

Cats University of Reykjavík

1

Cats University of Reykjavík

2

Table of contents

Introduction 9

1 The Project 10

1.1 Project Description 10

1.3 About //JÖKULÁ 11

1.4 Future of the system 11

1.4.1 Considerations for future development. 12

2 User groups 13

3 System Overview 14

3.1 Employee 14

3.2 Project manager 20

3.3 Human Resources 27

3.4 Salesman 30

3.5 Financial officer 35

3.6 Admin 37

4 Development Environment 38

4.1 Back end 38

4.2 Front end 38

4.3 Version Control 39

5 Work Arrangement 40

5.1 Methodology 40

5.2 Scrum 40

5.3 Sprint Arrangements 40

5.4 Workplace Arrangements 41

5.5 Meetings 41

5.5.1 Scrum 41

5.5.2 Other meetings 41

5.6 Time Logging 42

5.7 Documentation 43

Cats University of Reykjavík

3

5.7.1 API & Service Documentation 43

5.7.2 Development Guide 44

5.7.3 User Manual 44

5.8 Ownership of the product 44

6 Planning and Progress 45

6.1 Sprint Schedule 45

6.2 Requirements 46

6.3 Distribution of working time 47

7 System Design 49

7.1 Entity Diagram 49

7.2 Container Diagram 50

7.3 Component Diagram 51

7.4 Flow Diagram 52

8 Testing 54

8.1 Unit tests 54

8.2 Code coverage 54

8.3 User testing 56

9 Post mortem 57

Final words 58

Appendix 1: Sprint Details 59

Sprint Zero 59

Sprint One 60

Tasks 60

Burndown Chart 60

Retrospective 61

Sprint Two 62

Tasks 62

Burndown Chart 62

Retrospective 63

Sprint Three 64

Cats University of Reykjavík

4

Tasks 64

Burndown Chart 64

Retrospective 65

Sprint Four 66

Tasks 66

Burndown Chart 66

Retrospective 67

Sprint Five 68

Tasks 68

Burndown chart 68

Retrospective 69

Sprint Six 70

Tasks 70

Burndown chart 70

Retrospective 71

Sprint Seven 72

Tasks 72

Burndown chart 72

Retrospective 73

Sprint Eight 74

Tasks 74

Burndown chart 74

Retrospective 75

Appendix 2: Risk Analysis 76

Risk Log 78

Appendix 3: Product Backlog 80

Cats University of Reykjavík

5

Figures

Figure 3.1: The employees homepage 14

Figure 3.2: Expanded tiles employee homepage 15

Figure 3.3: Employee task details 15

Figure 3.4: Employee task details clocked in 16

Figure 3.5: Employee task details clocked out 16

Figure 3.6: Employee homepage clocked in 17

Figure 3.7: Employee task details clocked in on other 17

Figure 3.8: Employee ready for QA 18

Figure 3.9: Employees time report 18

Figure 3.10: Employee settings page 19

Figure 3.11: Employee new profile picture 19

Figure 3.12: Employee dashboard with new profile picture 20

Figure 3.13: Project manager dashboard 20

Figure 3.14: Project manager project view 21

Figure 3.15: Project manager project view expanded 21

Figure 3.16: Project manager specific project view 22

Figure 3.17: Project manager ready for QA 23

Figure 3.18: Project manager done in QA view 23

Figure 3.19: Project manager done in QA task detail 24

Figure 3.20: Project manager - accept hours 24

Figure 3.21: Project manager employee view 25

Figure 3.22: Project manager customer view 25

Figure 3.23: Project manager edit customer 26

Figure 3.24: Project manager new customer 26

Figure 3.25: Project manager settings 27

Figure 3.26: Human resources homepage 27

Figure 3.27: Human resources edit employee 28

Figure 3.28: Human resources create employee 28

Figure 3.29: Human resources divisions view 29

Figure 3.30: Human resources update division 29

Cats University of Reykjavík

6

Figure 3.31: Human resources create division 30

Figure 3.32: Human resources settings 30

Figure 3.33: Salesman homepage 31

Figure 3.34: Salesman projects view 31

Figure 3.35: Salesman projects expanded 32

Figure 3.36: Salesman projects by customers 32

Figure 3.37: Salesman specific project view 33

Figure 3.38: Salesman project details 33

Figure 3.39: Salesman customer view 34

Figure 3.40: Salesman update customer 34

Figure 3.41: Salesman create customer 35

Figure 3.42: Salesman settings 35

Figure 3.43: Financial officer homepage 36

Figure 3.44: Financial officer homepage expanded customers 36

Figure 3.45: Financial officer timereport for invoice 37

Figure 3.46: Financial officer settings 37

Figure 5.1: API Documentation example 43

Figure 6.1: Breakdown of hours worked per category. 47

Figure 6.2: Breakdown of hours worked on the project by team members. 48

Figure 7.1: Entity Diagram 50

Figure 7.2: Container Diagram 51

Figure 7.3: Component Diagram 52

Figure 7.4: Flow diagram 53

Figure 8.1: Shows code coverage for each route. 55

Figure 8.2: Shows code coverage for each service. 55

Figure A1.1: Sprint one Tasks 60

Figure A1.2: Sprint one Burndown 60

Figure A1.3: Sprint two Tasks 62

Figure A1.4: Sprint two Burndown 62

Figure A1.5: Sprint three Tasks 64

Figure A1.6: Sprint three Burndown 64

Figure A1.7: Sprint four Tasks 66

Cats University of Reykjavík

7

Figure A1.8: Sprint four Burndown 66

Figure A1.9: Sprint five Tasks 68

Figure A1.10: Sprint five Burndown 68

Figure A1.11: Sprint six Tasks 70

Figure A1.12: Sprint Six Burndown 70

Figure A1.13: Sprint seven Tasks 72

Figure A1.14: Sprint seven Burndown 72

Figure A1.15: Sprint eight Tasks 74

Figure A1.16: Sprint eight Burndown 74

Tables

Table 2.1: User groups 13

Table 5.1: Scrum Roles 40

Table 5.2: The teams weekly schedule. 42

Table 6.1: Sprint Schedule. 46

Table 6.2: Breakdown of hours worked per category. 48

Table 6.3: Breakdown of hours worked on the project by team members. 48

Table A1.1: Sprint zero. Hours worked in sprint 59

Table A1.2: Sprint one. Hours worked in sprint. 61

Table A1.3: Sprint two. Hours worked in sprint. 63

Table A1.4: Sprint three. Hours worked in sprint. 65

Table A1.5: Sprint four. Hours worked in sprint. 67

Table A1.6: Sprint five. Hours worked in sprint. 69

Table A1.7: Sprint six. Hours worked in sprint. 71

Table A1.8: Sprint seven. Hours worked in sprint. 73

Table A1.9: Sprint eight. Hours worked in sprint. 75

Table A2.1: Risk Analysis table 78

Table A2.2: Risk log 79

Table A3.1: The product backlog for the project 86

Cats University of Reykjavík

8

Cats University of Reykjavík

9

Introduction

This report has been prepared as part of our final project for Reykjavík University. The team

members are Andri Karel Júlíusson, Sigurður Marteinn Lárusson, Skúli Arnarsson and Smári

Björn Gunnarsson. The goal of the project was to create a “full stack” web application titled

“Cats”. This web application facilitates planning projects, building a folder structure of

projects, creating a list of tasks for each project and provides a space to store data for each

individual project. It also provides a time report for time that has been worked on each

individual project that can be displayed to customers of //JÖKULÁ as well as the cost of

projects through a dedicated log in service for buyers.

Cats University of Reykjavík

10

1 The Project

1.1 Project Description

The project ("Cats") is a project management and time registration system that contains

seven user groups (Roles). These groups include an Administrator, Human resources officer,

Project manager, Financial officer, Salesman, Employee, Customer administrator and

Customer employee. Each user group has their own dedicated user interface and their own

user dashboard. The main focus of this project will be on completing the tasks for three of

these user groups, that is the Administrator, Project manager and the Employee. The

Customer employee user group will not be implemented but minimal emphasis will be placed

on the implementation of the Human resources officer, Financial officer, Salesman and

Customer administrator.

The flow of the system should be as follows: The Human Resource officer can create a new

user and give him one or more roles. A salesman should then be able to create a sales offer

for a project and send it to a customer. If the project is accepted by the customer the

salesman marks the sales offer as “accepted” and sends it to a Project manager. The Project

manager receives a requirements list and registers the tasks present in the requirements list

into the system within the appropriate project. The Project manager then assigns tasks to

employees within an appropriate division (Programming, Design, Marketing, etc). When

employees within these divisions complete their tasks, they mark them as ready for QA and

send them back to the appropriate Project managers dashboard so that he can assess the

quality of the delivered task. The Project manager should then be able to send tasks back for

improvement along with a message. If the task does not require any further improvement the

Project manager can mark the task as “ready for invoice”. The Project manager then reviews

the time it took to complete the task and either accepts the hours worked as they are logged

or explicitly changed the amount of worked hours to a lower value if they are not justif iable for

billing. When the time logged for the tasks has been accepted by a Project manager the tasks

should automatically appear on the dashboard of the customer, so that he can monitor the

progress of the project in real time. On his dedicated user interface the customer has the

chance to make comments or give feedback on time registrations that are made to his project

before the invoice is sent for billing. The Financial Officer should then be able to use the

aforementioned information to create invoices.

The system in it’s latest state can be accessed on cats.jokula.is.

Cats University of Reykjavík

11

1.2 Deliverables

These are the deliverables from the work we did on the final project.

1. A front end that is connected to a back end web service and is implemented in

accordance to the design provided by //JÖKULÁ.

2. A back end web service that complies to the requirements of the project.

3. A user manual.

4. A development guide

5. Documentation of the API

6. Documentation of the services.

1.3 About //JÖKULÁ

//JÖKULÁ is a company that offers digital marketing solutions, from traditional advertising to

complex websites. Within the company, there are 10 employees in three departments as well

as contractors. The employees have a considerable amount of knowledge and experience.

The company takes on projects in entrepreneurship, text-making, design, programming,

market analysis and more.

1.4 Future of the system

We have implemented most of the key features that the system was originally intended to

support. The only A priority user stories missing are the ones linked to the salesman aspect

of the system. The salesman was not one of the roles that //JÖKULÁ prioritized and we

decided not to implement that role fully. This was mainly due to the complexity of the

salesman role and its reliance on customers being an active member in the system (which

would probably not be implemented). This is something that will most likely be revisited in the

future. One of the requirements for the end system is to support a file system. This allows

employees to share files with each other by uploading or them onto the system’s file server.

Another feature that would be preferable in the future is the ability to allow customers to log

into the system. This would allow customers to keep track of projects that //JÖKULÁ is

working on for them. This gives them a chance to see if tasks are broken down correctly, if

tasks contain a correct description and keep track of the time that is logged on each task from

beginning. The customer would also be notified, most likely by email, when the project

reaches a certain milestone.

All of the features that are mentioned above (except for the salesman feature) are

categorized as B and C requirements and so they were not a priority for us.

Cats University of Reykjavík

12

1.4.1 Considerations for future development.

● Making sure that all routes are properly inaccessible for unauthorized users.

● Make use of continuous integration and continuous deployment if work continues on

the system.

● Perform user testing with a range of users of different ages, technical backgrounds

and familiarity with the system.

● Use sockets for real time, bidirectional communication between web clients and

servers, to instantly notify and update information for users as soon as changes occur

the system.

● Use Vuex state manager to avoid passing too many props to child components and to

keep a centralized persistent store of information, accessible to users with correct

access rights.

● If the system were to be brought to a larger scale we would like the UI to be viewable

in tablets and mobile devices, instead of simply having a desktop first design.

Cats University of Reykjavík

13

2 User groups

There are several user groups that interact with the system. These user groups are

implemented explicitly in the system in the form of roles. Each user is assigned one or more

roles at the time when a new user is registered in the system. These user groups all serve a

different purpose within the system and have different permissions, privileges and user

interfaces. The user groups and a description for each user group can be seen in the table

below (Table 2.1):

User Group Description Implemented

Admin Administrator of the system, can create new users,

divisions and change a users role. Is essentially a master

role with all permissions.

Yes

Customer
Administrator

This group can create Customer accounts for other

employees of the same company to see the status of an

ongoing project. Can send messages to the company and

can see contract details.

No

Customer This group can view the status of projects he/she has

access to.

Yes, partially

Employee An employee working at the company using the system.

Can see tasks assigned to him/her and related projects.

Can clock in and out of tasks.

Yes

Financial
Officer

Can view the status of projects and tasks and see the

charged hours for each task. Can view customers and the

contacts for each customer.

Yes, partially

Human
Resources
Officer

An employee of the Human resources department of the

company. Can create, edit and delete employees as well as

view information about them.

Yes

Project

Manager

The manager of a project. Can manipulate projects and

tasks (create, edit or delete). He can also assign tasks to

employees and view time reports for each project. Finally

since the Salesman was not fully implemented, the Project

manager can also create, edit and delete customers.

Yes

Salesman A salesman of the company, can create, edit and delete

customers. Was not fully implemented.

Yes, partially

Table 2.1: User groups

Cats University of Reykjavík

14

3 System Overview

This section shows the main functionality of the system in detail with accompanying images

for reference. This can be seen as an enumeration of all the features of the system and not

as a manual. For instruction on how to use the system please see the User Manual.

3.1 Employee

The employee home page(seen in figure 3.1) has two boxes. The one on the left has the

employees assigned tasks and on the box on the right the tasks he has completed and sent

for QA (Quality Assurance). There may be a red banner at the bottom of the “ready for QA”

tasks implying they have already been sent to QA before and returned back to the employee

for improvement.

Figure 3.1: The employees homepage

If the employee presses the arrow down button in the header of the tile, he expands the tile

showing additional information (see figure 3.2). The employee can then see attachments and

comments, if there are any. As well as either a cross or check mark, used to either send the

task to or from ready for QA.

Cats University of Reykjavík

15

Figure 3.2: Expanded tiles employee homepage

Figure 3.3 is the view that the employee will get after pressing the information button on the

task he wishes to clock into. He can then click on “clock in” on the lower right hand corner

which creates a new timestamp and sets its starting time.

Figure 3.3: Employee task details

When the employee stops working on the task he can clock out of the task. He will be

prompted to fill in the progress of the task before clocking out (see figure 3.4).

Cats University of Reykjavík

16

Figure 3.4: Employee task details clocked in

After clocking out the employee can see the total time that he worked each session and the

total time that has been worked on the task (see figure 3.5).

Figure 3.5: Employee task details clocked out

Figure 3.6 shows how the employee’s homepage looks when he is clocked into a task. The

task he is clocked on to turns green and he has a green clock and title of the task in his

navigation bar indicating that he is clocked in. Clicking on the clock in the navigation bar is

also a shortcut to open the tasks details so he can easily clock out of the task. If the

employee is clocked in on a task there is no clock icon on other tasks, this restricts him from

being clocked in on multiple tasks.

Cats University of Reykjavík

17

Figure 3.6: Employee homepage clocked in

If the user is clocked into a task he is unable to clock into another before first clocking out of

the previous task (see figure 3.7).

Figure 3.7: Employee task details clocked in on other

All employees are able to see the QA view, although only the product manager can accept or

decline QA (see figure 3.8). All employees can comment on the tasks if they have feedback

that they would like to provide.

Cats University of Reykjavík

18

Figure 3.8: Employee ready for QA

All employees can access their time reports to see the hours they have logged(see figure

3.9).

Figure 3.9: Employees time report

If the employee wishes to change his profile picture or his password he can navigate to the

settings page. To update the password he needs to type a new password twice to avoid an

unexpected typo (see figure 3.10).

Cats University of Reykjavík

19

Figure 3.10: Employee settings page

If the employee wishes to change their profile picture they can click on “choose file” and pick

a picture from their local machine (see figure 3.11).

Figure 3.11: Employee new profile picture

After clicking on save, the picture is saved as the current users profile picture (see figure

3.12).

Cats University of Reykjavík

20

Figure 3.12: Employee dashboard with new profile picture

3.2 Project manager

The project manager’s homepage gives him an overview of all assigned tasks with a

checkbox to indicate if the employees themselves can see the tasks or not. Grey tasks are

assigned but not visible, dark blue tasks are assigned and visible and light blue tasks are

assigned and ready for QA. The project manager cannot toggle the visibility anymore if the

task has been sent to QA (see figure 3.13).

Figure 3.13: Project manager dashboard

Cats University of Reykjavík

21

Figure 3.14 shows the first view the project manager gets when looking at projects. From

there he can either click on a row in the table to expand that row and see all projects

belonging to that customer or he can click on the number of projects which will take him to

another view with all projects belonging to that customer.

Figure 3.14: Project manager project view

Figure 3.15 shows the project managers projects view after expanding the customer table.

Figure 3.15: Project manager project view expanded

The project manager will get a view of all projects belonging to a specific customer if he clicks

on the number of projects in the projects view (see figure 3.16).

Cats University of Reykjavík

22

Figure 3.16: Project manager projects by customer view

The specific project view (see figure 3.16) will appear once the project manager has selected

a project. The views will continue to look the same as this when going deeper into the folder

structure. If for example “design” were chosen here the same view would appear with

Design’s sub-projects and tasks.

Figure 3.16: Project manager specific project view

The project manager has a QA view as all other employees, except with the distinction of

having accept/reject buttons to either accept a task as “Done in QA” or send it back,

preferably with a comment to the employee telling them what needs fixing, aslo incrementing

the QA counter (see figure 3.17).

Cats University of Reykjavík

23

Figure 3.17: Project manager ready for QA

Figure 3.18 shows a project manager’s view when a task has been moved to Ready for QA.

Figure 3.18: Project manager done in QA view

Figure 3.19 shows a project managers task details view after the task has been sent to Done

in QA.

Cats University of Reykjavík

24

Figure 3.19: Project manager done in QA task detail

When the project manager clicks on accept in a task in done in QA, a modal appears (see

figure 3.20) where he has to evaluate how many hours should be invoiced on the task. He

can choose however many hours he judges to be correct. The default is the estimated hours

on the task as that will be in accordance to the agreed upon hours with the customer.

Figure 3.20: Project manager - accept hours

The project manager has an “Employees” view (see figure 3.21). He has access to read

employees info but no update/delete rights.

Cats University of Reykjavík

25

Figure 3.21: Project manager employee view

The project manager has a customers view (see figure 3.22). This view has a general

overview showing the customers name and ssn, the phone number and email of the main

contact.

Figure 3.22: Project manager customer view

When editing, the project manager can set the basic info for the customer as well as set

contacts for the customer (see figure 3.23). In cases where the customer has multiple

contacts he can pick a contact to be the main contact and who’s info will be displayed by

default on the customers frontpage.

Cats University of Reykjavík

26

Figure 3.23: Project manager edit customer

Figure 3.24 shows the Create Customer form for project manager.

Figure 3.24: Project manager new customer

The project manager also has a settings page (see figure 3.25) where he can upload a

picture to use as his profile picture or change his password.

Cats University of Reykjavík

27

Figure 3.25: Project manager settings

3.3 Human Resources

The homepage for the Human Resources Officer is the Staff members page (see figure 3.26)

where the HR employee has CRUD access to all staff.

Figure 3.26: Human resources homepage

The update employee form for the HR employee (see figure 3.27).

Cats University of Reykjavík

28

Figure 3.27: Human resources edit employee

The create employee form for the HR employee (see figure 3.28).

Figure 3.28: Human resources create employee

The human resources employee has CRUD access to Divisions (see figure 3.29).

Cats University of Reykjavík

29

Figure 3.29: Human resources divisions view

The update form for divisions for the HR employee (see figure 3.30).

Figure 3.30: Human resources update division

The create form for divisions for the HR employee (see figure 3.31).

Cats University of Reykjavík

30

Figure 3.31: Human resources create division

The settings page for the HR employee (see figure 3.32).

Figure 3.32: Human resources settings

3.4 Salesman

We did not implement all functionality for the salesman. But if the system were completed

with all B and C tasks the salesman frontpage would display on overview of offers that he

could negotiate and accept/decline. When offers would be accepted they would be broken

down into sub-projects and tasks by the project manager (see figure 3.33).

Cats University of Reykjavík

31

Figure 3.33: Salesman homepage

As with the project manager the salesman has access to the projects view (see figure 3.34).

But only read access.

Figure 3.34: Salesman projects view

Expanded table view of the projects page for salesman (see figure 3.35).

Cats University of Reykjavík

32

Figure 3.35: Salesman projects expanded

The more detailed view for tasks belonging to a specific customer for salesman (see figure

3.36).

Figure 3.36: Salesman projects by customers

The view for a specific project (see figure 3.37). The salesman can read sub projects and

tasks, but does not have create, update or delete access.

Cats University of Reykjavík

33

Figure 3.37: Salesman specific project view

He also has read access to tasks (see figure 3.38) but not create, update or delete access.

Figure 3.38: Salesman project details

The salesman has complete CRUD access to customers (see figure 3.39).

Cats University of Reykjavík

34

Figure 3.39: Salesman customer view

The update form for customers for the salesman (see figure 3.40).

Figure 3.40: Salesman update customer

The create form for customers for the salesman (see figure 3.41).

Cats University of Reykjavík

35

Figure 3.41: Salesman create customer

The salesman settings page (see figure 3.42).

Figure 3.42: Salesman settings

3.5 Financial officer

The Financial Officer’s homepage is a table of all customers that behaves as usual except

when he has chosen a project he will get a detailed time report of tasks worked on that

project so he can invoice it (see figure 3.43).

Cats University of Reykjavík

36

Figure 3.43: Financial officer homepage

The financial officer can see a more detailed overview if he expands the customers to see

their projects and their progress status (See figure 3.44).

Figure 3.44: Financial officer homepage expanded customers

The financial officers main view will come if he choses a project from his homepage. He will

then end on a view (see figure 3.45) where he gets the customers details so he can invoice

them and the hours worked. He gets details about how much time is being invoiced on each

task to be able to break the invoice down if needed.

Cats University of Reykjavík

37

Figure 3.45: Financial officer timereport for invoice

The financial officers settings page (See figure 3.46)

Figure 3.46: Financial officer settings

3.6 Admin

All of the admins functionality has been seen before in by other roles. The admin has CRUD

access to everything. The only views he will not be able to are those specific to a role, such

as the financial managers final time report or the project managers frontpage to be able to

hide or show tasks. The admin can however assign the role of financial officer or project

manager to himself giving him access.

Cats University of Reykjavík

38

4 Development Environment

//JÖKULÁ decided which development environment and technologies we would use for the

project. They use the same development environment for their own projects and have a good

understanding of the technologies. //JÖKULÁ decided that the project would be written in

Node.js while using the Express.js framework. The database that is used is PostgreSQL but

we use Bookshelf.js as an ORM on top of PostgreSQL. We use GitHub for source control.

Below is a more detailed list of all the technologies used in our system.

4.1 Back end

● The back end is written using Node.js v8.9.* LTS runtime environment using the

Express.js Web application framework.

● The web service is designed using the REST architecture style.

● Authentication is implemented using Passport with local strategy.

● The database is a PostgreSQL database.

● Bookshelf.js is an ORM that maps the PostgreSQL database.

● Bookshelf.js uses Knex.js as a query builder.

● Unit testing is executed using the Mocha.js test framework.

● Code coverage reports are generated with Istanbul.

● JSHint is used to enforce coding standards and to detect errors and potential

problems in code.

● Build scripts are set up using Gulp task runner.

● Tests are written with “Behaviour Driven Development” in mind.

● We strive to use Ecmascript 6 where it is supported.

● NPM is used for package management.

● Webpack.js is used as a module bundler and watcher.

● SuperTest test framework is used for agent driven authentication and permission

testing.

● CircleCI runs unit tests when the master branch is updated.

4.2 Front end

● Written in Vue.js and uses the Vue Router framework.

● Has a centralized store using Vuex state management library.

● CSS is written using Less.

Cats University of Reykjavík

39

● We strive to use Ecmascript 6. Babel compiles code to a supported version for

browsers that do not support Ecmascript 6.

● Pug is used template engine for HTML code.

4.3 Version Control

The git version control system is used along with GitHub as a source code management

system. We use branching as much as possible where we keep the master branch clean and

push only fully functional code onto it. We keep a development branch where we keep new

features that are not fully tested. We merge the development branch into the master branch

when the development branch reaches stable state. When working on new features, each

developer works on a dedicated feature branch and merges it with the development branch

when the feature is completed.

Cats University of Reykjavík

40

5 Work Arrangement

5.1 Methodology

The team used the Scrum methodology when implementing the system. That includes

working in sprints, managing a product backlog and sprint backlogs as well as making

burndown charts for each sprint and for the entire project.

We decided that each sprint should be two weeks long. Each sprint started with taking

several user stories and dividing them into tasks that went into the sprint backlog for that

particular sprint. Each task was then assigned to one or more team member.

5.2 Scrum

When using Scrum defining certain roles within the team is a necessity. The roles in our team

were assigned in the following manner:

Name Role

Georg Kristinsson Product Owner

Smári Björn Gunnarsson Scrum Master

Andri Karel Júlíusson Scrum Team Member

Sigurður Marteinn Lárusson Scrum Team Member

Skúli Arnarsson Scrum Team Member
Table 5.1: Scrum Roles

We used Microsoft Excel Online for managing our product backlog and sprint backlogs. The

product backlog consists of user stories and for each user story we determined it’s priority

and tried to estimate how many story points it was. We used planning poker to determine the

number of story points for each story in the backlog. We use Google Drive to manage our

documentation.

5.3 Sprint Arrangements

The sprints were arranged in the following way: Each sprint was two weeks long until the

exam period started. Over the exam period there was one sprint that was three weeks long,

and finally there were three one week long sprints at the end of the semester. The first sprint

started on January 29th.

Cats University of Reykjavík

41

The team met at Thursdays and Fridays each week in the workspace provided to us by

//JÖKULÁ at their office. If for some reason we couldn’t meet at the days we decided that we

would meet on weekends to catch up.

5.4 Workplace Arrangements

We were provided with our own workspace at //JÖKULÁ and access to the building at all

times. Each team member was also provided with an office desk and chair, a keyboard, a

mouse and a screen to connect their laptops to. Each team member brought their own laptop

to work on for the project. Members of the team also had access to everything else in the

building, including the kitchen, bathrooms and meeting rooms. The team also had access to

the programmers and the other staff of //JÖKULÁ if they had any questions or needed any

advice.

5.5 Meetings

5.5.1 Scrum

We started every day that we worked on the project with a daily scrum meeting where every

member of the team had to attend. These were short meetings where each member of the

team explained shortly what he had been working on since the last meeting, what he

intended to do for the day and if he had any problems that prevented him from completing his

tasks. We also dedicated a part of the meeting to updating the scrum board for the current

sprint so each team member could keep track of the overall progress and see what the other

team members were doing.

At the end of each sprint we held retrospective meetings for that particular sprint. The

purpose of these meetings was to reflect on the sprint’s progress, what could have gone

better and if there were any problems during the sprint. In these meetings we always kept in

mind what we learned from previous retrospective meetings and sprints. This information

then helped us in planning the following sprints.

5.5.2 Other meetings

Every week we met with the product owner on Thursdays at 14:00. The main purpose of

these meetings was to make sure the project was going in the right direction and that all team

members were on the same page.

Cats University of Reykjavík

42

We also planned meeting with two of the programmers working for //JÖKULÁ each Friday at

13:00. The programmers performed a short code review on the project and point out things

that might be better or different. Unfortunately these programmers were quite busy over the

semester so this was often not the case, although we did manage to meet them a few times

and get some pointers from them.

Finally we met with our instructor every week on Thursdays at 13:00. The purpose of these

meetings was to get feedback from him about the project or to get his help if we had some

issues regarding the project, //JÖKULÁ or other members of the team.

 Sun Mon Tue Wed Thu Fri Sat

10:00-

12:00

Backup Day Work on project Work on project Backup Day

13:00-

14:00

Backup Day Meeting with

instructor 13:00

Code review

13:00

Backup Day

14:00-

15:00

Backup Day Meeting with

product owner

14:00

Work on project Backup Day

14:00-

17:00

Backup Day Work on project Work on project Backup Day

Table 5.2: The teams weekly schedule.

5.6 Time Logging

Time logging was done using an Excel Online spreadsheet where every member kept their

own log. For each entry in the log, each team member wrote down what they were working

on, when whey worked on a particular task, how much time he spent working on it along with

an optional comment. Each record in the sheet was then categorized by it’s type, the

categories included Programming, Documentation and Meetings. At the end of each day

each member would also review the time log for the day and make sure all entries had been

logged correctly.

Cats University of Reykjavík

43

5.7 Documentation

When starting the project the team decided right away to try to document everything as well

as possible. This goal was reached to some degree. All our documents are stored on Google

Docs in a shared folder where every member of the team can access them at any time.

5.7.1 API & Service Documentation

Documentation for routes and services are written in a comment above each route and

service. These comments are written in the following format in order to be rendered correctly

in a browser:

/**

 * @api {get} /user/:id Request User information

 * @apiName GetUser

 * @apiGroup User

 * @apiParam {Number} id Users unique ID

 * @apiError (4xx) 400 Object contains bad data

 * @apiSuccess {String} firstname Firstname of the User

 * @apiSuccess {String} lastname Lastname of the User

 */

Figure 5.1: API Documentation example

Documentation can be generated from documentation comments by executing

'npm run document'.

The documentation for the project can be found in the Documentation folder found in root

directory of the project itself. Documentation for the API can we viewed in a browser by

opening index.js file found in the api folder inside the Documentation folder. Documentation

for the services are viewable under the services folder inside the Documentation folder. The

documentation for the services is written in the markdown markup language and are easily

viewable using a markdown viewer of your preference.

Cats University of Reykjavík

44

5.7.2 Development Guide

The development Guide is a guide meant for new developers that are starting to work on the

project. It details the prerequisites needed for the project, how to get it up and running as well

as the overall structure of it.

5.7.3 User Manual

The User Manual includes simple instructions on how to use the more complex interfaces of

the system.

5.8 Ownership of the product

The product including all code and documentation entirely belongs to //JÖKULÁ.

Cats University of Reykjavík

45

6 Planning and Progress

In this section the overall plan for the semester is explained, how the sprints were distributed

over the semester and how long each sprint was. Each sprint is then explained in more detail

in Appendix 1. This section also details the time logged by each member of the team and

how the logged hours are divided between them as well as how much time was logged in

each category.

Here we also shortly describe our requirements: what requirements are in the product

backlog and which of them we finished. The requirements themselves can be found in

Appendix 3.

6.1 Sprint Schedule

This is the schedule that we prepared for sprints along with goals that we set to achieve in

each sprint. We were able to keep to the sprint schedule for the most part. The front end fell a

bit behind schedule but were able to rectify that problem by moving two of our team members

exclusively to the front end. The system was close to a minimum viable product at the end of

sprint 5 as we had scheduled. However we would not have been comfortable presenting the

system as a MVP until after the 6th sprint, when the front end started to take shape.

Sprint # Begins Ends Main Goals

0 15/01 28/01 Design: Everyone has a good overview of the requirements.

Documentation: Project schedule, Product backlog, Work plan.

Project: Setup required dependencies and environment.

1 29/01 11/02 Design: Wireframes, database tables.

Documentation: Risk analysis. Wireframes, progress plan and burndown

charts.

Project: Authentication, basic routes, basic views.

1st status meeting.

2 12/02 25/02 Back end functions for employee,divisions and roles, basic front end to show

functionality of server & Database implementation

3 26/02 11/03 Project: Back end functions for customer, projects, front end implementation

on customer & projects

4 12/03 1/04 Project: Task back end/front end implementation. Link employees to tasks.

Cats University of Reykjavík

46

Front end views for different roles.

Basic styling on client

2nd status meeting

5 2/04 22/04 Project: Timestamp implementations in back end/front end. Project manager

able to assign tasks to employees. Minimum viable product ready

6 23/04 29/04 Exam period. Team all work on front end, all back end functions nearly

complete. Employees can log time on tasks. Project manager can see stats

about projects

7 30/04 6/05 Documentation: Development guide, Instruction manual, Handoff

documentation.

Bug fixing

Preparation for 3 and final status meeting

8 7/05 11/05 Documentation: Final report for the project

Programming: Minor bug fixing before handin

Table 6.1: Sprint Schedule.

6.2 Requirements

We got a document from //JÖKULÁ describing the permissions and roles of the system and

the actions available to each role and we translated that into our product backlog. We

estimated each story in story points where each story point represented some arbitrary

amount of time. We estimated the stories using planning poker. Planning poker works in the

way that each member of the team reflects on the task and estimates how many story points

it is on his own. All team members then have to show their estimate and explain the reason

they picked their estimate. If the team members disagree about some estimate they should

state their argument and then estimate again on their own. This is done until an agreement

has been reached for every user story. When we had translated all the requirements into the

backlog and estimated them we assigned a priority to them ranging from A to C, with A being

the highest priority. Our backlog was then essentially complete and was updated frequently

over the projects duration. The backlog can bee seen in Appendix 3 in this report.

We estimated that we would be able to implement all of the A priority user stories in the

product backlog. Ideally we also wanted to implement the B priority stories, however we

believed that the C priority stories would not be implemented as a part of this course but they

may be implemented if //JÖKULÁ decides to continue the project.

Cats University of Reykjavík

47

We ended up completing most of the A priority stories (except the ones related to the

salesman role), most of the B priority stories as well and some of the C priority stories.

The total number of story points was 368.

The number of story points for A priority stories was 196.

6.3 Distribution of working time

The estimated required time to complete the project is about 1300 to 1400 hours according to
//JÖKULÁ.
The graph and table below explain how the hours worked were divided between categories. It

is worth noting that the testing category probably has higher amount of hours worked than is

presented in our data due to members sometimes registering hours spent testing as hours

spent programming. This happened on occasion because the team decided that when

programming the back end the tests for that particular back end function should always be

written right after. This resulted in both types of categories being registered as programming.

Figure 6.1: Breakdown of hours worked per category.

Cats University of Reykjavík

48

Number Category Hours

1 Programming 830.25

2 Documenting 337

3 Meeting 147

4 Testing 46

 Total 1360.25

Table 6.2: Breakdown of hours worked per category.

On the graph and table below we can see how the the hours spent on the project were

divided between members of the team. The initial goal we set for hours worked on the project

was 300 hours per team member. Every member of the development team reached the goal

that was initially set.

Figure 6.2: Breakdown of hours worked on the project by team members.

Andri Siggi Skúli Smári Total

310.5 306.5 403.75 339.5 1360.25

Table 6.3: Breakdown of hours worked on the project by team members.

Cats University of Reykjavík

49

7 System Design

The front end of the system is carefully implemented with the design we received from

//JÖKULÁ in mind. The design went through a few iterations where the style was updated

and features and components were refined. The design and implementation were made with

the desktop first design strategy. This decision was made because the systems intended use

is in an office environment.

The development team created diagrams that were used as a reference for implementing the

system. These diagrams are an entity diagram for the database, a container diagram to show

a high-level shape of the architecture, a flow diagram that in relation to different stages a

project goes through and actions that change that a project is in and finally a component

diagram that shows the individual parts of the system in greater detail.

7.1 Entity Diagram

The entity diagram shows the design of the database. We regularly updated the diagram as

the database tables changed. Maintaining the database and creating database tables was a

story that was present in most of the sprints and it was never completed until the latter part of

our time working on the project. We used Bookshelf.js as an ORM while working on a

postgreSQL database.

Cats University of Reykjavík

50

Figure 7.1: Entity Diagram

7.2 Container Diagram

This diagram show a high-level design of the architecture of the system, from the database

layer to the presentation layer. The diagram shows how different components of the system

interact. The container contains the components of the system itself. The front end

communicates with the back end through API calls to a web service. The back end then calls

the service layer that contains the logic that processes the requested action. The service calls

the data access layer that writes to or reads information from the database. The information

is then passed all the way back up into the front end. Currently the system is isolated, that is,

the system does not communicate with any external services. Plans for the future include

communication with an email server and the in-house file system at //JÖKULÁ.

Cats University of Reykjavík

51

Figure 7.2: Container Diagram

7.3 Component Diagram

The component diagrams shows the interactions between components in more detail. The

diagram shows in which layer individual components of the system belong along with the

main technologies used within each layer. On the left side of the diagram there are arrows

that indicate how different layers of the system communicate. Components in the front end

show all the implemented User groups. The REST / API layer shows all the API services and

the service layer shows all the services that are present in the system.

Cats University of Reykjavík

52

Figure 7.3: Component Diagram

7.4 Flow Diagram

The flow diagram shows the different stages that a Project goes through, from when the

salesman creates the sales offer until a financial officer creates an invoice to be charged to a

customer. Included in the diagram are functionalities that are expected to be present in the

completed system. The green rounded box means that the colored action or role has been

fully implemented. The orange rounded box means that it was not implemented and the

yellow rounded box means that it was partially implemented.

Cats University of Reykjavík

53

Figure 7.4: Flow diagram

Cats University of Reykjavík

54

8 Testing

8.1 Unit tests

Unit test were written for all the routes and services in the system. The purpose of the unit

tests is to ensure that the back end of the system always return the data it should and that all

mutations of data are sound. The unit tests also make it much easier to pinpoint where a fault

lies when something goes wrong and ensure the system works as expected after making

some large change to it. The unit tests are executed on a mock database because they will

not pass unless specific seed data is present and also because the unit tests create data that

shouldn't exist in a production database. The unit tests were written using Mocha.js. The

number of unit tests currently stands at 219, every one of them is passing.

8.2 Code coverage

At the time this was written the code coverage for the system stands at 87.33% for the API

and 84.47% for the services. We decided to settle for 80-90% statement coverage because

striving for 100% statement coverage would be wasted effort. A decision was made to put

more emphasis on having effective tests that target a wide range of functionality in the back

end of the system, instead of getting as many lines of code as we could. The system

generates code coverage reports each time the unit tests are run with the command

 'npm run test'.

 The code coverage reports are generated in an HTML format and are easily viewed in a

browser. The reports can be found under the coverage folder located in the projects root

directory.

Cats University of Reykjavík

55

Figure 8.1: Shows code coverage for each route.

Figure 8.2: Shows code coverage for each service.

Cats University of Reykjavík

56

8.3 User testing

We held several informal user testing sessions with the staff of //JÖKULÁ. In these sessions

the user was asked to navigate the system and imitate the normal procedure the user would

go through in the Excel version of the system they currently use at //JÖKULÁ. While this was

happening the user was asked to speak aloud any thoughts that came to mind and one of the

team members was writing down everything that was said and done in the session.

We also tested the system regularly ourselves by simply writing down tasks to complete, then

solving the tasks and pretending we were users of the system with no knowledge of it. This

might seem unnecessary or inefficient but we thought it was really helpful as a guideline

when we weren’t sure about some feature and wanted to make decisions fast without having

to schedule a session with the //JÖKULÁ staff.

Finally we performed some informal user tests on some of our relatives and friends with the

same method as we did with the //JÖKULÁ staff.

The results of all these tests were quite beneficial to us and became valuable in designing

and implementing key features of the system. During one of the user tests with the staff at

//JÖKULÁ we got some pointers from the project manager about how the project manager

home dashboard should look. He pointed out that we would like to be able to see each

employee on his dashboard and also be able to make tasks visible for employees from there.

This was something that we had not thought of ourselves and was a good addition to our

system. The employees at //JÖKULÁ also suggested that it would be great be able to see

which users are online on the employee sidebar. This is something that we had actually

thought of ourselves but thought that this was not a priority.

Cats University of Reykjavík

57

9 Post mortem

In this section we will mention what went well and what have learned during our time working

on the project as well as mentioning what could have gone better.

We feel like we all learned a lot working on the project. We got experience working with

Vue.js, Node.js and Bookshelf.js as well as developing a front end system that communicates

with our server.

We had all learned about the scrum methodology before but most of us had never really used

scrum on any type of real project before. We all agree that working using Scrum worked out

extremely well. Scrum kept the chaos in check as well as keeping the team focused on a

limited number of tasks at once. The team adapted well to these new technologies and we

were all able to work independently pretty early on, but every team member was always

ready to help when another ran into trouble.

When we started the project no member of the team had any experience working with the

technology stack that //JÖKULÁ had assigned us. We had to spend a great amount of time to

get familiar with technologies like Vue.js, Knex and Bookshelf.js. Planning the sprints went

well but sometimes we underestimated the user stories in our sprints, those situations were

mentioned on our risk analysis report. Occasionally we started working on the project without

having completely written down the sprint backlog for that week, that was never a serious

issue but we realize that is bad practice. We were all extremely busy during this semester

and most of our school courses required us to spend a lot of time working on assignments

and thereby neglecting the final project. We were still able to meet every week and we made

up for time lost during the last 4 weeks of the semester.

It is important to mention that we did not have a clear vision for the system when we had

started to work on the project. We had to start by implementing back end functions for the

system before starting working on front end development, during this time we had not given

the front end much thought, but as soon as we went full force working on the front end we

realized how the system would operate from a user perspective. Lastly we will mention that

one of our A requirements was to implement a salesman role for the system. We did include

that role in the system but the salesman has no real function. We would have liked to have

registered the salesman role as a B-requirement in the backlog initially, its functionality relies

heavily on customers being active in the system, which in itself was a B-requirement. We also

were not able to implement continuous integration, as it was always in our sideview and we

always had more important functions to implement so it was always pushed to the side as

“something we will do later”, we ended up trying to use CircleCI as continuous integration

and got some help from the CTO of //JÖKULÁ but we were unsuccessful in getting it working

Cats University of Reykjavík

58

successfully. When we were nearing the end we also noticed that one other A requirement

story is not implemented, that is, to be able to filter tasks and projects. This is something that

was overlooked by us all. We did however implement a sorting system for employees,

customers and divisions.

Final words

In this report we introduced our project “Cats”. We covered what the systems features are as

well as what technologies we used to be able to implement the system. We mentioned that

we built the system from the ground up, so we think that it is important to mention what

technologies we used. In the report we also describe what work methodology we used and

how we used that to plan our work. We also dedicate a chapter in the report to show how the

system works, step by step, as different user and try to explain what actions the user can

take on each page. The report also covers a “post mortem” for the whole projects, this

sections mentions what went well when working on the project and also what should have

been done better or differently.

We all learned a great deal while implementing the system and we think that it is great that

the school offers students to step outside the comfort zone of a classroom, and learn while

working in a professional environment.

We would like to thank //JÖKULÁ for all the help and the cooperation that they provided and

for always being ready to answer any questions that we had as soon as they came up. We

would also like to thank our instructor Birgir for meeting with us regularly and providing really

useful feedback on our project.

Cats University of Reykjavík

59

Appendix 1: Sprint Details

This report details the progress of our project and what we did in Sprint Zero and Sprint One.

Sprint Zero

In this sprint we laid the groundwork for the project. We were introduced to the project by

//JÖKULÁ and had several meetings with them discussing the project. In collaboration with

//JÖKULÁ we created and estimated the user stories for the project as well as setting up the

environment for each team member so they would be ready to start working on the project.

We received help setting up a “template” for the project from a programmer working at

//JÖKULÁ. We spent some time getting familiar with the technology stack that we will be

using to implement the project.

We did this by experimenting each on our own and trying to understand the frameworks and

programming languages that are used.

 Andri Sigurður Skúli Smári Total

Hours 21 34 42 31 128

 Table A1.1: Sprint zero. Hours worked in sprint

Cats University of Reykjavík

60

Sprint One

Tasks

We assigned user stories to a sprint backlog as well as creating tasks for each story. The

tasks were as follows:

Total estimated hours: 88

Figure A1.1: Sprint one Tasks

Since this was our first actual sprint we decided to take some time at the beginning of the

sprint to plan the sprint properly and create templates for sprint backlogs and burndown

charts that we will use in the coming sprints. Because of this and it being the first sprint the

tasks we chose only add up to 88 hours.

Burndown Chart

Figure A1.2: Sprint one Burndown

As we can see on our burndown chart, the progress line does not finish at 0. This is because

the hand in is two business days before a status meeting and our sprint has three days left.

Cats University of Reykjavík

61

 Andri Sigurður Skúli Smári Total

Hours 37 32 16 29 114

 Table A1.2: Sprint one. Hours worked in sprint.

Retrospective

These were the notes that we took from the retrospective meeting for sprint one.

Negative

● Reports felt rushed and were completed last minute. We should have reserved

more of our time writing our reports well at the cost of programming.

● Tasks were too big (live stories). We picked stories for our backlog that could

not be finished completely until a later time. An example of such a task is

“creating database tables”.

● We would have wanted to break up the large stories into smaller tasks so that

we could give a precise estimate of the time it takes to complete them.

● We spent too much time working of tasks that were not registered in the sprint

backlog, should have picked stories on the backlog instead.

● Daily standups were not held every day. We should have followed the Scrum

methodology more precisely.

● We should work on the project on a “catch-up” day stay and stay longer

Thursdays since Fridays we often leave early on fridays and don't work our

required 8 hours.

Positive

● Starting tasks was easy.

● We are very happy with the sprint document that we made.

● The extra time we spent on reports will save us much time in the future.

Cats University of Reykjavík

62

Sprint Two

Tasks

The tasks for sprint two were the following:

Total estimated hours: 65.5

 Figure A1.3: Sprint two Tasks

Some tasks were not completely finished at the end of the sprint, most notably the task of

getting the system to a remote server. That proved to be harder than we expected.

Burndown Chart

Figure A1.4: Sprint two Burndown

The hours left in this sprint were estimated for the task of setting the project up on a remote

server. Other than that the tasks were completely finished.

Cats University of Reykjavík

63

 Andri Sigurður Skúli Smári Total

Total 30 13.5 16.75 23 83.25

 Table A1.3: Sprint two. Hours worked in sprint.

Retrospective

These were the notes that we got from the retrospective meeting for sprint two.

Negative

● Some tasks required other tasks to be done that were not on the sprint backlog.

● Managing the sprint backlog was not as much of a priority as it should be, some tasks

were updated some time after they were finished which reduced accuracy

● Standups not daily, sometimes missed.

● Frequent switching between tasks without finishing them.

● Important tasks were assigned few story points but took a long time.

Positive

● This sprint was better than the last.

● Managed to finish almost everything we wanted.

● Estimated the stories accurately and the tasks were well defined.

● Followed the sprint backlog closely.

Cats University of Reykjavík

64

Sprint Three

Tasks

The tasks for sprint three were the following:

Total estimated hours: 121

Figure A1.5: Sprint three Tasks

Burndown Chart

Figure A1.6: Sprint three Burndown

This sprint didn’t go exactly as planned. We lost a whole day of work and all had deadlines in

other courses on top of that. We also should have picked tasks with a higher priority, for

instance implementing the changing password functionality was something we has as a task

in the sprint and then decided to put on the backburner as it is a feature that is not critical at

this moment in time. We completed most back end and some front end tasks concerning

projects and divisions. Leaving table connections and front end views for the next sprint and

the changing password functionality for a future sprint.

Cats University of Reykjavík

65

 Andri Sigurður Skúli Smári Total

Hours 20 9 46 29 104

 Table A1.4: Sprint three. Hours worked in sprint.

Retrospective

Negative

● Full day was lost

● Making up for it was difficult because we were all really busy

● Updating the sprint backlog was somewhat neglected

● The sprint backlog was not fully finished when we started working in the sprint

● Functions in the back end are often written without writing API docs and tests for them

● The sprint wasn’t planned enough and started badly

● There were many distractions and a lot to do outside the project

Positive

● Everyone is able to work independently

● We have gained knowledge using the frameworks

Cats University of Reykjavík

66

Sprint Four

Tasks

Total estimated hours: 76

Figure A1.7: Sprint four Tasks

Burndown Chart

Figure A1.8: Sprint four Burndown

The Easter vacation was during this sprint. We completed most of the tasks, leaving behind

creating the functionality behind the project hierarchy we had envisioned in the system. We

decided to move this into the next sprint since we wanted to discuss this further when we

were all present.

Cats University of Reykjavík

67

 Andri Sigurður Skúli Smári Total

Hours 11 22 38.5 24 95.5

 Table A1.5: Sprint four. Hours worked in sprint.

Retrospective

● What we did went well, however, the members of the team were all absent since there

was the Easter break in school.

● The sprint was three weeks long but we didn’t work on the project as much as we

would have liked.

● The team decided to split in two: front end and back end. We thought that this went

well and we want to continue doing this.

Cats University of Reykjavík

68

Sprint Five

Tasks

Total estimated hours: 137.5

Figure A1.9: Sprint five Tasks

Burndown chart

Figure A1.10: Sprint five Burndown

This sprint went well. The hours left over are mostly related to the Continuous Integration

task. We have spoken to the CTO at //JÖKULÁ and he is looking into what CI he prefers we

use and has offered to help us integrate it. Other than that only a few hours were left on

views.

Cats University of Reykjavík

69

 Andri Sigurður Skúli Smári Total

Hours 58 41.5 46 48.5 194

 Table A1.6: Sprint five. Hours worked in sprint.

Retrospective

● We decided to keep the team in two groups, one for front end and one for back end.

However this was not ideal because there were so many tasks left in the front end but

few in the back end so all of us switched to the front end team.

● Replicating the design went great.

● We had exams but despite that we managed to much more than in previous sprints.

● We did not set up CI in this sprint but we want to set it up in the next sprint.

Cats University of Reykjavík

70

Sprint Six

Tasks

Total estimated hours: 161

Figure A1.11: Sprint six Tasks

Burndown chart

Figure A1.12: Sprint Six Burndown

We were happy with the progress in this sprint. We are all at //JÖKULÁ working all day and

the progress is good. The system is taking the shape of the original vision both cosmetically

and functionally. The only tasks that we did not complete were CI and Form validation

Cats University of Reykjavík

71

thought they are both on their way. //JÖKULÁ chose CircleCi but we have been unsuccessful

at integrating it with their help. Questions arose about bringing in a CircleCi expert but we

decided to put that on hold to better focus on other tasks. We used part of the final days of

the sprint to walk through the system as different roles verifying the system and looking for

features that need improving on.

 Andri Sigurður Skúli Smári Total

Hours 48 57.5 54 55 214.5

 Table A1.7: Sprint six. Hours worked in sprint.

Retrospective

Negative

● We were unable to get our CI up and running

● Since we have all mostly been developing front end, documenting in the back end and

unit testing has been neglected

● Some of the functionality that should have been implemented in the back end was

implemented in the front end

Positive

● The sprint itself went well

● We were able to finish the tasks we set ourselves for the sprint early

● Because of that we were able to find time to test the system acting as different roles to

find possible bugs

● The system is taking shape both cosmetically and functionally

● We have all been able to apply all of our time to the Project

● Making communication and pair programming easy

● We have been able to keep to our work schedule

Cats University of Reykjavík

72

Sprint Seven

Tasks

Total estimated hours: 113

Figure A1.13: Sprint seven Tasks

Burndown chart

Figure A1.14: Sprint seven Burndown

In this sprint we had our final status meeting. The sprint was centered around it. We focused

on creating diagrams, updating reports and creating a story for the meeting. We also made

Cats University of Reykjavík

73

sure the system was up to spec for the meeting. We tried to go through the system to try and

expose any bugs. In the days after the meeting we finished any outstanding tasks, the only

ones we didn’t finish were a drag and drop feature (which was pretty optimistic but we wanted

to give it a go so we had it in the sprint) and filtering for projects and tasks.

 Andri Sigurður Skúli Smári Total

Hours 48.5 55 70.75 58 232.25

 Table A1.8: Sprint seven. Hours worked in sprint.

Retrospective

● Preparing for the status meeting went well

● The status meeting itself also went well.

● We had time to fix bugs, which went well.

● We had already finished many tasks before planning the sprint.

● All A tasks that we want to accomplish are done as well as a lot of B tasks

Cats University of Reykjavík

74

Sprint Eight

Tasks

Total estimated hours: 75

Figure A1.15: Sprint eight Tasks

Burndown chart

Figure A1.16: Sprint eight Burndown

Most of the sprint was used to finish our final report and for some last minute bug fixes of the

system. The sprint was only 5 days long since we had to hand in our final project on Friday.

Cats University of Reykjavík

75

Working on the report went well and we think we were able to finish all of the chapters in the

report that we set out to do. We were also able to fix a few minor things like bugs in the CSS

as well as validation on forms. We added some nice-to-have features like shortcuts to each

employees time report from the project manager view and made the financial officers

dashboard look better. All in all this sprint went well.

 Andri Sigurður Skúli Smári Total

Hours 42 42 45 42 171

Table A1.9: Sprint eight. Hours worked in sprint.

Retrospective

● Would have liked to spend more time on bug fixing however making the report was

time consuming.

● Finishing the report was not as fun as programming.

● We didn’t implement any new features in this sprint.

● Small things that needed fixing were fixed in this sprint.

● Would have liked to finish the final presentation as well in this sprint instead of doing it

over the weekend.

● Writing the report went well.

Cats University of Reykjavík

76

Appendix 2: Risk Analysis

We calculate the risk level of each risk by multiplying together the probability and severity of

it, each being a factor from 1 to 5. We estimated these factors together as a team, each team

member giving input to be as accurate as possible. We then decided what would be our

precautions for each risk as well as the responsible party.

If we encounter some of these risks later we will fill in the Fixed, When and How columns.

Risk level = Probability * Severity = (1 to 5) * (1 to 5)

Nr. Risk Severity Likeli

hood

Risk

level

Responsib

le Party

Precaution

1 Underesti

mating

user

stories

4 5 20 Everyone Learn from past sprints, and reevaluate

stories accordingly.

This could be done at the start of each

sprint

2 Not all

team

members

have the

same

understan

ding of

the

system

4 4 16 Everyone Make sure that the team is on the same

page. The team must strive to help each

other. Each team member must not be

afraid to ask

3 Other

courses

take too

much time

from the

project

4 4 16 Everyone Use the weekends for either the project

or the other courses /

4 The team

does not

3 5 15 Everyone Stay focused on sprint tasks, Scrum

master uses daily standup to enforce

Cats University of Reykjavík

77

stick to

sprint

tasks.

this.

5 Team

members

encounter

pitfalls

5 3 15 Everyone Get help from someone that is familiar

with the problem.Try another approach

to the implementation

6 The end

system

might not

be what

the

product

owner

expected.

5 2 10 Everyone Include the product owner as much as

possible. Get feedback often to realize

any potential design mistakes.

7 The

system

will not be

ready by

deadline

(All user

stories)

2 5 10 Everyone Stick to the plan. Get help when

encountering pitfalls.

Prioritize crucial features of the system

over secondary features

8 Difficulty

adapting

to a new

technolog

y

environm

ent

5 2 10 Everyone Each team member should ask for help

when necessary.

9 Team

cannot

meet

3 3 10 Everyone Try and reschedule to another day or

add another work day to a following

week.

Cats University of Reykjavík

78

10 Broken

code

pushed to

github

3 3 10 Everyone Fix the code and push again, let the

other team members know immediately

11 Sprint

task are

assigned

unevenly

between

team

members

4 2 8 Scrum

master

Letting each other know when assigning

a task. Assigning one task at a time.

12 Communi

cation

difficulties

between

team

members

4 2 8 Everyone Keeping our Daily standup meetings.

13 Teamme

mber is

unavailabl

e

1 5 5 Team

member

Team member works overtime to make

up for lost time

Table A2.1: Risk Analysis table

Risk Log

In this log we log all the risks we have encountered, when they were encountered and how

they were dealt with.

Risk Nr. Comment When Solution

3 Sprint 2 Took an extra day to catch up, it put us

back on schedule

3 Sprint 3 Happened again this sprint, we

decided to work overtime the rest of

the semester to make sure we would

Cats University of Reykjavík

79

finish everything

5 Encountered a pitfall when

setting up the project on a

remote server

Sprint 3 We got some help from the staff at

//JÖKULÁ in setting up on a server but

didn’t manage to finish it in this sprint.

We put the matter on hold.

13 There was an easter break

during sprint 4 and none of

us were at the same place

Sprint 4 We chose tasks that were easy to

implement on our own and postponed

tasks that would require help or

opinions from other members

1 We underestimated the

complexity of the front end

and appearance of the

application

Sprint 4 and 5 We split the team into two groups, one

group would purely focus on the front

end. Later all team members switched

to the front end group to finish it up

which worked nicely.

Table A2.2: Risk log

Cats University of Reykjavík

80

Appendix 3: Product Backlog

Backlog

nr.
Division

Priori

ty

Story

Points

Spri

nt

nr.

Category Story Comment Status %

1 Project A 1 0 Meeting
Meeting with //JÖKULÁ about the

project
 Done 100

2 Design A 3 0 Design
As a developer I want to me able to

see an UML diagram for the database
Database design Done 100

3 Project A 1 0 Meeting Introduction to project backlog Done 100

4 Programming A 13 Project As a user I should be able to login Authentication Done 100

5 Programming A 13 5 Server Database tables
Implement database in

code
Done 100

7 Programming A 5 0 Project Setup environment for development

Everything related to

the setup of the

environment for

development of the

project

Done 100

9 Programming A 3 2 Project Setup remote server

Setup a remote server

to host front-end and

back-end of system

Done 100

15 Project A 6
Documen

tation

Create risk analysis report/Progress

report
 Done 100

16 Project A 3 2
Documen

tation
Verkskipulag/Verklýsing Done 100

19 Programming A 13 Project

As a user I should be able to have

different roles with different

permissions

 Done 100

20 Programming A 2 Project
As an admin I should be able to create

users
 Done 100

21 Programming A 5 Project
As an admin I should be able to assign

roles to users
 Done 100

22 Programming A 2 Project
As an admin I should be able to create

divisions
 Done 100

Cats University of Reykjavík

81

23 Programming A 5 Project
As a salesman I should be able to

create offers

27 Programming A 20 Project

As a project manager I should be able

to create project (or confirm pending

projects)

Confirming pending

projects put on hold
 80

28 Programming A 8 Project
As a project manager I should be able

to assign task to employees
Within their divisions Done 100

33 Programming A 3 Project
As an employee I should be able to

see tasks assigned to me

Filtered by division. We

need to implement

some kind of folder

structure.

Done 100

35 Programming A 3 Project
As an employee I should be able to

mark task as done or % of done
 Done 100

36 Programming A 5 Project
As an employee I should be able to

log time worked on each task
 Done 100

48 Programming A 5 Project
As [All roles] I should be able to

retrieve time reports

Time reports for each

employee, for each

project etc.

Done 100

50 Programming A 1 Project
As a user I should be able to change

my password
 Done 100

53 Programming A 1 Project
As [All roles] I should be able to see

all my projects
 Done 100

54 Programming A 8 Project
As [All roles] I should be able to clock

in for each task

From home page and

detailed page
Done 100

60 Programming A 5 Project
As an admin should be able to see all

users and sort them
 Done 100

66 Programming A 1 Project
As a salesman I should be able to see

and change status of offers

Accepted, Pending,

Rejected

67 Programming A 8 Project
As a project manager I should be able

to add tasks to projects

Including description,

estimated hours,

deadline

Done 100

68 Programming A 1 Project
As a project manager I should be able

to change tasks
 Done 100

70 Programming A 2 Project
As a project manager I can edit

projects
 Done 100

72 Programming A 1 Project
As a project manager I should be able

to see projects (and tasks) ready for

A project should be

sent to to QA when all
Done 100

Cats University of Reykjavík

82

QA tasks are 100% done

73 Programming A 1 Project

As a project manager I should be able

to change the status of a project as

"QA AND DELIVERED"

Need to decide what to

do when done in QA
Done 100

74 Programming A 1 Project
As a project manager I can set a

project/tasks as "ready for invoice"
 Done 100

76 Programming A 3 Project
As [All roles] I should be able to filter

projects and tasks

79 Programming A 1 Project

As a project manager I should be able

to see assigned tasks for all

employees

 Done 100

86 Programming A 2 Project
As an employee I should be able to

see my tasks that are ready for QA
 Done 100

87 Programming A 8 Project

As an employee I should be able to

drag and drop tasks to mark them as

ready for QA

Needs drag and drop

feature
 80

88 Programming A 8 Project
As an employee I should be able to

see a more detailed view on a task

Description, hours

logged, (attachments)
Done 100

92 Programming A 3 Project

As [All roles] I should be able to see

my available functions in a navbar at

all times

 Done 100

93 Programming A 5 Project
As an HR I should be able to create,

edit or delete divisions
 Done 100

94 Programming A 2 Project
As an HR I should have an overview of

divisions

Project managers,

phone numbers etc
Done 100

95 Programming A 20 Project
As a PM I should be able to create a

task hierarchy within a project.

This hierarchy should

allow all combinations

of folders and tasks

Done 100

96 Programming A 3 Project
As a PM I should be able to create

customers
 Done 100

98 Programming A 8 Project
As an HR I should be able to create,

edit or delete Employees
 Done 100

200 Programming A 3 Project

As a salesman, FO, PM I should be

able to see and update contacts for

each customer

 Done 100

c Scripting A 5 Project Set up CI Continuous integration. Troub 50

Cats University of Reykjavík

83

Builds. bundles, tests,

deploys. The docker VM

is unable to execute

unit tests.

le

x Programming A 2 Project
As a salesman I should be able to

create customers
 Done 100

24 Programming B 1 Project
As a salesman I should be able to

send offers to customer

Offers put on hold for

the time being

25 Programming B 3 Project

As a salesman I should be able to

forward accepted offers to the

project manager

Have to implement

salesman

26 Programming B 1 Project

As a project manager I should be able

to see accepted offers (pending

projects)

Front-end, server,

routes and filtering

data

29 Programming B 13 Project
As a project manager I should be able

to see hours worked on a done tasks

See hours for each task

by employee, day, etc

(filtering)

Done 100

32 Programming B 1 Project
As a user I should be able to change

my password
 Done 100

34 Programming B 3 Project
As an employee I should be able
to see open tasks

Tasks that have not
been assigned to
anyone in the
project

37 Programming B 1 Project
As an HR I should be able to create

users
 Done 100

38 Programming B 1 Project
As an HR I should be able to assign

roles
 Done 100

39 Programming B 1 Project
As a FO I should be able to see

projects ready for invoice

Partially implemented

in the final project
 50

42 Programming B 3 Project
As a project manager I should be able

to change hours back in time
 Done 100

47 Programming B 3 Project
As a [All roles] I should be able to see

info about all projects
Status, etc. Done 100

55 Programming B 13 Project
As [All roles] I should be able to

access a file system for each project

58 Programming B 2 Project
As [All roles] I should be able to see a

list of employees
 Done 100

Cats University of Reykjavík

84

61 Programming B 8 Project
As a HR I should be able to see and

change employment contract info

C: Upload the contract

file itself. Possibly

notifications when

contracts expire, could

pose serious

complications

62 Programming B 2 Project
As a salesman I should be able to

change offers

Change price, tasks, if

the offer is monthly,

discount, which

customer etc.

63 Programming B 1 Project
As a salesman I should be able to

copy offers

75 Programming B 1 Project
As an FO I can mark the project as

"invoiced"
 Done 100

78 Programming B 3 Project
As [All roles] I should be able to see

past and future tasks

Future tasks meaning

assigned for another

day

 50

80 Programming B 2 Project

As a customer I should be able to see

an overview of my open projects,

filtered by months

81 Programming B 5 Project

As a customer I should be able to see

a timesheet of all done tasks in my

projects

83 Programming B 2 Project
As [All roles] I should be able to

input/edit information on customers

Except for employee,

HR
Done 100

84 Programming B 2 Project
As [All roles] I should be able to view

information on customers
 Done 100

89 Programming B 8 Project
As an employee/PM I should be able

to attach files to tasks

97 Programming B 2 Project

As a project manager i want to see

how many times the same task has

been sent into QA

 Done 100

6 Programming C 2 Project
As a developer I want to be able to

see code coverage
 Done 100

8 Programming C 3 Project
As a developer I want to develop

using CI

Setup continuous

integration in

development

 50

Cats University of Reykjavík

85

10 Programming C 2 Project Create seeder files
Fills the database with

fake data
Done 100

11 Project C 3
Documen

tation
Create Hand-Off documentation Done 100

12 Project C 3
Documen

tation
Create development guide Done 100

13 Project C 3
Documen

tation
Create instruction manual Done 100

14 Project C 3
Documen

tation
Create burndown chart

Both for each sprint

and the entire project
Done 100

17 Project C 3
Documen

tation
Context Diagram Done 100

18 Project C 3
Documen

tation
Component diagram Done 100

30 Programming C 8 Project
As a project manager I should be able

to validate hours on done tasks

Validate the hours

worked on a task for a

specific project

Done 100

31 Programming C 8 Project

As a project manager I should be able

to assess a task and either validate it

or send it back to the employee

 Done 100

40 Programming C 5 Project
As a customer I should be able to see

all approved hours for project

41 Programming C 3 Project

As a customer I should be able to

make comments projects/ time

logging

43 Programming C 2 Project

Employees and project managers

should be able to comment on

projects

Creates a conversation

on each project
Done 100

49 Programming C 1 Project

As [All roles except employee] I

should be able to see conditions and

agreements for offers

NEED INFO

51 Programming C 5
As a user I should be able to change

my personal settings
 Done 100

59 Programming C 3 Project
As a project manager I should be able

to see the skill set of each employee

Possibly visible for

more user roles

Cats University of Reykjavík

86

65 Programming C 3 Project
As a salesman I should be able to

export offers to pdf

85 Programming C 3 Project

As a customer I want to be able to

receive notifications on a project's

status

90 Programming C 8 Project
As [All roles] I should see

announcements on my home page

Possibly filtered by

role,projects etc.

94 Programming C 5 Project
As a customer I should be able to sign

up to get an account

97 Programming A 13 Project

Total:

396

Table A3.1: The product backlog for the project

Cats University of Reykjavík

87

Cats University of Reykjavík

88

	Introduction
	1 The Project
	1.1 Project Description
	1.3 About //JÖKULÁ
	1.4 Future of the system
	1.4.1 Considerations for future development.

	2 User groups
	Table 2.1: User groups

	3 System Overview
	3.1 Employee
	Figure 3.1: The employees homepage
	Figure 3.2: Expanded tiles employee homepage
	Figure 3.3: Employee task details
	Figure 3.4: Employee task details clocked in
	Figure 3.5: Employee task details clocked out
	Figure 3.6: Employee homepage clocked in
	Figure 3.7: Employee task details clocked in on other
	Figure 3.8: Employee ready for QA
	Figure 3.9: Employees time report
	Figure 3.10: Employee settings page
	Figure 3.11: Employee new profile picture
	Figure 3.12: Employee dashboard with new profile picture

	3.2 Project manager
	Figure 3.13: Project manager dashboard
	Figure 3.14: Project manager project view
	Figure 3.15: Project manager project view expanded
	Figure 3.16: Project manager specific project view
	Figure 3.17: Project manager ready for QA
	Figure 3.18: Project manager done in QA view
	Figure 3.19: Project manager done in QA task detail
	Figure 3.20: Project manager - accept hours
	Figure 3.21: Project manager employee view
	Figure 3.22: Project manager customer view
	Figure 3.23: Project manager edit customer
	Figure 3.24: Project manager new customer
	Figure 3.25: Project manager settings

	3.3 Human Resources
	Figure 3.26: Human resources homepage
	Figure 3.27: Human resources edit employee
	Figure 3.28: Human resources create employee
	Figure 3.29: Human resources divisions view
	Figure 3.30: Human resources update division
	Figure 3.31: Human resources create division
	Figure 3.32: Human resources settings

	3.4 Salesman
	Figure 3.33: Salesman homepage
	Figure 3.34: Salesman projects view
	Figure 3.35: Salesman projects expanded
	Figure 3.36: Salesman projects by customers
	Figure 3.37: Salesman specific project view
	Figure 3.38: Salesman project details
	Figure 3.39: Salesman customer view
	Figure 3.40: Salesman update customer
	Figure 3.41: Salesman create customer
	Figure 3.42: Salesman settings

	3.5 Financial officer
	Figure 3.43: Financial officer homepage
	Figure 3.44: Financial officer homepage expanded customers
	Figure 3.45: Financial officer timereport for invoice
	Figure 3.46: Financial officer settings

	3.6 Admin

	4 Development Environment
	4.1 Back end
	4.2 Front end
	4.3 Version Control

	5 Work Arrangement
	5.1 Methodology
	5.2 Scrum
	Table 5.1: Scrum Roles

	5.3 Sprint Arrangements
	5.4 Workplace Arrangements
	5.5 Meetings
	5.5.1 Scrum
	5.5.2 Other meetings
	Table 5.2: The teams weekly schedule.

	5.6 Time Logging
	5.7 Documentation
	5.7.1 API & Service Documentation
	Figure 5.1: API Documentation example

	5.7.2 Development Guide
	5.7.3 User Manual

	5.8 Ownership of the product

	6 Planning and Progress
	6.1 Sprint Schedule
	Table 6.1: Sprint Schedule.

	6.2 Requirements
	6.3 Distribution of working time
	Figure 6.1: Breakdown of hours worked per category.
	Table 6.2: Breakdown of hours worked per category.
	Figure 6.2: Breakdown of hours worked on the project by team members.
	Table 6.3: Breakdown of hours worked on the project by team members.

	7 System Design
	7.1 Entity Diagram
	Figure 7.1: Entity Diagram

	7.2 Container Diagram
	Figure 7.2: Container Diagram

	7.3 Component Diagram
	Figure 7.3: Component Diagram

	7.4 Flow Diagram
	Figure 7.4: Flow diagram

	8 Testing
	8.1 Unit tests
	8.2 Code coverage
	Figure 8.1: Shows code coverage for each route.
	Figure 8.2: Shows code coverage for each service.

	8.3 User testing

	9 Post mortem
	Final words
	Appendix 1: Sprint Details
	Sprint Zero
	Table A1.1: Sprint zero. Hours worked in sprint

	Sprint One
	Tasks
	Figure A1.1: Sprint one Tasks

	Burndown Chart
	Figure A1.2: Sprint one Burndown
	Table A1.2: Sprint one. Hours worked in sprint.

	Retrospective

	Sprint Two
	Tasks
	Figure A1.3: Sprint two Tasks

	Burndown Chart
	Figure A1.4: Sprint two Burndown
	Table A1.3: Sprint two. Hours worked in sprint.

	Retrospective

	Sprint Three
	Tasks
	Figure A1.5: Sprint three Tasks

	Burndown Chart
	Figure A1.6: Sprint three Burndown
	Table A1.4: Sprint three. Hours worked in sprint.

	Retrospective

	Sprint Four
	Tasks
	Figure A1.7: Sprint four Tasks

	Burndown Chart
	Figure A1.8: Sprint four Burndown
	Table A1.5: Sprint four. Hours worked in sprint.

	Retrospective

	Sprint Five
	Tasks
	Figure A1.9: Sprint five Tasks

	Burndown chart
	Figure A1.10: Sprint five Burndown
	Table A1.6: Sprint five. Hours worked in sprint.

	Retrospective

	Sprint Six
	Tasks
	Figure A1.11: Sprint six Tasks

	Burndown chart
	Figure A1.12: Sprint Six Burndown
	Table A1.7: Sprint six. Hours worked in sprint.

	Retrospective

	Sprint Seven
	Tasks
	Figure A1.13: Sprint seven Tasks

	Burndown chart
	Figure A1.14: Sprint seven Burndown
	Table A1.8: Sprint seven. Hours worked in sprint.

	Retrospective

	Sprint Eight
	Tasks
	Figure A1.15: Sprint eight Tasks

	Burndown chart
	Figure A1.16: Sprint eight Burndown
	Table A1.9: Sprint eight. Hours worked in sprint.

	Retrospective

	Appendix 2: Risk Analysis
	Table A2.1: Risk Analysis table
	Risk Log
	Table A2.2: Risk log

	Appendix 3: Product Backlog
	Table A3.1: The product backlog for the project

