

Júlía Oddsdóttir
Sandra Ósk Sigríðardóttir Bender

Final Report of 12 ECTS credits submitted to the School of Computer
Science

at Reykjavík University in partial fulfillment
of the requirements for the degree of

Bachelor of Science (B.Sc.) in Software Engineering

May 2018

Supervisors:

Ýmir Vigfússon, Assistant Professor

Gylfi Þór Guðmundsson, Adjunct Professor

Examiner:

Marcel Kyas, Assistant Professor

Beefing Up the Buffer Cache

Júlía Oddsdóttir
Sandra Ósk Sigríðardóttir Bender

May 2018

Abstract

Modern life demands fast computations. Even the slightest latencies can have severe
consequences and cost companies a fortune in lost revenue every hour. A vital com-
ponent for reducing latency in computer systems is the cache. A cache’s main purpose
is to store data that is frequently re-accessed, and thereby reducing the time it takes to
fetch popular items, instead of constantly fetching from slower devices.
In this report, we examine the page cache in the Linux kernel. We investigate how
the page cache can be monitored and profiled, as well as discuss how it could be im-
proved upon to reduce latencies in computations. The page cache is complex so we
will seek to explain some of its relevant features. We introduce a method of tracing the
page cache to obtain information about its current implementation, and seek to explain
its behaviour. We will also feature ideas on how the page cache’s replacement policy
could possibly be improved.

ii

Acknowledgements
Ýmir Vigfússon, our supervisor and teacher. We are grateful for the opportunity to work
on this project with him, even though we have run into so many walls that our noses now
resemble that of a pug. He allowed us to enter the world of research in computer science
and held our hand along the way, despite him having more than enough on his plate.
Gylfi Þór Guðmundsson, our advisor and master report reviewer. Every time we had fallen
into a deep pit of despair, he was there to pick us up. His advice and happy-go-lucky
nature has been a saving grace these past weeks.
Freysteinn Alfreðsson, for helping us be able to navigate the Linux kernel. He was under
no obligation to assist us, but out of the kindness of his heart, he spent time teaching two
newbies the basics of kernel programming. Had it not been for him, we’d probably still
be searching for the location of the page cache.
Caroline Butchek, for taking the time out of her busy schedule to share her experiences
with the kernel and to help us understand how to create proper traces.
Jason Yang, the creator of Mimircache. He was always ready to help us with the usage
of Mimircache and answer our questions, no matter how stupid they were.
For proofreading this report (and putting up with our insanity for the past years), we’d
like to thank our significant others, Vigfús Ægir Vigfússon and Sölvi Hjaltason. Your
support has been invaluable.
Last but not least, we would like to thank David Thue and the rest of the CADIA team
for allowing us to use their offices to work on the project, as well as granting us access to
endless amounts of coffee and biscuits.

Contents

Acknowledgements iii

Contents iv

1 Introduction 1

2 Background 3
2.1 Replacement Algorithms . 3

2.1.1 First In First Out Algorithm (FIFO) 3
2.1.2 Least Recently Used Algorithm (LRU) 4
2.1.3 Least Frequently Used Algorithm (LFU) 4
2.1.4 Clock Algorithm . 4
2.1.5 Segmented Least Recently Used Algorithm (SLRU) 5
2.1.6 Adaptive Replacement Cache Algorithm (ARC) 5

2.2 Ghost List . 6
2.3 Search Algorithms . 6

2.3.1 Trie . 6
2.3.2 Radix Tree . 7

3 The Bu�er Cache & the Page Cache in the Linux Kernel 8
3.1 History of the Bu�er Cache & the Page Cache 8
3.2 Contents of the Page Cache . 9
3.3 Searching the Page Cache . 9
3.4 The Replacement Algorithm in the Page Cache 10

4 Performance Analysis 11
4.1 Traces . 11
4.2 Flexible I/O Tester . 11
4.3 Mimircache . 12

5 Related Work 14

6 Tracing The Page Cache 15
6.1 Naïve Approach . 15
6.2 Challenges of Tracing . 15
6.3 The Process of Tracing . 16

7 Analyzing the Page Cache 17
7.1 Experimental Setup . 17
7.2 Experiment 1: Sequential Reads . 18

iv

7.3 Experiment 2: Random Reads . 20
7.4 Experiment 3: Writes . 22

8 Discussion 24
8.1 Results From Experiments . 24
8.2 Tracing and Mimircache . 26

9 Future Work 27

10 Conclusion 28

Bibliography 29

vi

1 Introduction

An ever-growing number of companies rely on online systems to operate. High latencies
can cost a fortune in lost revenue every hour [1]. Sensitivity to latencies leads to a need
for increased e�ciency in all operations being run on online systems. A vital part of
decreasing latency is the cache. A cache is a small and fast storage, whose purpose is to
decrease delay that occurs while fetching data from a larger and slower secondary storage,
such as the hard disk drive [2]. The cache does that by keeping previously retrieved data
available, such that subsequent accesses can be served faster. Several di�erent kinds of
caches can be found in the kernel, which is the core of every operating system. The kernel
facilitates communication between applications and the computer's hardware, such as the
CPU, memory, and various peripheral devices, like keyboards, monitors and speakers.

Linux is an operating system, a member of the large family of Unix-like operating
systems, and has been in development since 1991. Linux is an open source collaborative
project, written by thousands of developers, managed by Linus Torvalds. Perhaps the
most appealing quality is that Linux is fully customisable in all its components, which
is why people started writing code based upon the original Linux operating system to
suit their own needs. These customized versions of the Linux operating system are called
Linux distributions, and include Ubuntu, Fedora and Arch. Companies have also utilized
the fact that Linux is open source, and have built their operating systems on top of the
Linux kernel, notably Google creating Android. The success of Linux is largely based on
the Linux kernel, which is a monolithic [3], preemptive [4] kernel that allows multithreaded
applications and kernel threading, among many other qualities. The Linux kernel is run
on millions of devices worldwide, on anything from light bulbs to supercomputers.

The Linux kernel is very large, and contains millions of lines of code [5]. Each sub-
system can take a programmer years to master. Figure 1.1 breaks the kernel down into
its main components and shows how vastly complicated the kernel is, as many intricate
components are required to properly work so that the whole is functional. The main focus
of this report will be the page cache, which is a bridge between the virtual and logical �le
systems, and is circled in red in the �gure mentioned above.

The page cache is the main cache for the hard disk drive, and is necessary because
fetching data from the disk is extremely slow. The page cache is located in the otherwise
unused portions of the physical RAM, and the pages in the page cache correspond to
physical blocks on the disk. Because the page cache is only allowed to use free memory
in RAM, it is dynamic so it grows and shrinks in size as the memory is either freed or
occupied [6].

The page cache has seen multiple changes over the years, and has been optimized quite
a lot. It currently uses a cache replacement algorithm based on the Least Recently Used
(LRU) algorithm that will be discussed in section 2.1.2, with some additions in order to
make it more e�cient. However, given that the page cache replacement algorithms have
not been changed in a long time, but there have been many recent advancements in the
�eld of cache replacement algorithms, it is natural to wonder whether the performance
of the page cache in the Linux kernel could be improved. This question is especially
interesting now, since the popularisation of the Solid State Drives (SSD) altered the
behaviour of disk drives drastically.

1

The goal of this project is to �nd a way to improve the current replacement policy of the
page cache. There are multiple ways to achieve this goal. It is possible to �nd weaknesses
of the current replacement policy and alter the source code to better the algorithm's
performance. A more compelling idea is to explore the question"can we guess what will
be put into the cache and when?"Implementing this would require a machine learning
algorithm to be added to the kernel, which's purpose would be to predict what data will
be referenced in the near future, based on previous experiences. This algorithm would
have to be carefully implemented, as it would need to exceed the current algorithm's
performance, while not taking too much memory from the cache itself.

To be able to measure whether or not an alteration improves the current replacement
algorithm's performance, a method of tracing the page cache will be implemented. Cache
performance depends on what kind of a workload is performed, so a method for generating
a workload is required. Each trace can then be generated by performing a di�erent
workload, so a general overview of how the page cache behaves will be obtained. By
performing analysis on the traces, it is possible to see whether an alteration to the cache
replacement algorithm is or is not for the better.

In this report we will discuss the current implementation of the Linux kernel's page
cache and how it currently behaves. We will examine the strengths and weaknesses of the
current replacement policy in section 3. A tracing method we devised to understand the
cache's behaviour and measuring performance will be introduced in section 4. Finally,
related work will be discussed in section 5, along with a discussion on future work in
section 9.

Figure 1.1: Map of the Linux Kernel [7], the page cache is circled in red.

2

2 Background
Recall that a cache is a small and fast storage, whose purpose is to decrease delay of
a look-up operation in the slower, secondary storage. When accessing a block, which is
a contiguous chunk of memory, a search algorithm is used to perform a fast look-up in
the cache. Search algorithms are in most cases rather fast, the search algorithm is even
physically baked onto the CPU chip. If the requested block is already in the cache, a
cache hit occurs. If the block is not in the cache, acache missoccurs, and the block
has to be fetched from a disk and placed into the cache. A cache is �nite, so eventually
it will �ll up and a block has to be removed so a new block can be accepted into the
cache. The desired functionality is that cache hits occur more often than cache misses,
so a replacement algorithm is needed to decide which block would be most e�cient to
remove. In this section, replacement algorithms and strategies related to caching will be
introduced.

2.1 Replacement Algorithms

In an ideal world, there would be one cache replacement algorithm that could determine
which blocks would be ideal to keep in the cache, while removing the blocks that will not be
used again in the near future. A theoretical solution to this problem was was proposed by
Bélády, and is called the Optimal algorithm. He stated that the most e�cient algorithm
was one that will always evict the block that will be used farthest in the future [8]. This is
not implementable in practice, since such an algorithm would require perfect knowledge of
all future access patterns. However, multiple di�erent cache replacement algorithms have
been implemented. Some of these algorithms are implemented to be applicable in multiple
or all caches, while others attempt to �nd ways to get as close to the Optimal policy for
one application as possible. In this section, some of the more prominent replacement
algorithms will be featured.

2.1.1 First In First Out Algorithm (FIFO)

The First In First Out (FIFO) algorithm proposes an idea where the blocks in the cache
are stored in an ordered list. When a block is referenced and is not in the cache already, it
is placed at the back of the list. When the cache is full and a new block needs to be added,
the block that is at the front of the list will be evicted. This algorithm always evicts the
oldest block without taking advantage of how often each block has been accessed. FIFO
is a very fast algorithm, but the reason for why the algorithm is rarely used is because
of its inability to utilize locality of reference [9]. As a result, FIFO's hit ratio is very
low. Andrew Tanenbaum and Herbert Bos [10] explain this algorithm in further detail in
Modern Operating Systems, chapter 3.4.3.

3

2.1.2 Least Recently Used Algorithm (LRU)

When the Least Recently Used (LRU) algorithm decides which block to remove from the
cache, it �nds the block that has been unreferenced for the longest time. To ensure that
the right block is evicted, LRU monitors when blocks are referenced. This is done by
keeping a linked list that stores the order in which blocks were referenced. When a new
block needs to be added and the cache is full, the block at the back of the linked list is
evicted, and the new block gets added to the front.

LRU has a few appealing advantages, such as that it is amenable to full statistical
analysis, can be easy to implement, and its running time per request is essentially inde-
pendent of the cache's size. It e�ectively exploits temporal locality: a block that has been
accessed recently is likely to be accessed again in the near future. However, LRU is well
known for its inability to cope with access patterns with weak locality [11]. In addition
to that, LRU requires locking when blocks are being added and removed from the linked
list, to make sure no data is lost. Further information can be found inModern Operating
Systems[10], chapter 3.4.6 about the LRU algorithm, written by Andrew Tanenbaum
and Herbert Bos.

2.1.3 Least Frequently Used Algorithm (LFU)

The Least Frequently Used algorithm (LFU) [12] works similarly to LRU, but instead of
keeping track of when which block was used, the LFU algorithm keeps track of how often
each block is referenced while it is in the cache. The block that is least frequently refer-
enced will be the one removed from the cache when a new block needs to be added. LFU
has been proven to work well with speci�c workloads, such as web caching, where LFU
outperforms LRU [13]. However, LFU's main disadvantage is that its time complexity is
logarithmic, because the data structure needs to maintain sorted order of frequency, and
therefore it is rarely used in practice.

2.1.4 Clock Algorithm

The Clock algorithm [10] keeps the blocks in the cache in a circular list. Each block in
the list contains a binary reference bit, which is set to one when the block is referenced.
The Clock algorithm keeps a pointer, calledhand, that points to the oldest block in the
list. When a block has to be evicted, the block that thehand points to is the �rst one to
be inspected. If the reference bit is zero, that block will be evicted and the new block is
added in its place. If the reference bit is not zero, it will be set to zero and thehand is
moved clockwise until a block with its reference bit set to zero is found. The hit ratio of
the Clock algorithm has been proven to be worse than in LRU, but LRU uses locks while
Clock can be updated in parallel and thus is useful in concurrent operating systems like
multi-core (SMP) enabled Linux. Lastly, since the Clock algorithm approximates LRU,
disadvantages of LRU also apply to Clock [14].

4

2.1.5 Segmented Least Recently Used Algorithm (SLRU)

The Segmented Least Recently Used (SLRU) [15] algorithm is implemented on top of
LRU. SLRU adds a reference bit into each cache line and divides the cache set into two
segments, a probationary segment and a protected segment, which are ordered using LRU.
Data added to the cache will go to the end of the probationary segment. If a cache hit
occurs, the block will be promoted to the protected segment. When a block has to be
removed from the cache it will be evicted from the probationary segment. However, if the
probationary segment is empty, the block will be removed from the protected segment.
Since blocks in the protected segment are more likely to be referenced again in the near
future, they stay longer in the cache when using SLRU than they would in LRU. A
downside to this method is that it becomes possible for blocks to remain in the cache long
after they were last referenced.

2.1.6 Adaptive Replacement Cache Algorithm (ARC)

The Adaptive Replacement Cache algorithm (ARC) [16] was originally implemented to
improve upon SLRU. ARC is scan-resistant, so it allows one-time-only sequential read
requests to pass through the cache without �ushing pages that have temporal locality
[17]. ARC contains two dynamically sized lists, namedL1, which contains blocks that
have each been referenced once recently, andL2, which contains blocks that have each
been referenced more than once recently. LRU is used to order both lists. When a block
that is not in the cache is requested, the block goes to the head ofL1. If the block is
referenced again while it is still inL1, it will be promoted to the head of L2, and L1

consequently shrinks by one. The two lists are roughly the same size, so ifL2 is growing
too fast, blocks at the end ofL2 have to be demoted toL1. The block that will be evicted
is always selected from the end ofL1.

The main di�erence between the ARC and SLRU is that ARC will only remove blocks
from a single list, while SLRU can remove from either one, provided one of them is empty.
In SLRU, blocks are never demoted, which allows the protected segment to grow larger
than the probationary segment. Blocks might therefore stay in the protected segment
long after they were last referenced. This is a fault of SLRU that ARC improves upon by
keeping both lists of roughly the same size.

5

2.2 Ghost List

A ghost list [18] is a mechanism used alongside ARC. The ARC listsL1 and L2 have
extension lists,M 1 and M 2, named ghost lists. These lists are used to track blocks that
have recently been evicted from the cache. When a block that was at some point upgraded
to L2 gets evicted, information about the block, called metadata, will be stored inM 2. If
the evicted block gets referenced again while its metadata is still inM 2, then it is assumed
that L2 is not big enough, and the number of slots inL2 will be increased by one. The
same will happen if a block's metadata was stored inM 1, the number of slots inL1 will
be increased by one. The ghost lists have �nite memory, so eventually all evicted blocks'
metadata will be removed, in accordance with LRU.

A block's metadata is much smaller in size than the block itself, so storing a list of
metadata would not take up too much space. By maintaining a ghost list, the algorithm
could "regret" having recently kicked something out by virtue of seeing the ghost list
metadata still around, and take that into consideration by changing the size of the lists.

2.3 Search Algorithms

As the main requirement of caching is to decrease latency, every component of a cache
must be able to execute as quickly as possible. Since the number of blocks in a cache
can quickly grow large, performing look-up operations must not slow down the execution
signi�cantly. Therefore, there is a need for search algorithms that are able to quickly �nd
the relevant block. In this section, search algorithms used in caching will be featured.

2.3.1 Trie

A trie [19] is a search tree that stores a value in a node that is associated with a part of a
key, henceforth referred to as a key fragment. The edges in a trie contain a part of a key,
and a cumulation of all key fragments in a path from the root to a leaf form the whole key.
The key fragments of edges are ordered in an alphabetical order or bit wise lexicographic
order, which allows for faster look-up. The trie contains two types of nodes, inner nodes
and outer nodes. All inner nodes contain the value of the key fragment leading to that
node, concatenated to the value of its predecessor. Outer nodes are either the root node,
which's value is always empty, or leaf nodes, which contain a value corresponding to the
key. Tries are space saving, as pre�xes are shared among nodes.

A look-up operation is performed by starting at the root node, and following a path
corresponding to the search key until a leaf node is reached. The value contained in the
leaf node is then returned. The look-up operation for tries is e�cient, as it has a worst-
case time complexity ofO(n), wheren is the length of the key, which corresponds to the
depth of the tree. More information about tries can be found inSwift Data Structure and
Algorithms by Erik Azar and Mario Alebicto, in the Trie Trees chapter.

6

	Acknowledgements
	Contents
	Introduction
	Background
	Replacement Algorithms
	First In First Out Algorithm (FIFO)
	Least Recently Used Algorithm (LRU)
	Least Frequently Used Algorithm (LFU)
	Clock Algorithm
	Segmented Least Recently Used Algorithm (SLRU)
	Adaptive Replacement Cache Algorithm (ARC)

	Ghost List
	Search Algorithms
	Trie
	Radix Tree

	The Buffer Cache & the Page Cache in the Linux Kernel
	History of the Buffer Cache & the Page Cache
	Contents of the Page Cache
	Searching the Page Cache
	The Replacement Algorithm in the Page Cache

	Performance Analysis
	Traces
	Flexible I/O Tester
	Mimircache

	Related Work
	Tracing The Page Cache
	Naïve Approach
	Challenges of Tracing
	The Process of Tracing

	Analyzing the Page Cache
	Experimental Setup
	Experiment 1: Sequential Reads
	Experiment 2: Random Reads
	Experiment 3: Writes

	Discussion
	Results From Experiments
	Tracing and Mimircache

	Future Work
	Conclusion
	Bibliography

