
Towards lowering the overhead of
Open-Channel SSD

Freysteinn Alfreðsson

Thesis of 60 ECTS credits
Master of Science (M.Sc.) in Computer Science

January 2019

ii

Towards lowering the overhead of Open-Channel SSD

by

Freysteinn Alfreðsson

Thesis of 60 ECTS credits submitted to the School of Computer Science
at Reykjavík University in partial fulfillment

of the requirements for the degree of
Master of Science (M.Sc.) in Computer Science

January 2019

Supervisors:

Dr. Gylfi Þór Guðmundsson, Supervisor
Adjunct Professor, Reykjavík University, Iceland

Dr. Philippe Bonnet, Co-Supervisor
Full Professor, IT University, Denmark

Committee Members:

Dr. Björn Þór Jónsson, Committee Member
Associate Professor, ITU, Denmark

Dr. Marcel Kyas, Committee Member
Assistant Professor, Reykjavík University, Iceland

Copyright
Freysteinn Alfreðsson

January 2019

iv

Towards lowering the overhead of Open-Channel SSD
Freysteinn Alfreðsson

January 2019

Abstract

The revolutionary change that Solid State Disks (SSDs) have introduced to the storage
space industry has added many new challenges for data-driven application developers when
developing execution planners. Traditionally the application, operating system, and storage
controller have all separately handled the storage access pattern optimization and scheduling.
Despite successful use for decades, due to the predictable behavior of the spinning disks,
finding similar guidelines for optimizing access to SSDs has proven much harder. The
problem is in part due to their increased performance but mostly due to their unpredictable
behavior and black box nature. The key to addressing this issue is to open up the black-box,
exposing the internal complexity of maintaining a healthy SSD, such that the schedulers can
take the actual cost of all operations into account in their planning. The first contribution of
this thesis is a user-space library called LightNVM-Direct that uses the Open-Channel SSD
protocol to expose the internals of a compliant SSD device. The direct communication allows
LightNVM-Direct to bypass the kernel entirely and eliminate all of its overhead. This bypass
leaves the optimization and scheduling solely in the hands of the developer of the data-driven
user-space application. We used the uFLIP-OC benchmark to evaluate LightNVM-Direct
using an SSD device called Dragon Fire Card. The results were inconclusive, however,
as little gain was observed in overall throughput despite the lower kernel overhead. The
second contribution is a proposal of a new protocol we called RNVMe, that adds near-data
processing capabilities by allowing part of the application to run on the SSD in the form
of Remote Procedure Calls (RPC). This RPC mechanism would enable applications to run
simple functions, such as filters and data pre-processing, before delivering the final result to
the host computer.

Umstangs lágmörkun á Open-Channel SSD
Freysteinn Alfreðsson

janúar 2019

Útdráttur

Solid State Diskar (SSD) hafa umbylt gagnageymsluiðnaðinum en hafa einnig kynnt til sög-
unar nýjar áskoranir fyrir forritara sem búa til aðgangsstýringar. Sögulega hafa forritin,
stýrikerfið og diskarnir séð um að hámarka afköst gagnaaflesturs af diskum óháð hvert öðru.
Síðustu áratugi hefur þetta fyrirkomulag fyrst og fremst gengið upp vegna þess hve reglu-
bundin og fyrirsjáanleg hegðun hefðbundinna mekanískra diska er. Ekki hefur gengið jafn
vel að finna sambærilega hlutverkaskiptingu fyrir nýju SSD diskana. Vandamálið er í raun
þríþætt: Fyrst þurfti að uppfæra mikið af hugbúnaðinum þar sem að afkastageta diskanna
varð fljótt mun meiri en nokkur hafði gert ráð fyrir; Mun alvarlegri vandi liggur hinsvegar í
því að erfiðara er að spá fyrir um hegðun diskanna og einnig því að diskarnir eru í raun lokað
kerfi sem enginn nema framleiðandinn veit nákvæmlega hvernig virkar. Þetta gerir það að
verkum að aðgangsstýringarnar á efri lögum eiga erfitt með að spá fyrir um kostnað aðgerða
og því er erfitt um vik að skipuleggja aðgangsstýringar. Open-Channel SSD er viðbót við
NVMe staðalinn sem opnar ámöguleika fyrir SSD framleiðendur að svipta hulunni af hegðun
diska þeirra. Að opna á bein samskipti við diskana er ekki nóg til að leysa vandann því að-
gangsstýringarnar á efri lögunum taka á sig bæði aukið flækjustig og aukna ábyrgð. Í þessari
ritgerð eru lögð drög að því að lágmarka umstangið og kostnaðinn við að útfæra aðgangs-
stýringu í notendaforriti. Fyrsta framlag okkar er að klippa út stýrikerfið (kjarnann) með því
að útfæra og prófa forritasafn sem við köllum LightNVM-Direct. Með beinum samskiptum
milli notendaforrits og SSD disks getur LightNVM-Direct farið framhjá stýrikerfiskjarnan-
um og losað þannig við allan kostnað og umstang sem því fylgir. Þetta fyrirkomulag færir
aðgangsstýringuna alfarið í hendur notendaforritsins, án afskipti hinna lagana. Við notuðum
uFLIP-OC til að bera saman frammistöðu LightNVM-Direct og hefðbundari útfærslu sem
kallast LightNVM. Seinna framlag ritgerðarinnar er tillaga að nýjum samskiptastaðli sem
við köllum RNVMe, sem veitir örgagnavinnslu eiginleika á gagnageymslunni. Þetta er gert
með því að leyfa hluta af forritinu að keyra á SSD gagnageymslunni sem Remote Procedure
Call (RPC). Þetta gerir forritum kleift að kalla á einfaldar aðgerðir sem geta síað og forunnið
gögnin áður en þeim er skilað til tölvunnar.

vi

Towards lowering the overhead of Open-Channel SSD

Freysteinn Alfreðsson

Thesis of 60 ECTS credits submitted to the School of Computer Science
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science (M.Sc.) in Computer Science

January 2019

Student:

Freysteinn Alfreðsson

Supervisors:

Dr. Gylfi Þór Guðmundsson

Dr. Philippe Bonnet

Committee Members:

Dr. Björn Þór Jónsson

Dr. Marcel Kyas

viii

The undersigned hereby grants permission to the Reykjavík University Library to reproduce
single copies of this Thesis entitledTowards lowering the overhead of Open-Channel SSD
and to lend or sell such copies for private, scholarly or scientific research purposes only.
The author reserves all other publication and other rights in association with the copyright
in the Thesis, and except as herein before provided, neither the Thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatsoever
without the author’s prior written permission.

date

Freysteinn Alfreðsson
Master of Science

x

xi

Contents

Contents xi

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1

2 Background 3
2.1 Non-Volatile Memory Express (NVMe) 3

2.1.1 DMA memory . 4
2.1.2 NVMe queues . 4
2.1.3 The queue structure and notification doorbells 5
2.1.4 NVMe commands . 6

2.2 User-Space NVMe . 6
2.2.1 Requirements . 7
2.2.2 Available user-space NVMe libraries 10
2.2.3 The NVMeDirect framework . 11
2.2.4 Drawbacks of the Kernel bypass 12

2.3 Solid State Disk (SSD) . 13
2.3.1 Flash Translation Layer (FTL) . 14
2.3.2 Open-Channel SSD . 15
2.3.3 liblightnvm . 15
2.3.4 Dragon Fire Card . 16
2.3.5 OX Controller . 17

2.4 Benchmarking . 19
2.4.1 uFLIP . 19
2.4.2 uFLIP-OC / Fox . 19

3 Debugging Framework 21
3.1 OX run-time command line . 21
3.2 Discussion . 24

3.2.1 Future Work . 24

4 LightNVM-Direct: A liblightnvm Kernel Bypass 27
4.1 Architecture . 27

4.1.1 Changes to liblightnvm . 27
4.1.2 Changes to NVMeDirect . 28

xii

4.1.3 Control Path . 29
4.1.4 Data Path . 29

4.2 Experiments with LightNVM-Direct . 29
4.2.1 Experimental Setup . 30
4.2.2 Evaluation 1: Context-switching 30
4.2.3 Evaluation 2: Read Throughput 31
4.2.4 Evaluation 3: Write Throughput 32
4.2.5 Evaluation 4: Thread Throughput 32
4.2.6 Evaluation 5: Latency . 34

4.3 Discussion . 35
4.3.1 Sources of Complexity . 36
4.3.2 Future Work . 36

5 AppNVM 39
5.1 Definition and Categorization of AppNVM 40

5.1.1 NVMe Rule Engine (NVMe RE) 40
5.1.2 Thin-AppNVM . 40
5.1.3 NVMe Remote Procedure Calls (NVMe RPC) 41
5.1.4 NVMe Inter-Process Communication (NVMe IPC) 41
5.1.5 Full AppNVM . 42

5.2 RNVMe: Our proposal for a NVMe RPC protocol 43
5.2.1 The RNVMe command . 43

5.3 OX RNVMe Architecture . 45
5.3.1 The OX RNVMe Command Handler 45
5.3.2 The OX RNVMe Modular Backend 47

5.4 The AppNVM Upload Protocol . 48
5.5 Security . 50

5.5.1 Preventing malicious DMA transfers from the host 50
5.5.2 Preventing malicious uploads of AppNVM 50

5.6 Discussion . 51
5.6.1 Future Work . 51

6 Conclusion 53

Bibliography 55

xiii

List of Figures

1.1 Overview of the communication pathway of the I/O traffic from user-space
applications down to the storage device(s). In figure (a) we see the standard
I/O traffic passing through the operating system’s API. In (b) we see how the
Kernel can be bypassed to reduce overhead. Finally, in (c) we depict how we can
delegate part of the application logic to the storage device for near data processing. 2

2.1 NVMe queues are DMA buffers used by the host to submit commands to the
NVMe device. The queues are circular buffers, where the submission queue is
used by the host to submit commands, and the completion queue is used to notify
the host of completed commands. The host keeps track of the tail pointer of the
submission queue, and the NVMe device keeps track of the head pointer of the
completion queue. 5

2.2 NVMe devices have one admin queue which the host uses to create submission
and completion queues. The queues are DMA memory buffers which the host
uses to send I/O commands to the NVMe device. This Figure is based on a
Figure by Picoli [5] . 5

2.3 The NVMe command entries written to the submission queue by the host are
64-bytes, or 16 double words (DWORDs), where all NVMe commands have the
same format for the first two DWORDs. However, the opcode decides the format
of the rest of the DWORDs. 8

2.4 NVMe completion entries are written by NVMe device to the completion queue.
These entries are 32-bytes where all DWORDs follow the same standard format. 8

2.5 NVMeDirect proc file-system hierarchy is used by the user-space application to
create new NVMe queues and to map them into its virtual memory address space
using ioctl function calls. 11

2.6 Open-Channel SSD NVMe Command structure has the same structure for read,
write, and erase commands. The PRP entries are pointers to either data to be
read or written to the NVMe device depending on the type command submitted.
The PPA list contains the list of NVMe physical addresses which the command
is going to operate. 16

2.7 All of our work and experiments were conducted on the Dragon Fire Card. . . . 17
2.8 This Figure shows the internals of theOXcontroller as depicted by Picoli [5]. The

OX Controller is the first open source Open-Channel SSD firmware controller.
OX supports multiple types of FTLs implementations and different types of
media managers for different types of storage technologies. 18

3.1 OX command line showing the help system 23

xiv

4.1 We separated the control and data paths in our implementation of NVMeDirect.
This separation enabled us to use the nvme driver for admin commands and to
use a kernel bypass for I/O commands. 28

4.2 Both figures show context switches through all the experiments in logarithmic
scale, where (a) is the context switches using the standard liblightnvm and (b)
uses our kernel bypass, LightNVM-Direct. 30

4.3 The bar charts show combined experiments using 100% read throughput of
pattern engines 1, 2, and 3, for both Standard and Direct experiments. 32

4.4 The bar charts show write throughput using pattern engine 1 using 100% write
operations. 33

4.5 The bar charts show combined experiments using 100% write throughput using
pattern engines 2 and 3. 33

4.6 The area chart shows the throughput of 8 threads during 100%write using pattern
engine 2 with and without a kernel bypass. 34

4.7 The area chart shows the throughput of 16 threads during 100% write using
pattern engine 2 with and without a kernel bypass. The chart is more erratic in
(b) because the thread count is higher than the number of CPU cores. 34

4.8 The scatter plot shows the latency of writes during experiments using pattern
engine 2 running with eight threads. 35

4.9 The scatter plot shows the latency of writes during experiments using pattern
engine 2 running with sixteen threads. Writes in (b) show multiple outliers that
have up to an order of magnitude worse latency than in (a). 35

5.1 RNVMe is an NVMe RPC protocol that allows the application programmer to
call subroutines that are capable of NDP on the NVMe device. By moving part
of the application specific functionality onto the NVMe device, we are not only
bypassing the kernel but the overhead of the PCIe layer as well. 39

5.2 The proposed RNVMe command identifies the RPC function using the combined
values of the vendor and the function fields. The rest of the fields are used for
parameters to the function and return values. The parameters and return values
can either be a 64-bit value or a pointer to a DMA buffer. 45

5.3 This Figure shows the internals of the OX controller as depicted by Picoli [5]. It
has been modified to show the design change needed to OX to add a new RPC
backend that is capable of submitting multiple I/O requests to the internal queues
which are not visible to the host. Each RPC command can result in this backend
submitting and completing multiple commands to complete an RPC NVMe and
sending a completion entry back to the host. 46

xv

List of Tables

2.1 This table lists the most common NVMe admin commands. It is only possible
to send these commands to the admin queue. 6

2.2 The NVMe BAR is the main interface for interacting with the NVMe device.
The ASQ and ACQ are used to map the Admin submission and completion
queues to DMA buffers, and the doorbell registers from addresses 1000h and
upwards are used to notify the NVMe device of new NVMe commands and
handled completed commands by the host. 7

2.3 This table lists the most common NVMe commands. It is only possible to submit
these commands to I/O submission and completion queues. 8

2.4 The user-space application uses these NVMeDirect ioctl attributes when it inter-
acts with the /proc/nvmed/nvme0n1/admin file. 12

2.5 Whenever the user-space application creates a new queue using the NVMeDirect
kernel module, it creates a directory in the proc file-system with the queues
identification number using the sq, cq, and db files. These files are then used
by the user-space application to map the PCIe registers and submission and
completion queue DMA buffers into the applications virtual address space. . . . 12

2.6 New liblightnvm backends need to implement the interface listed in this table.
It is the core interface used by the liblightnvm framework to interact with its
backends and therefore the NVMe device. 16

3.1 The table lists the commands in the main category of the debugging command
line. 22

4.1 The table lists all parameters and values related to our experiments that we
ran with Fox. We skipped all the combinations where the threads were less
than channels multiplied by LUNs. These settings resulted in 270 different
experiments in total. 29

4.2 Experiments are labeled Direct if they use LightNVM-Direct and Standard if
they use the traditional liblightnvm. 29

4.3 The table shows the latency statistics for the experiments in Figures 4.8 and 4.9.
The experiments used pattern Engine 2 with 100%writes using eight and sixteen
threads. 36

5.1 The RNVMe command is to support calling a function on the NVMe device
with multiple parameters. These parameters can either be DMA buffers or
64-bit numbers. 44

xvi

xvii

List of Abbreviations

AMD-Vi AMD’s I/O Virtualization Technology
ASIC Application-Specific Integrated Circuit
AppNVM Application NVMe
BAR (PCIe) Base Address Register
CQ Completion Queue
DFC Dragon Fire Card
DMA Direct Memory Access
DPDK Data Plane Development Kit
ECC Error-correcting code
FPGA Field-Programmable Gate Array
FTL Flash Translation Layer
Intel VT-d Intel’s Virtualization Technology for Directed I/O
LBA Logical Block Address
LUN Logical Unit
MLC Multi-Level Cell (NAND flash)
MTRR Memory Type Range Register
NDP Near-Data Processing
NVM Non-Volatile Memory
NVMe NVM Express
NVMf NVMe Over Fabrics
OC-NVMe Open-Channel SSD NVMe
OOB Out-Of-Band
PCB Printed Circuit Board
PCIe Peripheral Component Interconnect Express
PPA Physical Page Address
PRP Physical Region Page
RPC Remote Procedure Call
SAS Serial Attached SCSI
SATA Serial ATA
SCSI Small Computer System Interface
SPDK Storage Performance Development Kit
SQ Submission Queue
SSD Solid State Disk
SoC System on a Chip
UIO User-space I/O
VFIO Virtual Function I/O
XFI (10 Gigabit Small) Form Factor Pluggable
uFLIP Understanding Flash I/O Patterns

xviii

1

Chapter 1

Introduction

Data-driven application developers have been facing new challenges with today’s revolution-
ary changes in storage technologies and the growing need for a storage of vast quantities of
data. Traditionally, three separate layers have been responsible for storage access scheduling.
The application, the operating system, and the on-storage controller of the storage device.
Data-driven applications are designed to predict ahead of time their extensive access patterns
with carefully designed execution planners. Operating systems and storage controllers, on
the other hand, lack such foresight and are designed to deal with general access patterns
and to make ephemeral plans. With the robust performance of new storage technologies, it
has become apparent to data-driven application developers that these shortsighted schedulers
have both become a bottleneck and have started to counteract the applications execution plan-
ners. Traditional database systems have been dealing with such issues for decades but what
has changed in recent years is the sophistication of the devices and their storage controllers.

The most prevalent storage technology is the Solid State Disk (SSD) which has been
phasing out the traditional spinning magnetic disks that dominated the market for decades.
SSDs have introduced orders of magnitude better performance and have virtually eradicated
the penalty of random access patterns. Despite these salient features, it has proven to be
hard for data application developers to optimize for the SSDs, due mostly to the apparent
differences in both physical characteristics and on-device scheduler implementations. These
differences vary wildly between both vendors and SSDs models and therefore no common
optimization techniques have been established. The significant shift from the previous
technology is not only due to the SSD having more complex storage logic and more advanced
capabilities, but also in the fact that the advancement in cheap chipset technologies has
allowed the enterprise SSDs themselves to take on the characteristics of a fully functional
computer.

Various solutions to these performance bottleneck problems have been explored [1],
such as eliminating operating system overhead by bypassing the operating system kernel
and communicating directly with the SSD from the application [2] [3]. Another solution
was to expose the internal characteristics of the SSD by creating a new type of SSD called
Open-Channel SSD [2] [4]. This new SSD allowed the application developer to directly
control the on-device scheduling, effectively making the application’s execution planner able
to optimize fully down to the device level.

In our research, we have explored two avenues of optimizing the I/O access. First, we
implemented and evaluated bypassing the operating system, allowing a user-space application
to directly access the storage device or device controller via the Open-Channel SSD standard.
Second, we propose a new way of doing near data processing (NDP) by moving part of the
application logic to the storage medium.

2 CHAPTER 1. INTRODUCTION

(a) Traditional NVMe (b) Kernel bypass (c) AppNVM

Figure 1.1: Overview of the communication pathway of the I/O traffic from user-space
applications down to the storage device(s). In figure (a) we see the standard I/O traffic
passing through the operating system’s API. In (b) we see how the Kernel can be bypassed to
reduce overhead. Finally, in (c) we depict how we can delegate part of the application logic
to the storage device for near data processing.

The three parts of Figure 1.1 present an overview of the topics addressed in this thesis. The
traditional enterprise SSDs use theNVMe communication protocolwhich exposes the SSDas
a block device and conceals its physical characteristics, where it is the vendors’ responsibility
to make sure that the flash chips wear evenly and to utilize the internal parallelism of the
SSDs according to their access pattern scheduler.

In our work, we used an Open-Channel SSD which extends the NVMe standard and
exposes the internal characteristics of the device and moves the burden of wear leveling
and access pattern scheduling to either the operating system or the application. Figure 1.1a
shows the traditional way of communicating with an SSD where all communication from
the application goes through the operating system kernel. Our contributions in this thesis as
follows: First is the LightNVM-Direct, a kernel bypass for open-channel SSD.We also wrote
a debugging framework to make this work easier. The second contribution is the AppNVM
is a remote procedure call (RPC) system thatwill allow near data processing (NDP) to be
done on the storage device.

The rest of this thesis is structured as follows: In Chapter 2 we cover the background
material that we build our work upon, such as the storage technology (SSD), the communi-
cation protocols (NVMe) and our evaluation tools. This is followed by a short description
of the debugging framework we developed in Chapter 3. In Chapter 4 we describe our first
major contribution, the LightNVM-Direct bypass of the Kernel. In Chapter 5 we define our
second contribution, the AppNVM. AppNVM is a remote procedure call (RPC) system that
will allow near data processing (NDP) to be done on the storage device. Finally we end this
thesis by drawing conclusions in Chapter 6.

3

Chapter 2

Background

In this chapter, we will go through the background needed for our contributions of bypassing
the kernel for Open-Channel SSD based NVMe devices, and for our proposal of a newNVMe
based protocol to minimize data movement by moving part of the application logic to the
NVMe device. We have structured our background into four different parts.

1. NVMe: We start with the NVMe protocol, the main SSD protocol used today. NVMe
is designed to incorporate the high parallelism that SSDs are capable of, as well as
their high throughput, and thus, NVMe resides directly on the CPU’s main bus for
maximum performance.

2. User-space NVMe: After introducing the internals of NVMe, we examine what is
needed to communicate with an NVMe device directly from a user-space application.
We also review the limitations of bypassing the operating system kernel, and the
solutions that already exist to provide a bypass for NVMe devices.

3. SSD: Next we review the internals of the SSD, highlighting the challenges imposed
on storage developers and how Open-Channel SSD was designed to help deal with
those challenges. We describe the Dragon Fire Card (DFC), a fully programmable
NVMe device that we used for our implementation of the kernel bypass and our
benchmark experiments, as well as its companion firmware OX, the first open source
Open-Channel SSD firmware, which we ran on the DFC NVMe.

4. Benchmarking: Lastly we introduce the uFLIP-OC benchmark which is a benchmark
for to identify the I/O patterns best suited for a given Open-Channel SSD. In our work
we used a tool called fox which is capable of implementing the uFLIP-OC benchmark
to evaluate our results. We compared our implementation to the traditional one by
compiling two versions of the fox program, one using our kernel bypass, and another
using the traditional backend. We ran the same benchmark on both of versions of fox
and to evaluate our results.

2.1 Non-Volatile Memory Express (NVMe)
The NVMe communication protocol is the main SSD protocol used today. It was designed to
replace the traditional spinning disks protocols SATAandSAS.Unlike the previous protocols,
the NVMe protocol communicates directly through the Peripheral Component Interconnect
Express (PCIe) bus, which is a high-speed serial computer expansion bus standard used to
communicate with devices attached to the host computer.

4 CHAPTER 2. BACKGROUND

From a system programmer’s perspective, the programmer can read and write directly
to the PCIe device registers using regular memory addresses. This memory representation
is made possible by the I/O memory management unit (IOMMU) which is responsible for
mapping the PCIe device registers to physical memory addresses. The PCIe registers of a
device mapped to physical memory are together called the PCI Configuration Space. This
configuration space is standardized to make it easy for Operating Systems to identify the
device and for drivers to find their driver specific registers, called the Base Address Registers
(BARs). Each BAR points to a region of device-specific registers which represent the main
interface to the device’s functionality used by driver programmers.

For our contribution, we only need to focus on the most relevant BAR register. The
NVMe standard defines a mandatory memory layout, pointed to by the main BAR that all
NVMe devices must implement. This layout contains special registers that manage queues
that are used to send administration and I/O commands.

2.1.1 DMA memory
Direct Memory Access (DMA) is a mechanism to offload work from the CPU by allowing
the device to access the physical memory of the host independently from the CPU. In modern
high-speed devices, it is used to transfer data to and from the main physical memory and the
device. When either the device or the CPU has prepared the data into a DMA buffer, they
can notify each other that the data is ready for consumption. The CPU sends notifications
by writing into a notification register on the device, while the device signals the CPU by
signaling an interrupt.

2.1.2 NVMe queues
The NVMe standard’s primary means of communicating with the NVMe device is through
two queue types called submission and completion queues. The host uses the submission
queue to send NVMe commands to the NVMe device, and the NVMe device uses the
completion queue to notify the host of completed NVMe commands. Both of these queues
are DMA buffers and are circular lists for NVMe commands, as seen in Figure 2.1.

Since the queues are a communication abstraction that does not present any physical
characteristics of the device, the driver programmer can create as many queues as needed.
This decision could be one queue per CPU core or one queue per thread, depending on the
requirements and design. In our design, we decided to create one submission and completion
queue per pthread.

2.1.2.1 Admin queue

The admin queue is a particular queue which is only used to send administrative commands
to the NVMe device and is the only queue that is always available. This queue is identical to
every other queue, apart from having the lowest identity number, zero.

One of the primary functions of the admin queue is to create a new submission and
completion queues. These queues are created by submitting the create submission queue and
the create completion queue commands. Table 2.1 lists most of the standard administration
commands and Figure 2.2 shows the communication flow through those queues.

2.1. NON-VOLATILE MEMORY EXPRESS (NVME) 5

Figure 2.1: NVMe queues are DMA buffers used by the host to submit commands to the
NVMe device. The queues are circular buffers, where the submission queue is used by the
host to submit commands, and the completion queue is used to notify the host of completed
commands. The host keeps track of the tail pointer of the submission queue, and the NVMe
device keeps track of the head pointer of the completion queue.

Figure 2.2: NVMe devices have one admin queue which the host uses to create submission
and completion queues. The queues are DMA memory buffers which the host uses to send
I/O commands to the NVMe device. This Figure is based on a Figure by Picoli [5]

2.1.3 The queue structure and notification doorbells
The submission and completion queues aremade up of two distinct parts: theDMAbuffer and
its associated register in the NVMe BAR. Table 2.2 shows the two registers, the submission
queue tail doorbell, and the completion queue head doorbell, which are owned by each queue
in the BAR. These doorbells are used to notify the SSD when the host has either inserted
new entries into the submission queue DMA buffer or processed one or more completion
entries from the completion queue DMA buffer. The host notifies the NVMe device about
changes by writing the location of the head and tail pointers to their respective registers as
seen in Figure 2.1.

6 CHAPTER 2. BACKGROUND

Opcode Command
00h Delete I/O Submission Queue
01h Create I/O Submission Queue
04h Delete I/O Completion Queue
05h Create I/O Completion Queue
06h Identify
09h Set Feature
0Ah Get Feature

Table 2.1: This table lists the most common NVMe admin commands. It is only possible to
send these commands to the admin queue.

The SSD shares the DMA queues with the host when the host sends the size and the
physical address pointer to the queues using the create submission queue and create comple-
tion queue commands. These commands make sure that both the host and the NVMe device
agree on the DMA buffers.

2.1.4 NVMe commands

The NVMe standard defines 64-byte command entries for the submission queue and 16-byte
completion queue entries. The standard further breaks down those bytes into 16-bit words;
however, most written work and code refers to double words or DW for short.

Figure 2.3 shows the structure of a typical NVMe submission command. All commands
share the same format for the first two DW. The opcode field tells the NVMe device which
command is being submitted and in turn what fields to expect in DW four to thirteen.
Table 2.3 lists the three most common NVMe commands.

The completion entries are 16-bytes or four DW and contain five fields, as shown in
Figure 2.4. The status field holds both the return value of a completed command and a phase
bit. This phase bit is used to tell the driver if the completed command is an old command
from the last circulation, and is flipped by the NVMe device every time it needs to move the
head pointer to the beginning of the circular DMA buffer.

2.2 User-Space NVMe
A popular method to improve the performance of high-speed devices has been to bypass the
kernel and write directly to the device from user-space, as was depicted in Figure 1.1b. This
method starts to become beneficial when the round-trip time of an NVMe command is less
than a context switch quantum. Bypassing the kernel was first studied on network devices
when their throughput exceeded the capacity of the CPU and has now been explored by
researchers on SSDs for the same reasons. An excellent example of this is the NVMeDirect
library developed by Kim, Lee, and Kim, which we decided to base our bypass on, and
the open source solutions developed outside of academia, such as Intel’s SPDK [4] [6] and
Micron’s unvme [7].

2.2. USER-SPACE NVME 7

Start End Symbol Description
00h 07h CAP Controller Capabilities
08h 0Bh VS Version
0Ch 0Fh INTMS Interrupt Mask Set
10h 13h INTMC Interrupt Mask Clear
14h 17h CC Controller Configuration
18h 1Bh Reserved Reserved
1Ch 1Fh CSTS Controller Status
20h 23h NSSR NVM Subsystem Reset (Op-

tional)
24h 27h AQA Admin Queue Attributes
28h 2Fh ASQ Admin Submission Queue

Base Address
30h 37h ACQ Admin Completion Queue

Base Address
... Optional and reserved fields
1000h 1003h SQ0TDBL Submission Queue 0 Tail

Doorbell (Admin)
1000h + 1·(
4 << CAP.DSTRD

) 1003h + 1·(
4 << CAP.DSTRD

) CQ0HDBL Completion Queue 0 Head
Doorbell (Admin)

1000h + 2·(
4 << CAP.DSTRD

) 1003h + 2·(
4 << CAP.DSTRD

) SQ1TDBL Submission Queue 1 Tail
Doorbell

1000h + 3·(
4 << CAP.DSTRD

) 1003h + 3·(
4 << CAP.DSTRD

) CQ1HDBL Completion Queue 1 Head
Doorbell

1000h + 4·(
4 << CAP.DSTRD

) 1003h + 4·(
4 << CAP.DSTRD

) SQ2TDBL Submission Queue 2 Tail
Doorbell

1000h + 5·(
4 << CAP.DSTRD

) 1003h + 5·(
4 << CAP.DSTRD

) CQ2HDBL Completion Queue 2 Head
Doorbell

...
1000h + 2y·(
4 << CAP.DSTRD

) 1003h + 2y·(
4 << CAP.DSTRD

) SQyTDBL Submission Queue y Tail
Doorbell

1000h +
(
2y + 1

)
·(

4 << CAP.DSTRD
) 1003h +

(
2y + 1

)
·(

4 << CAP.DSTRD
) CQyHDBL Completion Queue y Head

Doorbell

Table 2.2: The NVMe BAR is the main interface for interacting with the NVMe device.
The ASQ and ACQ are used to map the Admin submission and completion queues to DMA
buffers, and the doorbell registers from addresses 1000h and upwards are used to notify the
NVMe device of new NVMe commands and handled completed commands by the host.

2.2.1 Requirements

For the driver to be considered as fully implemented in user-space the following requirements
must be satisfied:

8 CHAPTER 2. BACKGROUND

Opcode Command
00h Flush
01h Write
02h Read

Table 2.3: This table lists the most common NVMe commands. It is only possible to submit
these commands to I/O submission and completion queues.

Figure 2.3: The NVMe command entries written to the submission queue by the host are 64-
bytes, or 16 double words (DWORDs), where all NVMe commands have the same format for
the first two DWORDs. However, the opcode decides the format of the rest of the DWORDs.

Figure 2.4: NVMe completion entries are written by NVMe device to the completion queue.
These entries are 32-bytes where all DWORDs follow the same standard format.

• Map the PCIe BAR of the device into the process virtual memory in user-space:
The PCIe BAR is the interface the host CPU uses to communicate with the PCIe device
and is mapped in physical memory on CPUs that support memory mapped I/O. This
mapping means that all I/O operations on those physical memory addresses will read
and write directly into the PCIe device’s registers. In order for a user-space program
to communicate with a PCIe device, it must have full access to these memory mapped
regions of memory.

This mapping can be done using a custom kernel module, or by using the libraries
uio [8] and VFIO [9] (Virtual Function I/O). In our implementation, we used a custom
kernel.

2.2. USER-SPACE NVME 9

• DMAmemory: A user-space program must be able to read and write to DMA buffers
to be able to operate as a driver for a device. For this to work, the DMA physical
memory pages must be locked in RAM for communication between the host and the
device to make sure that the pages are not swapped to disk by the operating system.
The locking can be accomplished using one of the following methods: a) the mlock
POSIX function; b) mmap with the MAP_LOCKED flag; c) the use of huge-pages1;
or d) by marking the pages in the page tables as locked using a kernel module, which
is the method we decided to use in our implementation.

• Virtual to Physical address mapping: PCIe devices use physical memory addresses
for DMA buffers and therefore user-space processes, which only see virtual addresses,
must have the capability to look up the physical addresses of these DMA buffers.
Otherwise, neither the host nor the device would agree on where the DMA buffers are
in memory.
Currently, the standardized ways to access the mappings are through the proc file-
system or the VFIO2 library. However, we decided to use the same method as
NVMeDirect and use our custom kernel module to do the lookups.

• Cache coherency: CPU caches are paramount for all modern programs, but it is
imperative to disable caching on top of PCIe memory mapped registers and DMA
buffers. Otherwise, the host and the device will experience inconsistent behavior in
their communication due to the CPU caching of old register values.
Disabling the cache can be done through user-space using the /proc file-system by
either setting special Memory Type Range Registers (MTRR) or in recent x86 CPUs
by marking the pages in the page table as non-cached using the Page Attribute Table
(PAT). Our solution disables the cache by marking the pages in the PAT in our kernel
module.

• Memory barriers: Both modern compilers and CPUs reorder memory accesses to
improve performance. While this is usually what we want, it can be problematic
when the reads and writes are operating directly on the device’s registers where the
order of those read and write operations matter. It is critical for the user-space driver
programmer to make sure that the order of the operations on the device registers
happen in the intended order by adding memory barrier statements to the code. These
statements tell the compiler or CPU to finish all memory operations before executing
the next command. The programmer should also use the volatile keyword in C for
register pointers to guarantee that the compiler does not optimize away the memory
accesses.
To clarify, if the programmer omits the volatile keyword the compiler might deem
writing to a memory location, that the code then never reads from, as unnecessary and
would therefore not generate any machine instructions for it. Lacking these commands
would leave us with a non-functioning program, even though the C code is correct.
If on the other hand, we leave out the memory barrier commands, the instructions
sent to the CPU might end up in a different order than defined by the C code or even
assembly code. An example of this would be triggering some functionality of a device
by writing to a particular register, before writing the parameters for that functionality
in another register.

1As of this writing, huge-pages are locked in physical memory and do not swap to the secondary storage.
2The uio library is not listed with VFIO because it does not support DMA memory management.

10 CHAPTER 2. BACKGROUND

• New API: All user-space programs that offer a kernel bypass must provide a new API.
This new API is both because the POSIX system call API is reserved and designed for
traditional block devices, and because exposing the internals of the device gives the
library designer the option of creating a robust API that is more fitting to the device-
specific functionality. In our case, we decided to reuse the API of the liblightnvm
library to make sure that our code would be compatible with existing software.

• Polling or Interrupt-driven: The driver may check whether the command has been
successfully read or written using interrupts or by polling the device. User-space
programs need help from the kernel to be able to receive interrupts. Currently, both
uio and VFIO library offer standardized ways of handling interrupts in user-space. Our
implementation only uses polling; however, the newest version of NVMeDirect does
include support for interrupts.

2.2.2 Available user-space NVMe libraries
There are currently three different full user-space NVMe kernel bypass libraries: SPDK,
UNVMe, and NVMeDirect. All of these implementations are limited to standard NVMe
commands and do not support Open-Channel SSD. We decided to base our implementation
on NVMeDirect and add support for Open-Channel SSD. We chose NVMeDirect because
it can coexist with the nvme kernel driver and therefore makes it possible to use the nvme
driver to process admin commands.

2.2.2.1 SPDK

The SPDK driver [4] [6] is a C library developed by Intel which provides a direct mapping
to the NVMe device BARs and DMA buffers in user-space. It uses part of the Data Plane
Development Kit (DPDK) [10] package to handle the internal plumbing and relies on huge-
pages to map the PCIe BARs and DMA memory. The SPDK framework initially used the
uio library to handle PCIe communication, but today it supports both uio and VFIO libraries
at compile time.

The main selling point of SPDK is that it maximizes speed by not having any threads
and that it only uses non-blocking calls. The drawback is however that the application has to
poll to check if the I/O has completed.

2.2.2.2 UNVMe

UNVMe [7] is a user-space NVMe driver developed by Micron Technology and implements
an interface to bypass the kernel. It is a library, and like the other user-space NVMe drivers,
it provides an alternative API from the standard POSIX interface. The NVMe library uses
the VFIO library to communicate with the PCIe device from user-space.

2.2.2.3 NVMeDirect

NVMeDirect [11] is a user-space NVMe that provides a direct user-space to NVMe device
communication. Unlike SPDK and UNVMe, it uses a custom kernel module to expose the
PCIe BARs and DMA buffers to the user-space library using the proc file-system.

One of the most significant selling points of NVMeDirect is that it piggybacks itself on
top of the standard nvme kernel driver, making it possible to use both NVMeDirect and the
standard nvme kernel driver concurrently on separate SSD partitions.

2.2. USER-SPACE NVME 11

.

Figure 2.5: NVMeDirect proc file-system hierarchy is used by the user-space application to
create new NVMe queues and to map them into its virtual memory address space using ioctl
function calls.

Currently, the NVMeDirect is a polling solution, but the project has been working on
adding interrupt support. However, we did not use the interrupt solution because it did not
exist when we started working on our code.

The NVMeDirect user-space API designed exclusively with an NVMeDirect file descrip-
tor interface in mind, and does not allow the programmer to write direct NVMe commands
to the NVMe device. This design allows them to implement specific user-space I/O sched-
ulers and plumbing for direct buffer handling. This high-level abstraction was, however,
unnecessary for our implementation and therefore had to be removed entirely.

2.2.3 The NVMeDirect framework
The NVMeDirect framework relies on a kernel module to hand over control over the NVMe
device into user-space. Figure 2.5 shows the steps that the user-space driver developer needs
to be able to map and interact with the NVMe device. These steps are as follows:

1. When the NVMeDirect kernel module loads into memory, it creates the directory
/proc/nvmed which has directories named after the NVMe devices that the kernel
module finds. In the example given in Figure 2.5, it finds the first NVMe device,
nvme0n1, and creates /proc/nvmed/nvme0n1.

2. When the user-space library interacts with the SSD, it does so by calling ioctl calls
to the /proc/nvmed/nvme0n1/admin file. Table 2.4 lists the available ioctl calls to the
admin file, where most are used to manage NVMe queues and to get physical addresses
from allocated memory.

3. On creation of new NVMe queues using the ioctl function, the NVMeDirect kernel
module creates a directory with the queue’s identification number in the proc file-
system.

4. This new directory contains the three files listed in Table 2.5, which allow the library
to map the NVMe queue’s PCIe BAR doorbell registers and queue DMA buffers to the
process’s memory.

12 CHAPTER 2. BACKGROUND

ioctl Description
NVMED_INFO Get SSD information such as size.
QUEUE_CREATE Create a submission and completion queue pair.
QUEUE_DELETE Delete a specified submission and completion queue pair.
QUEUE_GET_BUFFER_ADDR Returns the physical address of the given virtual address.
QUEUE_GET_USER Returns the user’s quota.
QUEUE_SET_USER Sets the user’s quota.

Table 2.4: The user-space application uses theseNVMeDirect ioctl attributeswhen it interacts
with the /proc/nvmed/nvme0n1/admin file.

ioctl Description
sq Used to mmap the submission queue DMA buffer to user-space.
cq Used to mmap the completion queue DMA buffer to user-space.
db Used to mmap the PCIe registers of the queue to user-space.

Table 2.5: Whenever the user-space application creates a new queue using the NVMeDirect
kernel module, it creates a directory in the proc file-system with the queues identification
number using the sq, cq, and db files. These files are then used by the user-space application
to map the PCIe registers and submission and completion queue DMA buffers into the
applications virtual address space.

5. The user-space application is responsible for DMA buffers by allocating memory using
locked memory pages. NVMeDirect does this by using the mmap function with the
MAP_LOCKED parameter.

6. The user-space application maps the doorbell registers, the submission queue, and
completion queue into memory using the mmap function on the db, sq, and cq proc
files inside the queue’s directory. When the user-space program maps the queues, the
kernel module allocates the DMAbuffers for the queues andmarks them as non-cached
before mapping the addresses into the user-space programs virtual memory.

After these steps, the user-space application has a fully functional user-space bypass for
the queues and does not need any further interaction with the kernel module to function.

2.2.4 Drawbacks of the Kernel bypass
While the direct user-space to PCIe device communication can improve performance, it does
come with its list of drawbacks:

• No kernel file-system: Without the support from the kernel, we are not able to create
any kernel file-systems on top of the user-space device.

• No shared counters in the kernel: Again, without the support from the kernel, we
lose all shared counters and therefore all support from the tools that rely on those
counters.

• Harder to control access to multiple applications: The user-space NVMe library
has to control the access to the NVMe device of multiple applications. This access can
be hard to control, both because the applications could be running as separate users

2.3. SOLID STATE DISK (SSD) 13

and because other software, such as kernel code, does not follow these access controls
mechanisms.

• Kernel-mode and user-space interference: The Linux kernel is continuously in
development, and new changes might interfere with the user-space drivers, both when
it comes to how they behave on devices, and how they introduce new features in other
areas, such as memory management.

• Shared code between user-space and kernel-mode is hard: Some code bases, such
as NVMeDirect, share code with the nvme kernel module. While convenient, this
means that with each release of a new Linux kernel the code must be updated, which is
problematic when the direction of the nvme code is not following the other code bases.
We experienced this and had to add functions that had been removed from the nvme
driver to be able to use our implementation of NVMeDirect with newer kernels.

• VFIO requires the CPU to support AMD-Vi or Intel VT-d: VFIO needs direct
I/O support from the CPU, this means that it can be hard to support it within virtual
machines.

• DMA virtual to physical mappings might break in the future: Apart from VFIO,
none of the other methods of mapping virtual memory addresses to physical memory
addresses guarantee that the mappings will work in the future. New features that merge
similar physical pages might change DMA physical addresses, and huge pages might
at some point support swapping.

• Pinned memory is locked memory: The user requires a sufficiently high limit for
locked memory and that the pages used will be prevented from page merging and
swapping.

• DMA control becomes insecure: By giving the user-space application full control
of the DMA buffers, a compromised application can read and write to anywhere in
physical memory, allowing for DMA malware [12]. The infected application could
instruct the NVMe command to write a page of physical memory which the application
does not have access to down to theNVMedevice, and then read it back into itsmemory.

2.3 Solid State Disk (SSD)
The advent of SSD devices has completely changed the rules for optimizing I/O access
patterns and secondary storage performance. Unlike its predecessor, the spinning magnetic
disk, an SSD uses flash chips as its storage medium, which is both much more tolerant
of hostile environments and carries virtually no random access penalty. Despite the many
advantages of SSDs they also have some drawbacks. One of the main challenges with SSDs
is that write operations do not have predictable latency. The reason for this is that the flash
chips have a certain number of times they can be erased and written to before they become
permanently unusable. To mitigate this problem, traditional SSD storage controllers have
a function called the Flash Translation Layer (FTL), which is responsible for wearing out
the chips evenly through a process called wear-leveling. The implementation of the FTL is
neither disclosed by the vendors nor is its behavior predictable.

Today’s state of the art SSDs are connected directly to the PCIe bus and comply with
the NVMe specification which defines a standardized way for SSDs to communicate over

14 CHAPTER 2. BACKGROUND

PCIe. The design of the NVMe standard was for devices that are capable of hundreds of
thousands of I/O operations per second. This immense change in I/O throughput and its
effect on the Linux kernel was addressed by [13] where they showed that the kernel was
only capable of handling a million I/O operations per second. To address this limitation,
they introduced a new subsystem called “multi-queue” which improved the performance
by an order of magnitude. While the new subsystem is an essential contribution to the
Linux kernel, their research also exposed another limitation in the traditional user-space
libraries and showed that it also caps in around one million I/O operations per second. This
critical finding showed that the SSD is not just an evolutionary change from the traditional
storage medium, but a revolutionary change where every part of the software stack is affected
and needs a reevaluation of both algorithms and API conventions to optimize against this
technology.

2.3.1 Flash Translation Layer (FTL)
The FTL is a module that exposes the SSD as a traditional block device that uses logical
addresses to hide the internal physical details. This encapsulation makes it much easier
for storage driver developers to interact with the SSD and keeps the responsibility of wear-
leveling and internal performance optimization in the vendors hands.

2.3.1.1 Wear-Leveling

The process of wear-leveling is to wear out the flash chips evenly to prolong the life of
the SSD. The FTL keeps track of all the logical and physical mappings and tries to write
new pages to different locations every time the FTL writes to the chips. This rotation of
writes means that there are multiple older versions of the same data that the FTL needs to
periodically garbage collect by marking the old pages as free. Another common operation
of the FTL is to swap less worn pages with worn pages. This operation is called write-
amplification because it adds a steep overhead where one write operation takes considerably
longer due to the FTL having to read and write the old page to the new location.

The FTL also needs to keep track of defunct flash chips both due to damages during
production and due to chips slowly wearing out. For this reason, the SSDs always have more
spare storage than accessible by the storage developer to aid with garbage collection and for
spare storage for bookkeeping.

2.3.1.2 Scheduling and Performance Optimization

The SSD has multiple parallel units that the FTL needs to schedule read, write, and erase
operations to. Channels are the main parallel units of the SSD, where each channel is a
controller that is responsible for multiple chips. These chips have internal parallel units
which are called planes, which the FTL is also able to utilize. When the FTL issues
commands to the channels, it does so by writing the commands to the channel controllers
registers. The main concern of the FTL is that write commands take much longer to complete
than read commands, and therefore it will need to issue the commands in a strategic manner
to maximize performance, while at the same time keeping track of wear-leveling.

2.3.1.3 Drawbacks

Initial research into how to optimize I/O patterns using the SSDs was performed by [14],
where they created a benchmark called uFLIP, which they used to evaluate experiments of

2.3. SOLID STATE DISK (SSD) 15

different I/O workloads and how they affect I/O performance. The ultimate goal of this
kind of research is to find optimization techniques for system and application programmers.
Their findings were that SSDs have vastly different behavior characteristics, not only as a
new technology but also between different SSDs. This vast difference included SSDs from
the same vendor and even the same SSD after firmware updates. The main reason for this
significant difference in behavior is the black box FTL unit which is responsible for the
logical block interface.

2.3.2 Open-Channel SSD
A solution to the black box nature of FTL was proposed by Bjørling et al. with the creation
of Open-Channel SSD [15] [16] which introduced new NVMe commands to the NVMe
specification. The goal of the new commands was to allow direct physical placement of
blocks by exposing the internals of the SSD using a new hierarchical physical page address
space. Another contribution by Bjørling was a new subsystem in the Linux kernel called
lightnvm [3] which leverages the new command set and offers new predictable white-box
FTL implementations which are controlled by the host operating system. It also paved the
way for application developers to take direct control of the physical placement of data blocks
on the SSD and to tailor their I/O patterns to their application-specific needs [17].

The Open-Channel SSD command set defines a new hierarchical physical page address
(PPA) space for the SSD which consists of channel, LUN, block, page, and sector, and offers
commands that extract the dimensions of each part of the PPA. Another difference between
the traditional logical address space is that the new command set also supports vector I/Os
with up to 8 PPAs.

Figure 2.6 shows the structure of theOpen-Channel SSD read, write, and erase commands.
The read and write commands have four fields which represent pointers to DMA buffers, as
can be seen in the figure. These pointers are defined as follows:

• Metadata: Used to store Out-of-Band (OOB) data on each flash page. The OOB is
traditionally used by the FTL to keep track of were-leveling and garbage-collection.
This field, however, varies in size between hardware vendors and can be used as pleased
by the application programmer.

• PRP1: Points to the first 4-KiB Physical Region Page (PRP) of the data that is to be
read or written by the NVMe device.

• PRP2: Points to an continuous area of up to seven additional 4-KiB PRPs that are
to be read or written. The amount of 4 KiB pages is controlled by the length field in
double word 12.

• PPA list: Points to a buffer that contains a list of Physical Page Addresses (PPA) that
are to be read, written, or erased. Where the number of PPAs match the number of
PRPs.

2.3.3 liblightnvm
The Open-Channel SSD subsystem in the Linux kernel is called lightnvm and its companion
user-space library is called liblightnvm. The liblightnvm framework relies on all the NVMe
device communication to happen in the kernel by submitting low level Open-Channel SSD

16 CHAPTER 2. BACKGROUND

.

Figure 2.6: Open-Channel SSD NVMe Command structure has the same structure for read,
write, and erase commands. The PRP entries are pointers to either data to be read or written
to the NVMe device depending on the type command submitted. The PPA list contains the
list of NVMe physical addresses which the command is going to operate.

Function Description
open Open a device
close Close a device
user Send a NVMe user command to device
admin Send a NVMe admin command to device
vuser Send a vectored NVMe user command to device
vadmin Send a vectored NVMe admin command to device

Table 2.6: New liblightnvm backends need to implement the interface listed in this table.
It is the core interface used by the liblightnvm framework to interact with its backends and
therefore the NVMe device.

NVMe commands through an ioctl system call. While these ioctl NVMe commands are
structured in a similar way as the Open-Channel SSD commands, they are placeholders that
are remapped and copied to the actual DMA buffers by the kernel. Internally the NVMe
commands are sent via the nvme kernel module, which uses both interrupts and polling.

2.3.4 Dragon Fire Card

The Dragon Fire Card (DFC) is a fully programmable storage device that we used to run
our experiments. By flashing the controller on the DFC it can function as a NVMe device;
however, we flashed it with an Open-Channel SSD controller for our experiments.

2.3. SOLID STATE DISK (SSD) 17

.

Figure 2.7: All of our work and experiments were conducted on the Dragon Fire Card.

The DFC consists of two different cards. The main card is an ARM based System-on-
a-Chip (SoC) with 8 cores and 16-GiB of memory. The SoC is a PCIe device that can be
directly plugged into the host computer.

The second card is a Field-Programmable Gate Array (FPGA) that contains the flash
storage chips and is connected on top of the SoC board using PCIe. The FPGA is a standalone
card which is removable from the primary card and can be replaced by any compatible PCIe
card. This, however, has a severe limitation, as the DFC is only able to communicate with the
host’s PCIe bus using the FPGA. Therefore, it will not function with any other PCIe storage
solution unless it also implements this type of custom bridge to the host computer.

2.3.4.1 Specifications

VVDN Technologies created the Dragon Fire Card (DFC) for FreeScale, which was later
acquired by NXP. It is a SoC PCIe that is split into two Printed Circuit Boards (PCBs) cards,
as can be seen in Figure 2.7. The primary PCB is the LS2085A SoC, which contains an
eight-core 2 GHz ARM Cortex®-A57 64-bit processor and 16 GiB of ECC memory. The
LS2085A has a 4xPCIe interface to the host computer but also contains its own isolated
PCIe ecosystem which contains two 4xPCIe to the second PCB. The LS2085A also has
four 10 Gbit XFI interfaces which provide the option of connecting either 10 Gbit Ethernet
connectors with RDMA over Converged Ethernet (RoCE) or for adding 40 Gbit Infiniband
support.

The secondary PCB is the primary storage card containing an FPGAand 4xDDR3/NAND
DIMM connectors. The storage card contains 512 GiB of storage from two Micron MLC
NAND that consist of two flash cards modules with four chips each, organized in 16 KiB
pages, 512 pages per block, 2048 blocks per LUN spread in 2 planes, and 4 LUNs per chip.

The onboard operating system on the DFC card can be updated via an SD card reader on
the LS2085A card. The DFC community has provided a Linux distribution using the Yocto
Project, which is a Linux firmware generation tool-chain. It uses a build engine called bitbake
which is based on the same design principles as portage in the Gentoo Linux distribution,
where all the source files are downloaded and compiled each time the system is upgraded.
This design gives us the flexibility to add our code and libraries to the distribution.

2.3.5 OX Controller
The OX Controller is an Open-Channel SSD firmware for the Dragon Fire Card written by
Picoli [5], and it is the first open source LightNVM-enabled NVMe controller and is designed
to execute I/O commands in parallel.

18 CHAPTER 2. BACKGROUND

.

Figure 2.8: This Figure shows the internals of the OX controller as depicted by Picoli [5].
The OX Controller is the first open source Open-Channel SSD firmware controller. OX
supports multiple types of FTLs implementations and different types of media managers for
different types of storage technologies.

OX runs as an user-space program on the SoC’s on-board firmware Linux system. It
interacts with the host machine by mapping part the PCIe Configuration Space and BARs
that are exposed to the host into the OX user-space virtual memory.

OX also maps the PCIe BAR registers of the FPGA storage card into the OX virtual
memory using a modified version of uio. This way OX acts as the gatekeeper between the
host and the FPGA’s flash chips, similarly to how we bypass the kernel from the host. The
OX controller is written in C and has a full kernel bypass for both the host facing PCIe
interaction and to the FPGA’s PCIe BAR registers. It is able to get interrupts from the FPGA
using device files presented by the uio3 support in the firmware Linux kernel. Another salient
design of the OX controller is that it allows adding multiple types of controllers and even
support for multiple types of storage backends. This means that it is simple for us to extend
its functionality without sacrificing the old functionality. An overview of the design can be
seen in Figure 2.8.

Internally the NVMe interconnect handler creates one pthread per submission and com-
pletion queue. It also has one pthread that handles the completed I/Os from the FPGA and
puts them on the correct completion queue.

3The uio driver has been sloppily modified to support this particular FPGA and needs special care if the
kernel is updated.

2.4. BENCHMARKING 19

2.4 Benchmarking
To compare our Open-Channel SSD bypass with the traditional liblightnvm implementation
we decided to use the uFLIP-OC benchmarking tool, called fox. This tool uses the liblightnvm
library to communicate with the Open-Channel SSD and needed no changes to the code to
work with our implementation of the liblightnvm library.

2.4.1 uFLIP
Initial research into how to optimize I/O patterns using the SSDs was performed by [14],
where they created a benchmark called uFLIP, which they used to evaluate experiments of
different I/O workloads and how they affect I/O performance. The ultimate goal of this
kind of research is to find optimization techniques for system and application programmers.
Their findings were that SSDs have vastly different behavior characteristics, not only as a
new technology but also between different SSDs. This vast difference included SSDs from
the same vendor and even the same SSD after firmware updates. The main reason for this
significant difference in behavior is the black box FTL unit which is responsible for the
logical block interface.

2.4.2 uFLIP-OC / Fox
A significant contribution from Picoli [5] was uFLIP-OC, a benchmark designed to identify
the I/O patterns best suited for a given Open-Channel SSD. In his work he implemented the
benchmark using a program he designed called fox, which is capable of dispatching Open-
Channel SSD commands using the liblightnvm library. This program is a multi-threaded
I/O generation tool where you can create benchmark(s) for different individual parallel units
within the SSD, such as channels and LUNs. It comes with three different I/O engines
which allow us to specify what type of I/O patterns we would like to perform on our selected
regions.

Currently fox supports the following three I/O pattern engines:

• Engine 1: In this pattern engine each thread is assigned a geometry of channels and
LUNs at start-up. Each thread then submits its I/Os to pages in sequence within a
block, starting from page 0.

• Engine 2: Like in pattern engine 1, the channels and LUNs are assigned to threads at
start-up, but in engine 2 the I/Os are submitted in round-robin over each parallel unit.
In [5] it is shown that this pattern engine gives optimal performance.

• Engine 3: Pattern engine 3 uses the same I/O submission pattern as engine 2, but with
the difference that each thread is now only responsible for either write I/O operations
or read I/O operations.

20

21

Chapter 3

Debugging Framework

One repeated obstacle we encountered was the complexity of handling errors that came up
either on the OX controller or in the interaction with it from the host. Some problems
only occurred when the OX controller’s debugging mode was disabled, which in turn made
them considerably harder to spot. Another obstacle was that the default debugging output
showed more detail than was relevant to our problem. This often made obvious problems
unnecessarily hard to detect and diagnose.

A minor contribution we did was a new run-time command line for the OX controller to
address the issue. This new addition was tailored after the command line of router equipment
and significantly simplified the debugging process. Before our addition, a large fraction of
debugging time went into running recompiled OX firmwares with printf statements with
extensive C macros. These temporary solutions with the addition of using a debugger to see
run-time status information used to end up in wasted work on the debugging code was never
reused.

With the addition of the command line, we can now pick and choose the debugging
options that we want at run-time, and we are able to create status commands which can easily
be executed at any point in time. New commands can be added and safely published with
future versions of OX, this can make them useful for all future users and developers. For
convenience, the command line also includes both auto-completion on commands and an
interactive help system which users are familiar with from other systems.

The OX run-time command line is written using the GNU readline library which offers
built-in support for auto-completion. A simple help systemwaswritten using a hierarchy of C
structs that contain and reflect the command structure. This includes both the help strings and
a function pointer to the functionality behind the command. This hierarchy makes it simple
to add commands that are automatically part of the help and auto-completion functionality
without code duplication.

3.1 OX run-time command line
The new run-time command line was designed to be simple and accessible, especially to
people that have had experiencewith a command line of networking equipment. It is designed
with a command hierarchy in mind, where the user is able to choose a category and is able
to run a command under that category.

The new run-time command line was published with OX version 1.4 and contained the
commands listed in Table 3.1.

22 CHAPTER 3. DEBUGGING FRAMEWORK

Command Description
help Used to print out help on categories and commands

admin Category: Used for testing
admin create-bbt An interactive command that creates or updates the

bad block table
admin erase-blk An interactive command that allows you to erase any

specified block

debug Category: Used to enable and disable debugging op-
tions

debug on Enables all debugging output of admin and I/O com-
mands

debug off Disables all debugging output of admin and I/O com-
mands

show Category: Used to display run-time information
show debug Shows if debugging information output is enables or

disabled
show mq Category: Displays run-time and statues information

for multi-queue
show mq status Shows the status of the internal queue groups of multi-

queue

exit Used to terminate the OX controller and get into a
command line shell

Table 3.1: The table lists the commands in the main category of the debugging command
line.

3.1. OX RUN-TIME COMMAND LINE 23

ox> help
help: Usage: help [command]

Display information about builtin commands.

Displays brief summaries of builtin commands. If a command is
specified, it will give a listing of all its sub-commands.

List of sub-commands:
admin: Used for testing
debug: Enables or disables debugging output
show: Displays run-time information
exit: Exit the OX application

ox> help show
show: Usage: show [sub-command]

Displays run-time information and status information.

List of sub-commands:
debug: Shows if debugging mode is enabled
mq: Displays run-time information for multi-queue

ox> help show mq status
status: Shows the status of all the internal mq queues

Displays run-time status of the internal queue groups of mq. This includes
their name and status of each queue.

Key Description
Q: Queue number
SF: Submission Free queue - Available for new submission entries
SU: Submission Used queue - Ready to be processed
SW: Submission Wait queue - In process
CF: Completion Free queue - Available for new completion entries
CU: Completion Used queue - Processed, but waiting for completion

ox> show mq status
ox-mq: FTL_LNVM

Q00: SF: 62, SU: 0, SW: 2, CF: 64, CU: 0
Q01: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q02: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q03: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q04: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q05: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q06: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q07: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
EXT: 0, TO: 0, TO_BACK: 0

ox-mq: DFCNAND_MMGR
Q00: SF: 60, SU: 0, SW: 4, CF: 64, CU: 0
Q01: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q02: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q03: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q04: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q05: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q06: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
Q07: SF: 64, SU: 0, SW: 0, CF: 64, CU: 0
EXT: 0, TO: 0, TO_BACK: 0

ox>

Figure 3.1: An example of how the help system in the OX command line would be used to
show the status of the internal multi-queues.

24 CHAPTER 3. DEBUGGING FRAMEWORK

Listing 3.1: File: include/ox_cmdline.h
typedef struct ox_cmd ox_cmd;
typedef int (∗ox_cmdline_func_t)(char ∗line, ox_cmd ∗cmd);

typedef struct ox_cmd {
char ∗command; /∗ Name of command ∗/
struct ox_cmd ∗next; /∗ Sub−commands ∗/
ox_cmdline_func_t func; /∗ Function to run ∗/
void ∗value; /∗ Default parameter to run ∗/
char ∗short_help; /∗ A short description ∗/
char ∗help; /∗ A long description ∗/

} ox_cmd;

In Figure 3.1, we show both the run-time help in the command line, and run the “show
mq status” command. This command prints out the status of the different queues that OX
has internally.

All of the run-time commands are defined in a null terminated array of structs of type
ox_cmd, as defined in listing 3.1. Each struct can be a category, a command, or both. In
the case of a category, the next pointer points to another array of ox_cmd structs. For all
commands the func function pointer points to a function that implements that particular
command. For convenience, it also contains a void pointer to a default value used for the
function pointer. This is helpful when you want to reuse the same function for multiple
commands with different default values.

When the run-time command line runs the function pointer provided by the ox_cmd
struct, it passes that same ox_cmd instance to the function, including the full command line
string that was entered by the user. This makes it possible for the programmer to do extra
parsing on the command if needed.

An example of how a category array of commands would be constructed in C is listed
in listing 3.2. For clarity, the long help string is put together using multiple concatenated
strings.

3.2 Discussion
The new OX command line makes it much easier to debug interaction with the OX controller
and the host. It also adds the possibility to addmore features that could be enabled at runtime.
Some features that could be useful in the future are, to be able to set write protection on
certain areas of the SSD, enabling a safe mode, disabling writes, and slowing down I/O
commands for easier debugging.

3.2.1 Future Work
A limitation in the current implementation is that all commands have to have exact matches
to the command strings in the ox_cmd struct. A better approach would be to change the
command and category strings to regular expressions to allow for more flexibility for the
current architecture. An alternative would be to introduce a full parser.

3.2. DISCUSSION 25

Listing 3.2: File: ox_cmdline.c
ox_cmd show_cmd[] = {

{ "debug",
NULL,
cmdline_show_debug,
NULL,
"Shows if debugging mode is enabled",
"Shows if debugging mode is enabled\n"
"\n"
"Displays if reporting of live debugging information of NVMe commands\n"
"is enabled."

},
{ "mq",
mq_cmd,
NULL,
NULL,
"Displays run−time information for multi−queue",
"Usage: show mq [sub−command]\n"
"Displays run−time information and status information for multi−queue."

},
/∗ End with null termination ∗/
{ NULL, NULL, NULL, NULL, NULL, NULL }

};

26

27

Chapter 4

LightNVM-Direct: A liblightnvm Kernel
Bypass

Our motivation was to introduce direct control of the device in user-space and to increase
the throughput of an Open-Channel SSD by introducing a kernel bypass that supports the
Open-Channel SSD NVMe command set, as was depicted in Figure 1.1b. We wanted to
be able to benchmark our bypass using the fox tool provided by Picoli [5]. The fox tool
relies on the liblightnvm library, therefore it was easiest for us to add the new bypass as a
backend to the liblightnvm library. This way we would not have to make any changes to the
fox application and we could keep using the liblightnvm API.

4.1 Architecture
We chose to base our implementation on NVMeDirect for two reasons. First, because it was
simple for us to modify, and second because it was capable of running along side the kernel
nvme driver. This allowed us to separate the control and data paths by using the Linux kernel
modules for admin commands and to use NVMeDirect for I/O commands. This design can
be seen in Figure 4.1.

The liblightnvm library expects all new backends to implement the API functions listed
in Table 2.6. One limitation that we encountered was that there was no initialization function
and therefore no convenient way of passing parameters to our NVMeDirect backend. One
parameter that would have been convenient to have is to notify the backend of how many
submission and completion queues will be needed to initialize DMA buffers in advance.
Instead, we decided to initialize the DMA buffers of each thread in the first submission of
an I/O command and then reuse them throughout the duration of the process lifetime. The
drawback of this approach is that the first I/O call will always be more expensive than the
subsequent calls.

4.1.1 Changes to liblightnvm
The liblightnvm library that we used for our implementation had support for three different
backends, ioctl, sysfs, and Logical Block Addresses (LBA). The ioctl and sysfs backends add
the core support functionality for the liblightnvm where the ioctl part is used to send user-
space defined NVMe commands, and the sysfs is to query the physical address dimensions.
The LBA backend was not required for our implementation.

28 CHAPTER 4. LIGHTNVM-DIRECT: A LIBLIGHTNVM KERNEL BYPASS

Figure 4.1: We separated the control and data paths in our implementation of NVMeDirect.
This separation enabled us to use the nvme driver for admin commands and to use a kernel
bypass for I/O commands.

A limitation of our version of liblightnvm was that all backends were loaded in sequence.
This meant that if we added our backend, then it would have had to load all the other backends
as well. In our version we had to manually remove the support for the older backends for ours
to work. This was inconvenient, because this meant that we had to keep separate binaries
of fox that were linked with different backends, instead of being able to choose the correct
backend when fox was started. This limitation has been removed from the latest version of
liblightnvm.

4.1.2 Changes to NVMeDirect
The original NVMeDirect is split into a kernel module and a user-space library. The user-
space library was designed top-down with a new file descriptor API in mind. It therefore
provided a new type of file handle API and a buffering interface designed around that API.
Because our aim was to make this code a backend for the liblightnvm, we had to remove all of
the buffering API code and rewrite most of the user-space code to adapt it to the liblightnvm.
The reason why we were not able to use much of the existing code was because every part
of the code relied heavily on the file-handle API without a clear segregation of the NVMe
plumbing.

The NVMeDirect kernel module was designed to use the nvme kernel module to execute
admin commands and therefore also to provide partitioning information of the SSD disk.
Because the DFC card is only designed as an Open-Channel SSD, neither the nvme nor
the NVMeDirect kernel module were able to see the DFC card. We therefore needed to
change the code to get the dimensions of the disk through the lightnvm module’s kernel
data structures, and to make minor changes so that the rest of the code would check for the
existence of the lightnvm information before proceeding.

4.2. EXPERIMENTS WITH LIGHTNVM-DIRECT 29

Unit List
Pattern engines 1, 2, 3
Threads 1, 2, 4, 8, 12, 16, 32
Channels 1, 2, 4, 8
LUNs 1, 2, 4
I/O 100% reads, 100% writes
Blocks 64
Pages 512

Table 4.1: The table lists all parameters and values related to our experiments that we ran with
Fox. We skipped all the combinations where the threads were less than channels multiplied
by LUNs. These settings resulted in 270 different experiments in total.

Label Backend Comment
Standard liblightnvm Uses the standard backend from [5]
Direct LightNVM-Direct Uses the LightNVM-Direct version of liblightnvm

Table 4.2: Experiments are labeled Direct if they use LightNVM-Direct and Standard if they
use the traditional liblightnvm.

4.1.3 Control Path

We decided to keep the original control path that goes through the kernel using the ioctl call.
This was done to simplify our design and because the kernel’s nvme driver would still be
responsible for the admin queue of the SSD. Therefore, adding the admin queue to user-space
as well would have resulted in incoherent behavior.

The way this was implemented was to retain the same code for the liblightnvm admin and
vadmin functions that relied on the ioctl interface.

4.1.4 Data Path

The data path in our NVMeDirect backend completely bypasses the kernel, as seen in
Figure 4.1. This was done by implementing our user and vuser functions to create a real
NVMe command from the intermediate NVMe command C struct, and then writing it into
the submission queue DMA buffer and then submitting it by writing directly into the NVMe
BAR doorbell register of the DFC.

4.2 Experiments with LightNVM-Direct
We aimed to compare the performance between our kernel bypass provided by LightNVM-
Direct to the traditional LightNVM implementation using the uFLIP-OC benchmark. We
wanted to recreate the experiments conducted by Picoli [5] and to compare their latency and
throughput to see if there was a noticeable performance difference between them.

30 CHAPTER 4. LIGHTNVM-DIRECT: A LIBLIGHTNVM KERNEL BYPASS

(a) Standard (b) Direct

Figure 4.2: Both figures show context switches through all the experiments in logarithmic
scale, where (a) is the context switches using the standard liblightnvm and (b) uses our kernel
bypass, LightNVM-Direct.

4.2.1 Experimental Setup

The experiments were all conducted on a DFC card as described in section 2.3.4, using
a HP Z230 Tower Workstation with a 4 core Intel Core i7-4790 3.60GHz CPU with 8
hyper-threading threads, and 32 GiB 1600MHz DDR3 RAM from Micron.

We conducted our experiments using theOC-uFLIP benchmark by compiling a traditional
version of fox and anotherwith our LightNVM-Direct backend. Wehave labeled our backends
in our experiments as described in Table 4.2, which will be used throughout the rest of this
chapter.

We chose the parameters listed in Table 4.1 for our experiments with the uFLIP-OC
benchmark and chose the configurations where all combinations where the number of threads
were less then the number of channels multiplied LUNs. We chose these combinations to get
comparable results to the experiments conducted in [5]. The reasoning for these combinations
is that channels andLUNsmake up the parallel units of the SSDand it is therefore unnecessary
and counterproductive to use more threads than there is parallelism available in the card.

The final result were 270 different experiments which we ran both using the Standard
and Direct backends. We ran these experiments twice, however, our evaluation of the results
showed that there was no difference between the backends when the channels were set to
one or two, and when LUNs where set to one. Therefore, we decided to remove those charts
from our results to make the presentation more compact.

4.2.2 Evaluation 1: Context-switching

First on the agenda was to evaluate the amount of context switches between the backends.
For this task we used the Linux perf tool to monitor our experiments. The perf tool samples
counters from various probe points from the hardware and the kernel and allowed us to get a
deeper insight into the behavior of our experiments in regards to context switching and CPU
behavior.

4.2. EXPERIMENTS WITH LIGHTNVM-DIRECT 31

Each of the 270 experiments consisted of 32768 I/O operations issued to the DFC card.
Because the Standard backend uses a system-call1 to dispatch the I/O commands, we therefore
expect at least the same amount of context switches. In the case of the Direct backend, that
bypasses the kernel, we expect only involuntary context switches.

The results are presented in the two bar charts in Figure 4.2. In Figure 4.2a we can observe
that the Standard backend has around 32 thousand context switches for all experiments, except
when we exceeded 16 threads. We believe the reason for this anomaly is due to sampling
errors, caused by short duration of those experiments.

The longer experiments on the other hand were observed to exceed 32 thousand context-
switches. This, we believe, is a consequence of the longer running time and the number of
involuntary context-switches longer running processes inevitably experience.

Figure 4.2b shows that the number of context switches never exceeded 150 in our exper-
iments. While these result show that there is less kernel involvement in our communication
with the DFC, we observed that all of our experiments with the Direct backend used 100%
CPU utilization per thread. This usage is a result of our backend using polling to wait for
I/O commands to complete and because our experiments with fox only queue one command
at the time.

Using the perf tool we also were able to observe that the experiments only execute
0.02 instructions per cycle. We believe this is because the hardware threads are dominantly
waiting for read operations to complete from the DFC’s registers.

4.2.3 Evaluation 2: Read Throughput

Our next evaluation was to look at the read throughput of our experiments using the uFLIP-
OC benchmark. We observed that the there was no significant difference in throughput
between pattern engines. We therefore combined the results from all three pattern engines
in our bar-chart in Figure 4.3.

Our hypotheseswas that ourDirect backendwould get better throughput than the Standard
backend, due the removal of the kernel’s overhead with our bypass.

The results in Figure 4.3 shows the throughtput difference of four configurations of the
DFC’s parallel units of channels and LUNs, with different amount of threads. Contrary to
our expectation the Direct backend gained no throughtput improvement with eight or fewer
threads, and lost throughtput when the thread count exceeded eight. We believe that the
throughtput loss that occurs when we exceed eight threads is due to the wasted CPU cycles
when the backend is polling for the completion of I/O commands. Our host computer has
eight hardware threads and when more threads are used these hardware threads need to be
shared. This sharing means that the operating system is not able to distinguish between a
CPU bound thread and an I/O bound thread. The operating system therefore gives the threads
a longer context switch quantum than it needs which causes an increase in overall overhead.

Thus, despite our expectations, the bottom line is that the results indicate that the Di-
rect backend has not benefited from our kernel bypass when it comes to increased actual
throughput for read operations.

1Some system-calls only need to switch from user-mode to kernel-mode, and therefore do not need to
execute a context switch.

32 CHAPTER 4. LIGHTNVM-DIRECT: A LIBLIGHTNVM KERNEL BYPASS

Figure 4.3: The bar charts show combined experiments using 100% read throughput of
pattern engines 1, 2, and 3, for both Standard and Direct experiments.

4.2.4 Evaluation 3: Write Throughput
In our experiments we observed that the write throughput capacity of pattern engines 2 and
3 were not significantly different. Because of this, and to make the results more apparent,
we have chosen to combine their results in the graphs depicted in Figure 4.5.

After evaluating the read throughput in 4.2.3, we expected the write throughput of our
Direct backend to at most match the Standard backend in throughput.

Figure 4.4 shows our results for thewrite throughput of pattern engine 1. Therewe observe
that the write throughput follows the same trend as was observed in the read throughput,
where the Direct backend has write throughput that is similar to the Standard backend for
eight or fewer threads.

The write throughput of pattern engines 2 and 3 on the other hand showed a different trend
than we expected when eight threds were exceeded. Figure 4.5 shows the write throughput
of pattern engines 2 and 3. There we see that the write throughput starts to degrade instead
of flatlining when the threads are more than eight. We believe that the reason for the
degraded throughput is related to the fact that pattern engines 2 and 3 are able to utilize
more parallelism, and that when we exceed eight threads, our write throughput converges to
pattern engine 1’s throughput as we add more threads.

4.2.5 Evaluation 4: Thread Throughput
Our results show that the Direct backend has not benefited from our kernel bypass. We
therefore shift our evaluation from comparing the two backends to analyzing what is affecting
our write throughput when the threads exceed eight threads.

4.2. EXPERIMENTS WITH LIGHTNVM-DIRECT 33

Figure 4.4: The bar charts show write throughput using pattern engine 1 using 100% write
operations.

Figure 4.5: The bar charts show combined experiments using 100% write throughput using
pattern engines 2 and 3.

34 CHAPTER 4. LIGHTNVM-DIRECT: A LIBLIGHTNVM KERNEL BYPASS

(a) Standard (b) Direct

Figure 4.6: The area chart shows the throughput of 8 threads during 100%write using pattern
engine 2 with and without a kernel bypass.

(a) Standard (b) Direct

Figure 4.7: The area chart shows the throughput of 16 threads during 100% write using
pattern engine 2 with and without a kernel bypass. The chart is more erratic in (b) because
the thread count is higher than the number of CPU cores.

We decided to analyze and compare two independent I/O writing experiments that both
used four channels and two LUNs. These two experiments varied only by their number of
threads and were run on both backends.

Figures 4.6a and 4.6b show area charts where the write throughput of each thread is
depicted as a differently colored area. These area charts show comparable write throughput
to our results in evaluation 3.

However, when we analyze the area chart for the sixteen threads in Figure 4.7 we can see
how the write throughput of each thread in the Direct backend is erratic. What is interesting
in this area chart is how the overall write throughput increases when some of the threads
finish running. Nonetheless, while the behavior of the threads in Figure 4.7b are interesting,
they do not explain why the overall throughput of the Direct backend was this low.

4.2.6 Evaluation 5: Latency
To find an explanation for the low write throughput, we decided to compare the latency of
the same eight and sixteen thread experiments from the Figures in 4.6 and 4.7. The results
are presented as scatter plots in Figures 4.8 and 4.9.

4.3. DISCUSSION 35

(a) Standard (b) Direct

Figure 4.8: The scatter plot shows the latency of writes during experiments using pattern
engine 2 running with eight threads.

(a) Standard (b) Direct

Figure 4.9: The scatter plot shows the latency of writes during experiments using pattern
engine 2 running with sixteen threads. Writes in (b) show multiple outliers that have up to
an order of magnitude worse latency than in (a).

Our finding, seen in Figure 4.9b, is that when the threads exceed the number of hardware
threads, our performance is degraded to high latency outliers.

Table 4.3 compares the statistics of all four experiments from the Figures in 4.8 and 4.9. It
shows that our performance degradation in ourDirect backend is due to 10% of our submitted
I/O commands having up to an order of magnitude higher latency than the Standard backend.

4.3 Discussion
In our work we set out to combine liblightnvm with LightNVM-Direct and to evaluate our
work using the DFC card as the storage media and using Picoli’s fox program to run the
uFLIP Open-Channel SSD benchmark.

Our key result is that a data path, from a user-space applications to a Open-Channel
SSDs, that bypasses the kernel using LightNVM-Direct does not perform as well as a data
path that traverses the kernel with LightNVM. There are two reasons for that:

1. LightNVM overhead is minimal as most of the work related to NVMe command
construction is already done in user-space before an I/O command is submitted.

36 CHAPTER 4. LIGHTNVM-DIRECT: A LIBLIGHTNVM KERNEL BYPASS

8 Threads 16 Threads
Standard Direct Standard Direct

Mean 1039µs 1039µs 1780µs 2676µs
Stdev 619µs 611µs 910µs 4716µs
Median 773µs 783µs 1582µs 1150µs
Max 3094µs 3086µs 3911µs 61002µs
95th percentile 2692µs 2682µs 3258µs 16531µs
90th percentile 2373µs 2354µs 3161µs 3180µs
Cohen’s d 0 0.26

Table 4.3: The table shows the latency statistics for the experiments in Figures 4.8 and 4.9.
The experiments used pattern Engine 2 with 100% writes using eight and sixteen threads.

2. In our experiments, polling has a negative impact on performance as soon as the
number of host cores is lower than the number of submitting I/O threads in user-space.
We believe that this is due to the kernel scheduler not being able to distinguish between
CPU bound threads and a I/O bound thread that is waiting for I/O using polling, which
results in the kernel giving the thread a longer context switch quantum than it needs.

4.3.1 Sources of Complexity
In this section we would like to discuss complexities which we encountered which affected
our work.

• One of our goals was to compare a new implementation of a kernel bypass based on
SPDK that has been in development in liblightnvm. Unfortunately, we were unable
to get it working with the DFC. The main problem was that thee OX controller only
supports the Open-Channel SSD 1.2 specification, however, the liblightnvm team are
now prioritizing the 2.0 specification which is not compatible with the DFC.

• Originally we ran our LightNVM-Direct experiments on a 12 core computer. Those
experiments also showed the degraded performance when the threads exceeded the
CPU hardware threads. This computer unfortunately had a faulty motherboard with a
broken South Bridge which affected our results.

4.3.2 Future Work
Our core insight is that kernel bypass does not improve performance. In fact, the solution
does not scale beyond a given number of concurrent I/O threads corresponding to the number
of CPU hardware threads. We see two complementary directions for future work:

1. Fixing the polling problem. LightNVM-Direct only supports polling-based interac-
tions to Open-Channel SSD devices. The same design decision was taken in SPDK.
The goal is to minimize overhead on the data path and thus I/O latency. The drawback
is that throughput suffers when the number of threads submitting I/Os is larger than the
number of CPU hardware threads. A solution to this problem is to introduce a similar
method used by UNVMe and SPDK for traditional NVMe. There they submit NVMe
multiple commands asynchronously and leave it to the application to decide when it
needs to poll for the results.

4.3. DISCUSSION 37

2. An alternative is to introduce interrupts in either the LightNVM-Direct or the SPDK
backends. This could be accomplished using the user-space I/O library UIO and its
companion support from the kernel.

38

39

Chapter 5

AppNVM

The proposal of AppNVM came from [18], where they based their AppNVM on ideas of
the OpenFlow software-defined network protocol. Their proposal was a new rule engine for
NVMe devices that the application programmer could interact with using LightNVM. This
rule language would enable the application programmers to express their Quality of Service
(QoS) requirements and to implement rules that would tailor their FTL to the application-
specific needs.

Another type ofAppNVMwas implemented in theOX 2.0 firmware [19], by Picoli. There
they created a version of AppNVM that does not use a rule engine. Instead, the programmer
can write their traditional FTL using the firmware specific API. This architecture forces the
programmer to follow the traditional design of an FTL and only allows the programmer to
create new types of schedulers and wear-leveling algorithms. Another limitation of this type
of AppNVM is the need to deploy the FTL onto the Dragon Fire Card manually.

Since [18], no work has been done on AppNVM in general literature nor has anyone
tried to define further what AppNVM should entail. Therefore, due to the limited work
and broad and unclear definitions of AppNVM, our first contribution in this chapter is a
definition of what we believe AppNVM should be, which we then will further categorize into
five different categories. Our second contribution is a new AppNVM protocol that we have

Figure 5.1: RNVMe is an NVMe RPC protocol that allows the application programmer
to call subroutines that are capable of NDP on the NVMe device. By moving part of the
application specific functionality onto the NVMe device, we are not only bypassing the
kernel but the overhead of the PCIe layer as well.

40 CHAPTER 5. APPNVM

named RNVMe, which is depicted in Figure 1.1c, and our last contribution is a discussion of
an upload protocol would be used to add new functionality to an AppNVM enabled device.

5.1 Definition and Categorization of AppNVM
In our exploration of this topic, we found that the definition of AppNVM had grown beyond
the rule language proposal of [18] and had become any interaction with an NVMe device.
This lack of clarity lead us to create our definition of AppNVM:

• AppNVM is an application-driven protocol which the host application can use to
optimize or accelerate its interaction with the NVMe device.

• AppNVM allows the application programmer to invoke or possibly define application-
specific functionality on the NVMe device. This functionality could be anything from
setting scheduling rules to creating and calling functions that reside on the NVMe
device.

• Using AppNVMmust be dynamic and usable at runtime without rebooting the NVMe
device.

Using our proposed definition of AppNVM, we have further defined five different cate-
gories of AppNVM.

5.1.1 NVMe Rule Engine (NVMe RE)
NVMeRE is theAppNVMproposed by [18]. It allows the application programmer to specify
their application’s I/O behavior using a specialized rule language. This rule language would
allow the application programmer to either define his FTLoriginally proposed originally
proposed behavior, or to give the FTL hints on what type of I/O patterns to expect so that
it can optimize the scheduler accordingly. This AppNVM is the least invasive solution and
only affects the performance and possibly the wear of the device.

• Pros: This addition can be added without any changes to existing applications, and
while the traditional NVMe commands would be used, it would only need new com-
mands to add support for the rule language. This addition would also be simple for
SSD vendors to add as it does not necessarily need to expose the underlying hardware
implementation.

• Cons: While this rule language would be an optimization for the current SSD environ-
ment, it would limit the potential of AppNVM. The NVMe RE does not add any NDP
capabilities and might, therefore, leave devices with massive resources under-utilized.

5.1.2 Thin-AppNVM
Thin-AppNVM allows the application programmer to create their FTL logic and upload it
to the NVMe device. This type of AppNVM confines the programmer to create a traditional
FTL and does not allow the programmer to deviate from traditional NVMe standard.

This definition would be the closest to the implementation of OX 2.0 in [5]. However,
due to the lack of an upload protocol for new FTLs and the lack of a dynamic way to enable
those FTLs, we have to say that it violates our definition of a true AppNVM.

5.1. DEFINITION AND CATEGORIZATION OF APPNVM 41

Themain difference between theNVMeRE and the Thin-AppNVM is that the application
programmer can write the FTL in a programming language instead of a less flexible rule
language.

• Pros: Thin-AppNVM can give the application programmer more flexibility than the
rule language and possibly access to a rich API for developing FTLs. As with the
NVMe RE, it would be easy to add this type of AppNVM to applications without
needing to rewrite them.

• Cons: Themain limitation of this type of AppNVM is that themethod of implementing
new FTLs would most likely be vendor specific, due to the myriad of architectures and
APIs that vendors currently use to implement their NVMe devices. Therefore it would
most likely be hard to standardize the programming environment between vendors.

5.1.3 NVMe Remote Procedure Calls (NVMe RPC)
The idea behind NVMe RPC is to give the application programmer the ability to invoke NDP
capable functions on the NVMe controller and preferably to be able to define new ones. We
believe that this version of AppNVM gives a right balance between flexibility and reusability,
and therefore our proposed RNVMe protocol that we introduce in chapter 5.2 is an NVMe
RPC.

For NVMe RPC to be useful, we would encourage the application programmer to create
small and well-defined functions that can be reused by multiple applications. This encour-
agement is more likely to form an ecosystem of useful and standardized functions that would
make this model more sustainable and productive for future applications.

Another criterion is that the functions should give the application programmers the
capability of doing NDP, such as map-reduce operations or functions that hide the details of
the storage data structures, which can be beneficial to large environments where the controller
connects to multiple disks and multiple hosts at the same time.

For new NVMe RPC functions to be available to the NVMe device, the functions would
either need to be uploaded to the NVMe controller or be available on there beforehand. In
chapter 5.4 we will discuss which design principles we believe an AppNVM upload protocol
should have.

• Pros: This type of AppNVM is flexible and is both capable of NDP and utilizing the
resources available on the NVMe device. It also pushes for a reusable ecosystem of
functions.

• Cons: For this type of AppNVM to be useful, the applications would either need to be
partially rewritten or rewritten from the ground up to harness the potential of NVMe
RPC.

5.1.4 NVMe Inter-Process Communication (NVMe IPC)
NVMe IPC goes a step further than the NVMe RPC and gives the application programmer
the option of running a stand-alone process on the NVMe controller. An extreme example
of this would be a database implementing and running its backend completely on the NVMe
Controller, and communicating with it using either a stream or datagram interface. This
AppNVM implementation treats the NVMe device as an accelerator similarly to Graphical
Processing Units (GPUs) and allows both NDP and full utilization of the NVMe’s resources.

42 CHAPTER 5. APPNVM

The main differences between NVMe IPC and NVMe RPC are that NVMe IPC is
application specific and mandates a large number of resources, while the NVMe RPC pushes
for lightweight NDP functions that can be used by multiple applications.

Our vision of how the application programmer would perceive an NVMe IPC device
would be as follows:

1. The application programmer would write an NVMe IPC application using a predefined
API that gives access to internal functions of the NVMe device, such as submitting
read, write, and erase I/O commands. This NVMe IPC application could either be a
compiled application or written in a programming language that is compiled by the
vendor’s driver or NVMe device, all depending on the implementation.

2. When the host application starts it can upload the NVMe IPC application to the NVMe
device and interact with it using either an identifier it receives when the NVMe IPC
application is submitted to the NVMe device or by using a unique identifier that was
chosen at compile time.

3. The host application can open a two-way stream using an NVMe IPC library to the
NVMe device and interact with the running NVMe IPC application on the device. This
type of communication could provide the application with the capability to redirect
input and output similarly to console application, where debugging output could be
directly printed out to the terminal, and console commands could be issued directly to
an NVMe IPC.

This AppNVM implementation could either give the application programmer the option
of writing backends that only interact with host applications, or it could also open up the
option of creating advanced solutions, such as NVMe IPC applications that can interact with
other NVMe IPC applications, NVMe firewalls, NVMe routing solutions, and more.

• Pros: The application programmer has exclusive access to the resources on the NVMe
controller and can use those resources to accelerate the backend of the host application,
offer NDP, and to create large hierarchical NVMe solutions in large environments.

• Cons: While NVMe IPC shares the same cons with NVMe RPC, it also has the
problem of encouraging application programmers to create large applications on the
SSD or controller which are not reusable by other applications. This AppNVM also
pushes the availability of resources on the SSD controller, as it becomes a more
generalized resource.

5.1.5 Full AppNVM
We define a full AppNVM as an implementation that gives the ultimate flexibility where the
application programmer has complete control and can implement any functionality on the
NVMe controller. This definition would include the power to implement any of the other
AppNVM types and to be able to define new kinds of NVMe commands. We believe a full
AppNVM least favorable approach in the real world, due to how hard it is to standardize and
adapt to future applications.

• Pros: The application programmer has full control over the NVMe device and is,
therefore, able to create any functionality, even the other four types of AppNVM.

5.2. RNVME: OUR PROPOSAL FOR A NVME RPC PROTOCOL 43

• Cons: The main problem with a full AppNVM is that it allows too much flexibility
and becomes impossible to standardize the usage and deployment procedure for both
application programmers and vendors.

5.2 RNVMe: Our proposal for a NVMe RPC protocol
We propose a new AppNVM protocol that we have named RNVMe. This AppNVM is an
NVMe RPC as was described in section 5.1.3, and allows applications to call subroutines
located on the NVMe device. Our primary motivation is to design a protocol that adds NDP
capabilities and encourages reusable functions. We propose RNVMe because we think it
strikes a balance between both flexible and reusable code, compared to the other AppNVM
solutions.

An example of how the RNVMe protocol could be useful is in a distributed database sys-
tem such as Spark. Spark could call RPC functions that would do NDP such as accumulating
results or storing and loading data with a higher storage abstraction. In large environments
with a hierarchy of controllers connected to multiple hosts, the RNVMe protocol could be
used to abstract the physical characteristics of the environment away using RPC functions.

In this chapter, wewill introduce a newNVMe command that forms the RNVMe protocol.
We will also discuss how we recommend changing the OX firmware to implement this new
protocol and to how to make it easy to add new RPC functions dynamically at runtime.

5.2.1 The RNVMe command
Our proposal extends the NVMe standard by adding a new command with the opcode 0x99.
This new NVMe command only provides the functionality to call RPC functions that are
already present in the SSD controller. To upload new functions, we would need a separate
NVMe based upload protocol. A discussion on what is needed for an upload protocol that
could support any AppNVM is discussed in section 5.4.

We believe that this protocol should work alongside either the NVMe standard or Open-
Channel SSDs. This combination would allow the application programmer to both support
direct control over the data and to use NDP when applicable. In large environments, it could
be preferable only to use RNVMe if the underlying physical structure is complicated.

The structure of the new RNVMe command can be seen in Figure 5.2 and Table 5.1
describes the purpose of each field. We designed the command with the goal to be simple
and flexible. It allows the application programmer to call globally unique functions that are
identified by a 64-bit number, which we further split into vendor and function identifiers.
Our view is that complex function names add unnecessary complexity to the protocol and
that the function definitions should not be part of the protocol either. Therefore we think
that the function definitions should either be available online or could be retrieved using a
standardized RNVMe function call. However, we think that the design of such a function
call is outside the scope of our contribution.

The parameters and return values of an RNVMe function only support two data-types.
These data-types are pointers to DMA buffers and 64-bit binary numbers. The protocol
supports up to 255 DMA buffers and 255 binary numbers as parameters, and it also supports
255 DMA buffers and 255 binary numbers of return values. Nevertheless, we do not
encourage implementations to support this excessive upper limit and recommend limiting
the DMA buffers to 15 and keep the upper bits of the “DMA in n” and “DMA out n” fields
as reserved for future changes to the protocol.

44 CHAPTER 5. APPNVM

Field size Description
Vendor 32-bits Represents a unique id that stands for the vendor or standard

committee that created the functions. We believe that this field
should be globally unique and that vendors should apply for their
private vendor ID, but this would require an organizational body
such as the Organizationally Unique Identifier which is managed
by the Electrical and Electronics Engineers, Incorporated (IEEE).

Function 32-bits Every function added by the vendor must have a unique function
ID, and should always represent the same function. New versions
of the function should get a new ID. This uniqueness would ensure
backward compatibility between different applications.

Input Parameters 64-bits If there are more than one parameters to the RPC function, then
this field contains a pointer to a DMA page that contains the rest
of the 64-bit parameters in sequence. Otherwise, if there is only
one parameter to the RPC function, then this field contains that
parameter. The first parameters in the sequence are DMA buffers
where the number of DMA buffers is determined by the “DMA
in n” field. The following number of 64-bit parameters in the
sequence are determined by the “In n” field.

Output Parameters 64-bits Similar to the “Input Parameters” field, if there is more than
one result from the function, then this field contains a pointer to
a DMA page that contains the rest of the 64-bit parameters in
sequence. Otherwise, if there is only one result from the RPC
function, then this field contains that result. The number of result
values is determined by the “DMA out n” and the “Out n” fields.

DMA in n 8-bits This field is used to specify how many of the first parameters are
pointers to DMA backed pages. Only the first parameters can be
DMA pointers. This field is used by both the host and the SSD
controller to know which parameters need DMA backing, and
which are used for other purposes.

DMA out n 8-bits Similarly to the “DMA in n”, this field is used to specify howmany
of the first results are DMA backed pages. Only the first results
can be DMA pointers.

In n 8-bits This field shows how many 64-bit parameters there are after the
list of DMA backed pointers. The application programmer is free
to give any meaning to these 64-bits values. This means that if
we include the value from “DMA out n”, then the total number of
parameters possible to an RPC function is 510 parameters.

Out n 8 bits This field shows how many 64-bit results there are from the RPC
function after the DMA packed pointers.

Table 5.1: The RNVMe command is to support calling a function on the NVMe device with
multiple parameters. These parameters can either be DMA buffers or 64-bit numbers.

5.3. OX RNVME ARCHITECTURE 45

Figure 5.2: The proposed RNVMe command identifies the RPC function using the combined
values of the vendor and the function fields. The rest of the fields are used for parameters to
the function and return values. The parameters and return values can either be a 64-bit value
or a pointer to a DMA buffer.

5.3 OX RNVMe Architecture
Since our equipment consisted of the DFC and the OX firmware, we have decided to include
a description of how we would have implemented RNVMe in OX. The implementation of
RNVMe in OX would consist of two parts. The first part is an internal backend that can
dispatch multiple reads, writes, and erase commands to the flash chips. This backend is
crucial because each RNVMe command can result in multiple commands to the flash chips.
The second part is a modular framework that allows for the dynamic addition of new RPC
functions at runtime. We do not include a description of an upload protocol. However,
the RNVMe framework we propose would make it easy for such a protocol to add RNVMe
functions.

5.3.1 The OX RNVMe Command Handler
Figure 5.3 shows how the data flow in OX changes with the inclusion of the new RNVMe
backend. The NVMe command parser would need to be changed to support RNVMe
commands. By design, the OX controller uses one thread per NVMe submission queue to
dispatch I/O requests to the internal FTL and media manager logic. We would recommend
using the same NVMe submission queue threads to run the new RNVMe commands. We
would however also recommend that the application programmer or operating system driver
would keepRNVMecommands on a dedicated submission queue, due to some of theRNVMe
commands taking longer to execute than traditional I/O commands.

46 CHAPTER 5. APPNVM

Figure 5.3: This Figure shows the internals of the OX controller as depicted by Picoli [5]. It
has been modified to show the design change needed to OX to add a new RPC backend that
is capable of submitting multiple I/O requests to the internal queues which are not visible to
the host. Each RPC command can result in this backend submitting and completing multiple
commands to complete an RPC NVMe and sending a completion entry back to the host.

Internally two separate threads are assigned to each channel of the FPGA’s flash chips.
One thread is responsible for submitting commands to the FPGA, and another is responsible
for delivering completion records to the NVMe completion queue threads. As a result of this
thread delivery system, we would need to add the following new facilities to OX to be able
to allow the RNVMe functions to dispatch multiple I/O commands internally:

• We would need to add new internal I/O submission, and completion queues for each
RNVMe enabled submission queue. These queues would not be visible to the host
and are only used to dispatch I/O related commands from RNVMe functions to the
FPGA’s flash chips. The internal channel command threads would need to be able to
consume I/O commands from the internal submission queue and to notify the NVMe
completion queue thread when all of the dispatched I/O related commands from the
RNVMe function have completed.

• All NDP related DMA transfers from the internally submitted I/O commands would
need to be delivered to the DFC’s physical memory for the RNVMe function to be able
to process them. This functionality is already available in the FPGA and only needs a
flag set in the internal flash commands to the FPGA to function and is therefore easy
to implement.

5.3. OX RNVME ARCHITECTURE 47

• The OX controller needs to be able to submit DMA transfers from the DFC card over
to the host. While the DFC supports this, however, it is only able to do so through the
FPGA.

The only real change to the OX architecture would be the introduction of the internal
RNVMe I/O queues. All other requirements are either available or need minimal additions
for them to function.

5.3.2 The OX RNVMe Modular Backend
We propose that the new RNVMe backend would use the shared library support of the
Executable and Linkable Format (ELF) provided by Linux. This library support gives the
application programmer the option of compiling new RNVMe commands as .so library files
and then directly copy them into a directory on the DFC, where OX can then dynamically
initialize them at runtime. This deployment method allows us to quickly deploy newmodules
without the need for an upload protocol.

The steps that we propose for loading new .so modules into OX to enable new RNVMe
commands are as follows:

1. Initializing the environment: Before loading any RNVMe modules, the backend
must load a standard RNVMe library .so file that contains all the functions that the
RNVMe modules can use. This library would include functions to register new
RNVMe commands, submit I/O commands, and execute DMA transfers.
The dlopen function would be used with the RTLD_NOW and RTLD_GLOBAL flags
to load the library. Doing so will link the functions so that future modules will be able
to use them.

2. Monitoring for new RNVMe modules: The backend should use the fcntl system
call with the F_NOTIFY flag to monitor for newly uploaded .so files to the RNVMe
library folder. This notification system will make sure that the RNVMe backend can
insert new RNVMe modules every time a new .so file is available, without the need to
periodically polling the directory.

3. Adding newRNVMemodules: New .so files could either be uploaded during runtime
or be stored on the DFC card. To make sure that the backend does not load a partially
uploaded .so file, we recommend that the ending of the file being uploaded to be .part
and then changed to .so when the upload is complete.

4. Initializing the NVMe modules: When the .so file has been successfully uploaded,
the backend should use the dlopen call on the uploaded .so file with the RTLD_LAZY
flag. This will initialize the new library without functions from different RNVMe
modules classing with each other.
The backend then creates aModule struct from Listing 5.1 and uses the dlsym function
to load the rnvme_init and rnvme_exit functions from the NVMe module into the init
and exit function pointers in the struct. These two functions are then used to initialize
the NVMe module and to deconstruct the module on shutdown.
Listing 5.1: Internally the RNVMe backend creates one Module struct per loaded .so
file and initializes the init and exit function pointers to their internal .so init and exit
functions. These function pointers are then called when the module is loaded and
when the module is removed.

48 CHAPTER 5. APPNVM

typedef struct Module
{

char∗ name; // A human readable name for the module.
void∗ handle; // A dlopen file handle.
int (∗init)(void∗); // The modules loading function.
int (∗exit)(void∗); // The modules unloading function.
int status; // Was the module loaded successfully.

} module;

5. The RNVMe module’s init function: The init function pointer in the Module struct
is responsible for calling a registration function provided by the RNVMe standard
library. This function creates an instance of the RpcFunction struct from Listing 5.2,
which is then called for each dispatched RNVMe command from the host.

Listing 5.2: Each RNVMe function is kept in a RpcFunction struct, and OX calls the
func function pointer for each RNVMe command dispatched from the host.
typedef struct RpcFunction
{

Module∗ module; // Owning module.
unsigned int vendor_id; // Vendor ID.
unsigned int function_id; // Function ID.
int (∗func)(nvm_command∗ cmd); // The actual RNVMe function.

} RpcFunction;

6. Submitting RNVMe functions from the host: The RNVMe must be submitted from
a library to make it convenient for the application programmer. We would recommend
changing the LightNVM-Direct to support the new RNVMe commands, or changing
liblightnvm and the LightNVM framework in the Linux kernel to support it. This would
mean that a new rnvme_command struct would need to be added to the LightNVM
headers and the appropriate mapping of DMA buffers would be done by the kernel
before the command is dispatched.

5.4 The AppNVM Upload Protocol
In this chapter, we contribute a discussion on what principles we think an AppNVM upload
command should strive to follow. Currently, the NVMe specification contains two commands
to upload new firmware and enabling them. These commands are Firmware Commit and
Firmware Image Download and force the design of having a few firmware slots which the
NVMe device can update and boot from. These firmware commands are too limiting for
AppNVM uploading, and therefore, we will have to introduce a new upload protocol.

All commands in the NVMe specification are 64-byte long and many commands reserve
bits for future use. We believe that an upload protocol that limits a fixed number of bits to
differentiate betweenAppNVM implementations and hardware configurations is too limiting.
We, therefore, propose that the newAppNVMupload protocol to not be limited to the 64-byte
NVMe command structure and should use a higher level capabilities discretion that would be
communicated between the host and the NVMe using DMA. We propose that the high-level
description would fulfill the following design principles:

5.4. THE APPNVM UPLOAD PROTOCOL 49

• Push for a common AppNVM upload standard: Should support all types of App-
NVM architectures and should not contain any AppNVM specific features to prevent
the formation of multiple upload standards. This requirement would allow protocols
other then RNVMe to use the same description and upload protocol.

• Use unique identifiers for capabilities: The protocol should use globally unique
identifiers for capabilities, such as GUID, to make the distinction between capabilities
clear and to allow for diversity. This requirement allows vendors to create vendor-
specific backends for RNVMe without requiring all implementations to be compatible.

• Support multiple backends: The protocol should be able to support multiple types
of hardware and software architectures. An AppNVM architecture might support
multiple programming languages and even FPGA uploading at the same time. It also
might support multiple versions of the same architecture over time.

An example of what an AppNVM capabilities description could look like is depicted
in Listing 5.3. There we designed a description that uses GUID to distinguish between
capabilities and upload methods. The host application uses the GUID values to see which
capabilities are available on the NVMe device before communicating with it. The description
is split into three different regions, the first being the upload capabilities. The upload
capabilities list what type of AppNVM backends are supported. This could be different
types of RNVMe backends or even other types of AppNVM. The second region contains
the interfaces that the NVMe supports which would list the supported protocols, such as
RNVMe. The third category lists the hardware capabilities which would influence what
functionality could be uploaded to the NVMe device.

Listing 5.3: This shows an example of what the AppNVM high-level get features description
could be. The listing shows a capabilities description that shows hardware capabilities,
upload capabilities, and the protocol supported. It has no fixed size binary limitations and
allows multiple protocols to coexist at the same time.
appnvm: {
upload: {
be6f3344−f106−11e8−8a4c−0021ccdb24ac: "OX RNVMe V0.9"
ae6bdafe−efff−11e8−ba69−0021ccdb24ac: "OX RNVMe V1.0"
dd1c5824−efff−11e8−a50d−0021ccdb24ac: "OX RNVMe Java v8"

},
interface: {
f84d0846−efff−11e8−940c−0021ccdb24ac: "RNVMe v1.0"

},
hardware {
23708d34−effd−11e8−8bae−0021ccdb24ac: "ARMv8−A",
fec9a848−effd−11e8−9655−0021ccdb24ac: "16−GiB",
1285062a−effe−11e8−a16c−0021ccdb24ac: "VVDN FLASH FPGA",

}
}

It would be ideal if AppNVM implementations would be standardized to use known
architectures, such as the RISC-V instruction set, or if they used a driver compiled program-
ming language as is done in graphical accelerator drivers. However, we believe that even if
such a standard would exist, it would eventually need a replacement.

50 CHAPTER 5. APPNVM

5.5 Security
The main security problem related to AppNVM is the DMA buffer handling and the broad
access it has to the host’s physical memory, which opens up the door for DMAmalware [12].
This full access stems from the fact that PCIe devices have direct access to the physical
memory through the IOMMU, and therefore allow the attacker to transfer data to and from
any memory address. An NVMe bypass allows an attacker to write memory pages the
attacker does not have access to onto the NVMe device, and then read them back into
accessible memory. AppNVM however, opens up a new attack vector where the attacker
could upload AppNVM code that could read and modify any memory at will using the DMA
facilities available on the device itself.

5.5.1 Preventing malicious DMA transfers from the host
Wewould argue that if an application is using a user-spaceNVMe to try to boost performance,
then the application is most likely running on a dedicated server. This exclusiveness would
mean that if the application becomes compromised, then everything of real value on the host
is already compromised. Therefore, one could argue that without proper hardware support,
a kernel space bypass should never be considered safe.

We believe that to make RNVMe safe from misused DMA addresses, a kernel bypass
should not be used, and the kernel should be in charge of the RNVMe DMA buffers. For
this to work, the NVMe device would need to implement an RNVMe function that the kernel
can use to query how many of the parameters and results require DMA transfers for the
dispatched RNVMe command. This requirement would be necessary to enforce the proper
use of the DMAmemory and would require caching for the subsequent RNVMe commands.

5.5.2 Preventing malicious uploads of AppNVM
A harder problem is to secure the upload of new AppNVM functionality that can execute
DMA transfers to the host. We believe that the only correct solution is to limit who can
upload AppNVM functionality to the NVMe device; however, we also believe that DMA
transfers can be made more secure on the NVMe device as well by sandboxing the AppNVM
application and limiting the DMA transfers to the physical addresses handed to the AppNVM
application.

In large environments where the NVMe device is connected to multiple hosts, it would
be necessary to protect the AppNVM upload functionality. We propose that one of the
following methods to be used to protect the AppNVM upload.

• Password protection: The upload protocol could force a password to be included in
the payload for the NVMe device to accept the AppNVM application. This password
could either be set manually or be kept by the Trusted Platform Module (TPM) on the
master host.

• Digital signature: The NVMe device could require the AppNVM application to be
digitally signed using a public-key cryptosystem for the AppNVM application to be
accepted by the device. This security system would either need the vendor to sign all
sanctioned modules or that the company that is using the NVMe device would deploy
and sign all AppNVM applications.

5.6. DISCUSSION 51

• Host limiting: In a large environment, the NVMe device or switch to the NVMe
device could be instructed to only accept AppNVM uploads from specific hosts, while
still allowing other hosts to call AppNVM functionality.

One method that could be used to set the password and settings of the NVMe device
would be to upload the settings through the AppNVM upload protocol.

5.6 Discussion
We set out to design an AppNVM protocol that would add NDP to NVMe and Open-Channel
SSDs. We realized that there had been limited work done on AppNVM and that no attempt
on classifying what types of AppNVM were possible. Therefore, we defined five types of
AppNVM and listed the pros and cons of each, in an effort to clarify the options. We suspect
that our list will need amendments and even that more types of AppNVM might be added to
this list in the future.

We designed a new AppNVM protocol, that we named RNVMe, and described our
vision of how it could be put into practice. This protocol was of the type AppNVM RPC
from our definition of AppNVM types. We chose this type of AppNVM because we think
it strikes a balance between flexibility and reusability, while still being simple enough for
vendors to standardize their programming interface. In contrast the AppNVM IPC pushes
the application programmers to create less reusable solutions and a larger programming
environment which is harder to standardize between vendors.

5.6.1 Future Work
In our ongoing work on RNVMe, we have created a partial proof-of-concept implementation
of the OX backend that handles adding new RPC commands. We hope to explore the
implications and possibilities that the RNVMe protocol would entail. Some of the questions
that would need to be explored are as follows.

• Should RNVMe commands be put on a dedicated NVMe queue with a longer timeout
value? Each RNVMe command might result in multiple I/O commands on the SSD,
therefore, mixing RNVMe commands with regular I/O could make the latency of the
NVMe queue less predictable.

• Should the RNVMe commands include an estimated timeout limit? This limit could be
used both for priority-scheduling of RNVMe commands and to limit the upper bound
on commands that are allowed to fail if they take too long.

• Should RNVMe commands support returning substantial answers, or should the design
try to force the programmers to make light answers? Large RNVMe commands add
both time and space complexity to the RPC functionality. Commands that return
substantial results might either need to return pointers to the controller’s memory for
later extraction or even to a location on the SSD storage itself.

For RNVMe to be fully functional on OX, a new upload protocol for RNVMe would
need to be completed. We believe the upload protocol needs to be designed to work with all
future AppNVM solutions. It is our concern that each new protocol added to the AppNVM
space would add a different type of upload protocol.

52 CHAPTER 5. APPNVM

The final question that will need to be addressed for RNVMe to be a feasible AppNVM
solution is if the programming environment could be standardized. This standardization
would either require a standardized instruction set architecture on the SSDs, or a standard
programming language that would either be compiled by the SSD firmware or by a vendor
specific compiler provided with the SSD’s host driver. To answer this question, we would
need to define what should be possible in an RNVMe function, and what implications that
would have on the RNVMe programming environment.

53

Chapter 6

Conclusion

The project described in this thesis had two major contributions. First was the creation
of the LightNVM-Direct backend for liblightnvm to allow direct communication between
user-space and Open-Channel SSD compliant devices. We compared the performance of our
solution to the native LightNVM implementation and found that our solution is comparable
to LightNVM as long as the number of threads submitting I/Os does not exceed the number of
CPU hardware threads. If the number of threads exceeds this boundary, the overhead, grows
due to the spin-lock thrashing of the more numerous threads on the host side. In other words,
our experiments indicate that the overhead of LightNVM itself is very low regarding latency
and that it scales well. Therefore, it seems to be little need to introduce user-space I/Os that
can bypass LightNVM when accessing Open-Channel SSDs for performance concerning
latency and throughput.

However, there are incentives to keeping the Open-Channel SSD driver in user-space
other than performance. In highly data-driven applications, where developers are creating
sophisticated execution planners, predictability can be of even greater value than max per-
formance. Having full control over the storage device’s queues and settings is the only viable
option in the cases where the kernel driver scheduling decisions are not in line with the
applications execution planner. Therefore, we believe that our work is still of value, despite
the lack of expected performance improvements from our user-space bypass.

Another reason why there has been an interest in moving the drivers into user-space has
been due to license issues, due to companies developing FTLs not beening keen on sharing
their work under the GPL license in the Linux kernel. For this reason, a full user-space driver
for Open-Channel SSD is still desirable for some.

The second contribution of this thesis was a new NVMe RPC protocol that we called
RNVMe. It allows simple I/O routines to be run on the NVMe device to do near-data
processing on the SSD disk itself. We think this is made feasible because of the sophistication
of the SoC chips used on today’s state-of-the-art NVMe disks. These SoC have large
quantities of RAM and sometimes decent CPUs which tend to be underutilized. This
underutilization is especially true if the responsibility of managing the device has been taken
over by the software stack, as in the case of Open-Channel SSDs. We had already started
work on proof-of-concept implementation of RNVMe for OX, and recently there is general
interest emerging in the field of computational storage [20]. The underutilization of the SSD
resources may however affect the design choices of Open-Channel SSDs when it comes to
mass production. With the removal of the FTL in Open-Channel SSDs, there is a motive
to remove the excess resources to make the production cheaper. We would consider such a
reduction of resources a lost opportunity, both because these resources are fairly cheap and
because it would significantly limit the potential future development of NDP on the devices.

54 CHAPTER 6. CONCLUSION

We find the challenges of on disk NDP to be an exciting avenue for future work as the option
of AppNVM shows great potential and many of the challenges are yet unsolved.

55

Bibliography

[1] S. Kim and J.-S. Yang, “Optimized I/O determinism for emerging NVM-based NVMe
SSD in an enterprise system”, in Proceedings of the 55th Annual Design Automation
Conference, ACM, 2018, p. 56.

[2] H.-J. Kim, Y.-S. Lee, and J.-S. Kim, “NVMeDirect: A User-space I/O Framework for
Application-specific Optimization on NVMe SSDs”, in HotStorage, 2016.

[3] M. Bjørling, J. González, and P. Bonnet, “LightNVM: The Linux Open-Channel SSD
Subsystem”, in FAST, 2017, pp. 359–374.

[4] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao, J. Stern,
V. Verma, and L. E. Paul, “SPDK: A development kit to build high performance
storage applications”, in 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE, 2017, pp. 154–161.

[5] I. L. Picoli, C. V. Pasco, B. Þ. Jónsson, L. Bouganim, and P. Bonnet, “uFLIP-OC: Un-
derstanding Flash I/O Patterns on Open-Channel Solid-State Drives”, in Proceedings
of the 8th Asia-Pacific Workshop on Systems, ACM, 2017, p. 20.

[6] Intel, SPDK, http://www.spdk.io, Accessed: 2017-12-14.
[7] Micron, unvme, https://github.com/MicronSSD/unvme, Accessed: 2017-12-14.
[8] uio, https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.g

it/tree/Documentation/driver-api/uio-howto.rst?h=v4.14.81, Accessed:
2018-11-18.

[9] VFIO, https://git.kernel.org/pub/scm/linux/kernel/git/stable/
linux.git/tree/Documentation/vfio.txt?h=v4.14.81, Accessed: 2018-11-
18.

[10] D. Scholz, “A look at Intel’s dataplane development kit”, Network, vol. 115, 2014.
[11] H.-J. Kim, Y.-S. Lee, and J.-S. Kim, NVNeDirect, https://github.com/nvmedire

ct/nvmedirect, Accessed: 2017-12-14.
[12] P. Stewin and I. Bystrov, “Understanding DMAmalware”, in International Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment, Springer,
2012, pp. 21–41.

[13] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block IO: introducing multi-
queue SSD access on multi-core systems”, in Proceedings of the 6th international
systems and storage conference, ACM, 2013, p. 22.

[14] L. Bouganim, B. Jónsson, and P. Bonnet, “uFLIP: Understanding flash IO patterns”,
arXiv preprint arXiv:0909.1780, 2009.

[15] M. Bjørling, J. Madsen, J. González, and P. Bonnet, “Linux kernel abstractions for
open-channel solid state drives”, in Non-Volatile Memories Workshop, 2015.

http://www.spdk.io
https://github.com/MicronSSD/unvme
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/driver-api/uio-howto.rst?h=v4.14.81
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/driver-api/uio-howto.rst?h=v4.14.81
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/vfio.txt?h=v4.14.81
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/vfio.txt?h=v4.14.81
https://github.com/nvmedirect/nvmedirect
https://github.com/nvmedirect/nvmedirect

56 BIBLIOGRAPHY

[16] M. Bjørling, P. Bonnet, L. Bouganim, and N. Dayan, “The necessary death of the
block device interface”, IT-Universitetet i København, Tech. Rep., 2012.

[17] J. González, M. Bjørling, S. Lee, C. Dong, and Y. R. Huang, “Application-driven
flash translation layers on open-channel ssds”, in Proceedings of the 7th Non Volatile
Memory Workshop (NVMW), 2016, pp. 1–2.

[18] M. Bjørling, M. Wei, J. Madsen, J. Gonzalez, S. Swanson, and P. Bonnet, “AppNVM:
A software-defined, application-driven SSD”, in Non-Volatile Memories Workshop,
2015.

[19] I. Picoli, OX AppNVM, https://github.com/DFC-OpenSource/ox-ctrl/wiki/
7.-- AppNVM:- A- Framework- for- Application- specific- FTLs, Accessed:
2018-11-12.

[20] New SNIA Technical Work Group to Focus on Computational Storage, https://
www.snia.org/news_events/newsroom/new-technical-work-group-focus-
computational-storage, Accessed: 2019-01-17.

https://github.com/DFC-OpenSource/ox-ctrl/wiki/7.--AppNVM:-A-Framework-for-Application-specific-FTLs
https://github.com/DFC-OpenSource/ox-ctrl/wiki/7.--AppNVM:-A-Framework-for-Application-specific-FTLs
https://www.snia.org/news_events/newsroom/new-technical-work-group-focus-computational-storage
https://www.snia.org/news_events/newsroom/new-technical-work-group-focus-computational-storage
https://www.snia.org/news_events/newsroom/new-technical-work-group-focus-computational-storage

School of Computer Science
Reykjavík University
Menntavegur 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.ru.is

www.ru.is

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Non-Volatile Memory Express (NVMe)
	DMA memory
	NVMe queues
	The queue structure and notification doorbells
	NVMe commands

	User-Space NVMe
	Requirements
	Available user-space NVMe libraries
	The NVMeDirect framework
	Drawbacks of the Kernel bypass

	Solid State Disk (SSD)
	Flash Translation Layer (FTL)
	Open-Channel SSD
	liblightnvm
	Dragon Fire Card
	OX Controller

	Benchmarking
	uFLIP
	uFLIP-OC / Fox

	Debugging Framework
	OX run-time command line
	Discussion
	Future Work

	LightNVM-Direct: A liblightnvm Kernel Bypass
	Architecture
	Changes to liblightnvm
	Changes to NVMeDirect
	Control Path
	Data Path

	Experiments with LightNVM-Direct
	Experimental Setup
	Evaluation 1: Context-switching
	Evaluation 2: Read Throughput
	Evaluation 3: Write Throughput
	Evaluation 4: Thread Throughput
	Evaluation 5: Latency

	Discussion
	Sources of Complexity
	Future Work

	AppNVM
	Definition and Categorization of AppNVM
	NVMe Rule Engine (NVMe RE)
	Thin-AppNVM
	NVMe Remote Procedure Calls (NVMe RPC)
	NVMe Inter-Process Communication (NVMe IPC)
	Full AppNVM

	RNVMe: Our proposal for a NVMe RPC protocol
	The RNVMe command

	OX RNVMe Architecture
	The OX RNVMe Command Handler
	The OX RNVMe Modular Backend

	The AppNVM Upload Protocol
	Security
	Preventing malicious DMA transfers from the host
	Preventing malicious uploads of AppNVM

	Discussion
	Future Work

	Conclusion
	Bibliography

