
Spring 2018

Instructor: Birgir Kristmannsson

Cats
Development Guide

Andri Karel Júlíusson

Sigurður Marteinn Lárusson

Skúli Arnarsson

Smári Björn Gunnarsson

Cats Reykjavík University

1

Table of Contents

1 Getting Started ...3

1.1 Introduction .. 3

1.2 Prerequisites ... 3

1.3 Access Requirements .. 4

1.4 Installation Guide .. 4

2 Code Style Guidelines ...6

2.1 Indentation.. 6

2.2 Variable names ... 6

2.3 Function names ... 6

2.4 File names ... 6

2.5 CSS/Less .. 7

2.6 Other ... 8

3 Helpful Commands ..9

3.1 Running the application .. 9

3.2 Bookshelf.js ... 9

3.3 Unit Testing ... 9

3.4 Code Coverage .. 10

3.5 Documentation ... 10

4 Server Structure .. 11

4.1 Routes (/src/routes) .. 11

Cats Reykjavík University

2

4.2 Services (/src/services) ... 12

4.3 Tests (/src/tests) ... 12

4.4 Models (/src/models) .. 13

4.5 Utilites (/src/utils) ... 13

5 Client Structure .. 14

5.1 Routing (/client/router/index.js) .. 14

5.2 Views (/client/views) .. 14

5.3 Components (/client/components) .. 15

5.4 Utilities (/client/utils) .. 15

5.5 Assets (/client/assets) ... 15

Cats Reykjavík University

3

1 Getting Started

1.1 Introduction

The purpose of this guide is to assist developers that have just started working on the project in getting

it up and running and also in understanding the structure of it. This can of course be useful as a

reference point for other developers that have been working on the project longer. The guide also

contains coding rules and style guides.

1.2 Prerequisites

These are the dependencies you need to set up on your computer for the current development build of

the Cats system. This can be set up on any operating system but a Unix-based system is recommended.

• A git client

o For example this one

• Node.js run-time environment

o Can be downloaded here

o Use version 8.*.* (version 8.11.1 recommended)

• npm package manager

o Is part of Node.js installation so should be installed already

o Can be downloaded here (If for some reason it is not installed)

• A code editor

o For example Visual Studio Code

• PostgreSQL

o Download here

https://git-scm.com/downloads
https://nodejs.org/en/
https://www.npmjs.com/get-npm
https://code.visualstudio.com/
https://www.postgresql.org/download/

Cats Reykjavík University

4

1.3 Access Requirements

You will need access to:

• The GitHub repository of the system.

• Access to the corresponding account on CircleCI (To monitor the status of the latest deployed

release, this is possibly not necessary for all individuals working on the system)

1.4 Installation Guide

This section will detail how to install the system after all the prerequisites have been set up and all

access requirements have been fulfilled. In this section it is assumed that you are using a terminal.

To install the system, navigate to your desired directory and follow these steps:

To clone the project into that directory:

 git clone git@github.com:svennidal/jokula-v18.git

Switch to the dev branch and pull again:

 git checkout dev

 git pull origin dev

To install all dependencies for the project run the following command in the directory where

package.json is located (in the root of the newly cloned directory):

 npm install

To create the .env file that contains the environment variables for the system, run the following

command:

 cp .env-example .env

Create a user in Postgres. See this for reference.

Create one empty database using PostgreSQL (we recommend naming it jokula):

 psql -U [yourusername] //Login to psql

 create database jokula; //Create the database

 \q //Log out of psql

https://github.com/svennidal/jokula-v18
https://circleci.com/
mailto:git@github.com:svennidal/jokula-v18.git
https://www.postgresql.org/docs/9.1/static/app-createuser.html

Cats Reykjavík University

5

Open the .env file you created and fill out the corresponding variables. This includes:

• DB_USER: your postgres username

• DB_PASS: your postgres password

• DB_HOST: the name of the database you created

Navigate to the /src/config folder and run the following command:

 cp database-example.js database.js

Open the newly created database.js file and fill out these variables:

• host: localhost

• user: your postgres username

• password: your postgres password

• database: the name of your database

These config files are not stored on GitHub, only locally.

1.5 Running the system

Now there are only several things left to get the system running

To create the database tables run the following command:

 npm run migrate

To seed the database with mock data run the following command:

 npm run seed

Finally, to run the system open up two terminals and run the following commands:

Client in one terminal:

 npm run dev

Server in the other terminal:

 npm run server

Navigate to localhost:8001 and you should see the login screen for the system.

You can login using our admin account:

Username: admin@admin.is

Password: admin

Cats Reykjavík University

6

2 Code Style Guidelines

2.1 Indentation

• Indentation should always be 1 tab

2.2 Variable names

• Camel casing in server and client

o Example: variableName

• Use descriptive names

o Example: let projectToUpdate = project

• Constants should be uppercase

o Example: const CONSTANT_NUMBER = 42

• Types

o Always use const if the variable should not change and let when appropriate

2.3 Function names

• Camel casing in server and client

• Use descriptive names

• Use ES6 arrow syntax where possible (and feasible)

o Callback example:

 someMethod(parameter, (x) => {/* do something with x */})

2.4 File names

• Server

o Files in server should use Camel casing

▪ Examples: projectService.js, employeeRoute.js

o Folders in server should be lowercase only

• Client

Cats Reykjavík University

7

o Vue files should use Pascal casing

▪ Examples: CreateCustomer.vue, DivisionTable.vue

▪ Other files should use Camel casing

o Folders that are used to categorize different components and views should use Pascal

casing

▪ Example: components/UserComponents/UserComponent.vue

2.5 CSS/Less

• All styles that could possibly be reused should be placed in the global styles.less file

• In the global styles.less all styles should have corresponding block comments indicating which

element they affect

• When writing less code the hierarchy of the HTML document should be followed where possible

o Example:

<div class="container">

<div class="inner"></div>

</div>

.container{

 .inner{

 }

}

• All class names and identifiers should use Kebab casing

o Example: name-of-class

• All variables that can be reused should be stored in the global styles.less file

o Example: @color_blue: #185291

Cats Reykjavík University

8

2.6 Other

• Quotation marks

o Always use single quotes if possible, use double quotes if quotes are required within a

string. Example:

let str = "this is my string 'and this is the string within'"

o Use back-ticks (` `) and template literals when combining things into strings

▪ Example: `User number: ${user.number}`

▪ Further reading on template literals can be found here

o For Pug template code (used in Vue components) it is preferable to use double quotes

• Semicolons

o Always use semicolons to end statements (even though you think you don't have to)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Cats Reykjavík University

9

3 Helpful Commands

3.1 Running the application

To run the server of the system

 npm run server

To run the client of the system

 npm run client

3.2 Bookshelf.js

To run the client of the system

 npm run createmodel

Create a new Bookshelf migration

 npm run createmigration [nameofmigration]

Create a new database migration

 npm run createmigration

To run all outstanding migrations

 npm run migrate

To undo the last batch of migrations

 npm run rollbackmigration

To create a new seed file

 npm run createseed

To rollback a single migration then migrate to the latest migration and apply all seed files:

 npm run resetdata

To purge the database and run all the seeders

 npm run seed

3.3 Unit Testing

To seed the database and run all unit tests

 npm run seed

Cats Reykjavík University

10

To run tests without first seeding the database(use of this script is discouraged)

 npm run testonly

3.4 Code Coverage

Runs seed script then runs all unit tests and then generates a code coverage report(viewable through

the coverage folder). The output buffer is filled with coverage report information. Use 'npm run

seedtest' for viewing tests

 npm run test

To run a code coverage report and generate the output

 npm run report

3.5 Documentation

To generate API documentation (viewable in the documentation folder)

 npm run document

Cats Reykjavík University

11

4 Server Structure

This section will describe the structure of the server side of the system. The server is split into several

parts. Each part of the server will now be explained in a separate subsection. The server resides in the

/src folder.

4.1 Routes (/src/routes)

Each separate routes file is responsible for one part of the data being fetched from the server. For

example we have one employeeRoute, one projectRoute and so on.

The purpose of each route file is to determine which service to use to retrieve the information(or store

the information) the client wants, use that service and return the results back to the client.

The routes are accessed through the app.js file which is the entry point to the server.

A service should have the following format:

/**

 * @apiGroup someAPIGroup

 * @apiName The name of the route

 * @apiDescription A description of the route

 * @api {get} /someroute

 * @apiSuccess {Array} The return value of the route

 */

router.get('/', function(req,res,nex) {

 someService.findAll().then((result) => {

 res.send(result);

 }).catch((reason) => {

 res.send(reason);

 });

});

Cats Reykjavík University

12

4.2 Services (/src/services)

Each service is responsible for one part of the data being fetched and manipulated for the server.

A service should have the following format:

class MyService {

 /**

 * A comment describing the service

 * @returns {Array} The array the service returns

 */

 someMethod() {

 return new Promise((resolve, reject) => {

 someModel.fetchAll({

 }).then((model) => {

 resolve(model);

 }).catch((reason) => {

 reject(reason);

 });

 });

 }

4.3 Tests (/src/tests)

Each test file is responsible for testing different parts of the server. These are the tests that are executed

when the test command is run. The tests show whether the server is returning the correct results and

updating the data in the right manner.

A test file should have the following format:

describe('#### TestAPI, function (){

 describe('** GET /test **', () => {

 it('1. Describe what the test should do, (done) => {

 admin.get('/test).end((err, res) => {

 assert.equal(res.status, 200); //Assert that it works

 assert.equal(res.body.length,4);//Another assert

 done();

 });

 });

 });

});

Cats Reykjavík University

13

4.4 Models (/src/models)

The models are simple objects representing individual database rows. They also specifies any relations

to other models.

const someModels = bookshelf.Model.extend({

 tableName: 'tableName',

 idAttribute: 'idAttributeInTable',

 hasTimestamps: true,

 softDelete: true,

 otherModels: function() {

 return this.hasMany('otherModel');

 }

});

module.exports = bookshelf.model('someModels', someModels);

4.5 Utilities (/src/utils)

The server has several utilities. Utilities are simple functions that are used widely in the server and do

not belong to any particular part of it.

The utilities are the following:

• checkRole(roles)

o A middleware function. Takes as parameters an array of roles and checks if the user

sending the request has any of those roles. If the user does have any of the roles it

permits the request. Otherwise it informs the user it is Unauthorized for the action.

• checkAuthenticated()

o A middleware function. Checks if the user is logged in.

• createHash(password)

o Creates a hash from a password string that is passed in as a parameter.

https://expressjs.com/en/guide/using-middleware.html

Cats Reykjavík University

14

5 Client Structure

This section will describe the structure of the client side of the system. The client is split into several

parts. Each part of the server will now be explained in a separate subsection.

5.1 Routing (/client/router/index.js)

All routing is handled by Vue on the client side. This is done in /client/router/index.js and

declared in /client/main.js.

Adding new routes in /client/router/index.js is simple, simply import the component that you

want to render on that route and add the following to the routes array:

{

 path: '/some-path',

 name: ‚'NameOfView',

 component: ImportedComponent,

 beforeEnter(to, from, next) {

 assertAuthenticated(to, from, next);

 }

},

The beforeEnter is a method that allows you to control what happens before the route is entered. In

the example above it is used to assert whether the sender of the request is logged in.

5.2 Views (/client/views)

The views for the client side are contained in /client/views folder. The views represent a page in the

application and they are categorized in folders by their responsibility (employees, projects etc.) Views

that are not categorized(login, settings etc.) simply reside in the root of the views folder.

Cats Reykjavík University

15

5.3 Components (/client/components)

The components for the client side are contained in /client/components folder. The components

represent visual objects within the views. These can for example be tables, modals, navbars, table items

and so on. These are also categorized in folders by their purpose (Modals, Dashboards etc.)

5.4 Utilities (/client/utils)

The utilities are stored within /client/utils.

The client has several utilities. Utilities are simple functions that are used widely in the client and do not

belong to any particular part of it.

The utilities are the following:

• Validators:

o emailValidator(email)

▪ Takes a string as a parameter and verifies that it is a valid email.

o phoneValidator(phone)

▪ Takes a string as a parameter and verifies that it is a valid phone number

• Date formats:

o Reside in the dateFormats.js file

o Simple functions to convert datetime string into different formats

• Image converter

o Takes a binary value of an image and converts it to a data string that can be set as a src

for img tags in HTML

• Vuex store

o The Vuex store for the applications resides in the store.js file.

o Further reading on Vuex can be found here

5.5 Assets (/client/assets)

Resides in the /client/assets folder. The assets are simply all the resources needed for the application:

images, fonts, and stylesheets.

https://vuex.vuejs.org/en/getting-started.html

