
Tour
Guide
Translator
PASSED

Tour Guide Translator is an app that allows tour guides to talk in their language and the
tourists can listen to them in their language in real time. The tour guide creates a room for a
certain trip and the tourists join the room. Tourists can also send questions to the tour guide in
their language and they will be translated to the language of the tour guide. The app makes
sure that every tourist in the trip will be able to understand the tour guide.

Getting
Started

These instructions will get you a copy of the project up and running on your local machine for
development and testing purposes.

Prerequisites

To use our project, you'll need to install Node.js to install our dependencies and run our
scripts.

We built our project using a toolchain called Expo. You could either download the Expo XDE
from their GitHub or use their command line interface. We prefer using the XDE because it has
more relevant settings like "Development mode" for error handling and also supports using a
phone simulator. For more information regarding installation of the XDE and using simulators,
visit Expo Installation page.

https://circleci.com/gh/aevartg/Tour-Guide-Translator
https://nodejs.org/en/
https://expo.io/
https://github.com/expo/xde/releases
https://docs.expo.io/versions/latest/introduction/installation


Installing

For installing Expo command line interface type in your terminal:

npm	install	-g	exp

To run the project on your own phone/tablet, navigate to Tour-Guide-Translator folder in the
root of the project within your terminal and type:

npm	install	&&	exp	start

Now to run the app on your phone, you must first download the Expo app from the App Store
or Google Play Store and scan the given code (currently only android) or open the link
provided in the terminal .

Keys
for
services

We are using services that need some authorization so you'll need to get your hands on some
keys for billing and authorization purposes.

Amazon
Web
Services

We use Amazon Polly for Text to Speech.

First you'll need to login to the Amazon web services console. Then create a user with the
AmazonPollyFullAccess permission and then attach an access key to that user. To use your
key, navigate to our polly folder and input your keys to the config variable in both speak.js and
voices.js.

Google
Cloud
Platform

We use Google for our translations so you'll need to get keys from them.

First login to Google Cloud Platform and create an new project. Navigate to APIs & Services ->
Credentials. Under Credentials, you can press create credentials and create an API Key. Copy
that key and put it in the translate.js file as the variable apiKey.

Firebase

https://github.com/aevartg/Tour-Guide-Translator/blob/master/Tour-Guide-Translator/polly/speak.js
https://github.com/aevartg/Tour-Guide-Translator/blob/master/Tour-Guide-Translator/polly/voices.js
https://github.com/aevartg/Tour-Guide-Translator/blob/master/Tour-Guide-Translator/Google/translate.js


Firebase hosts our database and handles authentication.

To setup your own database, you'll need to:

Login to your firebase account

Create a new project

Enable email authentication under sign-in method

Get your key from web setup and put it in the config variable in App.js.

Put the database rules into Firebase. They can be found in rules.json.

Running
the
tests

We test our React Native components with Jest, using snapshot testing. The tests are located
in the __tests__ folder and they are divided into two files, one for screen components and one
for all other components. To run all tests use the command:

npm	test

And to update the snapshots:

npm	test	--	-u

Coding
style

Our coding rules are defined with ESLint and can be found in the .eslintrc file. The basis of our
rules are from RallyCoding but we customized them to our liking. We use Prettier to format the
code according to these rules each time we save a file. We recommend adding ESLint and
Prettier extensions to your code editor. We use Visual Studio Code.

Deployment

To deploy we use CircleCI for continous integration. We use workflows with CircleCI to deploy
automatically when we merge to our master branch. If our tests pass, CircleCI continues to

https://github.com/aevartg/Tour-Guide-Translator/blob/master/Tour-Guide-Translator/App.js
https://github.com/aevartg/Tour-Guide-Translator/blob/master/Tour-Guide-Translator/rules.json
https://facebook.github.io/jest/
https://github.com/aevartg/Tour-Guide-Translator/tree/master/Tour-Guide-Translator/__tests__
https://eslint.org/
https://github.com/aevartg/Tour-Guide-Translator/blob/master/Tour-Guide-Translator/.eslintrc
https://preview.npmjs.com/package/eslint-config-rallycoding
https://prettier.io/
https://code.visualstudio.com/
https://circleci.com/


deploy with Expo.

To get started, take a look at our CircleCI folder at the root of our project called .circleci. Inside
the folder we have our config.yml which CircleCI uses to run our custom scripts for testing and
deploying. The config file has two jobs: build and deploy. Both jobs run custom scripts which
are located at the root of our project in a folder called circleScripts. As you can see, our
workflow checks which branch we are pushing to and makes sure to deploy if we are on our
master branch.

Our circleScripts mostly run our scripts from package.json in the right order. For instance we
need to run expLogin first to be able to run expPublish.

To login to our Expo dummy account and publish from the command line, run from the Tour
Guide Translator folder:

npm	expLogin	&&	npm	expLogin

Contributing

There are two holy branches. First we have a master branch which needs approval from
CircleCI and a code review from another developer to be able to push code to master. Then
we have a Dev branch which is where we test newly merged code before making a pull
request to the master branch.

We use branch-by-feature to make sure we dont interfere and break others code. When
creating a new branch you must branch from Dev and make sure to pull from Dev frequently.

Authors

Bjartur
Fannar
Stefansson - Initial
work - bjarturfs

Gunnar
Birnir
Ólafssom - Initial
work - gunnarbirnir

Ævar
Þór
Gunnlaugsson - initial
work - aevartg

https://github.com/aevartg/Tour-Guide-Translator/tree/master/.circleci
https://github.com/aevartg/Tour-Guide-Translator/tree/master/circleScripts
https://github.com/aevartg/Tour-Guide-Translator/blob/master/Tour-Guide-Translator/package.json
https://github.com/bjarturfs
https://github.com/gunnarbirnir
https://github.com/aevartg

