
University of Camerino

School of Science and Technology

Faculty of Computer Science (Class LM-18)

In collaboration with

Reykjav́ık University

Automatic Abstraction and Refinement for

Simulations with Adaptive Level of Detail

Graduand Supervisor

Michelangelo Diamanti David James Thue
Number 098858 Assistant Professor

Reykjav́ık University, Iceland

Co-supervisor

Andrea Polini
Associate Professor

University of Camerino, Italy

A.Y. 2017/2018

Abstract

Optimizing the level of detail of a simulation involves avoiding the computation of un-
necessary features, if doing so is transparent to one or more observers. This concept
dates back to graphic level of detail which has already been thoroughly studied, and
there are various techniques that adjust the rendering quality. Non trivial simulations,
in addition to the graphic component, also have a model that is responsible for the be-
havior of intelligent agents in the environment. Modern computing allows simulations
to be always larger and more complex, thus requiring an ever growing amount of re-
sources to function. In this dissertation we propose a system that is able to decompose
a simulation in different layers of abstraction, adjust the level of detail of the simulation
according to the observer’s perception of the world, and present the resulting visual
representation to the user. In particular, my contribution to the system revolves around
devising ways of understanding when to switch between different levels of detail, and
how to perform the adjustment without altering the consistency of the simulation with
regards to the user’s perception of the environment.

3

Contents

Abstract 3

1 Introduction 7

1.1 Background . 9

2 Problem Formulation 11

2.1 Standard Framework for Simulations . 12

2.2 Switch between Levels of Detail . 12

2.3 Increasing Level of Detail . 12

2.4 Decreasing Level of Detail . 12

2.5 Criteria for Success . 13

3 Related Work 15

3.1 Proxy Simulations for Efficient Dynamics 15

3.2 Geometry Motion and Behaviour Level of Detail 15

3.3 LoD for Cognitive Real-time Characters 15

3.4 Collision Avoidance LoD for Large crowds 16

3.5 Grouped Hierarchical Flocks of Agents 16

3.6 Switching Level of Detail . 16

3.7 Planning in a Hierarchy of Abstraction Spaces 17

3.8 Simulation Level of Detail for Virtual Humans 19

4 Proposed Approach 23

4.1 Planning Domain Definition Language 23

4.1.1 PDDL for multi agent environments 25

4.1.2 Implementation . 26

4.1.3 Optimization . 29

4.1.4 Unit Testing . 30

4.2 Simulation . 31

4.3 Level of Detail Adjustment . 33

4.4 Abstraction . 34

4.5 Refinement . 35

4.6 Multi Agents planning synchronization 38

4.6.1 Concurrency . 38

4.6.2 Synchronization . 42

5

4.7 Level of Detail Switcher . 44

4.7.1 Proximity . 44

4.7.2 Visibility . 45

4.7.3 Parallel Computation of Visibility 46

4.8 Summary . 47

5 Evaluation 49

5.1 Example Environment . 49

5.1.1 First Level of Detail . 50

5.1.2 Second Level of Detail . 53

5.1.3 Third Level of Detail . 55

5.1.4 Refinement . 57

5.1.5 Abstraction . 59

5.2 Results . 62

6 Discussion 65

6.1 Limitations . 66

6.2 Future Work . 67

7 Conclusion 69

1. Introduction

The graphic component of simulations has continuously been targeted as a crucial
point of optimization. Every modern graphic engine employs a wide set of techniques
aimed at automatically adjusting the level of detail of the rendered objects, in order to
maximize the performance of the simulation, while providing as much graphic details
as possible.

Figure 1.1: High vs Low poly.

For example, the polygons that con-
stitute the model of every object in
a graphic simulated environment de-
pend on the distance from where such
a model is being rendered. Fewer poly-
gons means less detail, but also eas-
ier computation and rendering require-
ments. If the distance between the
player and the model is enough, the dif-
ference becomes unnoticeable.

Figure 1.2: Frustum Culling.

Another technique often employed is
frustum culling, which uses the camera
field of view to check which objects are
visible by the player:

• everything inside the frustum
gets rendered in the scene

• everything outside of the frus-
tum doesn’t get rendered and its
model gets deallocated to save re-
sources.

Simulations are not constituted only by their graphic component. In fact, behind almost
everything that’s happening in the environment, there is an algorithm that decides its
behaviour. Although equally important, this aspect of level of detail has not received
the same research focus as its graphic counterpart. For this reason, the progress that
has been made with regard to simulation level of detail remains limited.

7

Authors
LOD based

on
Number of

LODs
LOD applied to AI behaviors

Chenney et al.
[1]

potential
visibility

2 updating movement
navigation, collision

avoidance

O’Sullivan e al.
[2]

distance not specified

geometry,
animations,

collision avoidance,
gestures and facial

expressions,
action selection

navigation, collision
avoidance, complex
dialogs with other

agents

Niederberger
and Gross [3]

distance and
visibility

21

scheduling, collision
avoidance,

path planning, group
decisions

navigation, collision
avoidance

Brom et al. [4]
simplified
distance

4
action selection,

environment
simplification

navigation, complex
interactions with
objects and other

agents

Paris et al. [5] distance 3
navigation, collision

avoidance

path planning,
navigation, collision

avoidance

Lin and Pan [6] distance not specified geometry, animations locomotion

Osborne and
Dickinson [7]

distance not specified
navigation, flocking,

group decisions
navigation

Kistler et al. [8]
distance and

visibility
10

updating movement,
collision avoidance,
navigation, action

execution

navigation, collision
avoidance,

desire-based
interactions with
agents and smart
objects, dialogs

Table 1.1: LoD for simulation in various topics reported by Kistler et al. [8].

Even if there has been some effort to advance simulation LoD adjustment, the results
remain limited to their own scopes. Referring to Table 1.1, we notice that the fields
are very similar to one another, and their applications are narrow. For example, there
are many approaches that deal with agents’ navigation, animations of virtual humans
and crowd behaviours. We can also notice that, quite often, the abstraction levels are
in a fixed and pre-determined number.

In our work, we want to propose a more general approach that can be employed in
many different scenarios to adjust the level of detail of the various components of a
simulation. To do that, we introduce a system that helps the user design simulations
that are capable of self-adjusting their level of detail.

There are a number of key points that make the self adjustment of simulation LoD
much more difficult compared to graphic optimization:

• Different Implementations of Simulations: There are many different ways
of modeling the simulation of an environment. Each one of them is unique, thus
requires its own way of adjusting the level of detail. This greatly hinders the
reusability of LoD self adjustment techniques among different implementations.
For example, if I wanted to simulate a crowd behaviour, I could not reuse the
self adjusting LoD crowd simulation system of Assassin’s Creed Unity[9], unless
the implementation of the crowds is same. This is not true for graphic optimiza-
tion, where there is a strict standard rendering pipeline common to every engine,

meaning that various techniques can be easily ported between them.

• Context-Specific Optimization: since simulation LoD deals with semantics
rather than visual props, there is no easy way of finding which parts are best to
optimize, nor which metrics can serve as good indicators for switching the level of
detail. For example, while dealing with graphic optimization, we can heavily rely
on rendering distance, and simply employ one of the techniques seen in Figures
1.1 and 1.2. On the other hand, when dealing with simulation LoD, there is no
such clear distinction.

1.1 Background

Complex simulations can have many connected parts that interact with and influence
one another with varying degrees of magnitude. Narrative-focused world simulations
require that the state of the story, as well as the state of the simulated world, be
maintained with consistency so as not to challenge the user’s suspension of disbelief.
Simulating narrative-focused world spaces thus requires a balance to be maintained
between system resources and the consistency of the simulated world.

The work explained here is part of a larger project that focuses on consistent world
space Simulation through Level of Detail manipulation for narrative-driven worlds in-
troduced by Ólafsson [10]. The project aims at developing a system composed by many
components that interact with one another to create and handle massive simulations.
The main components are as follows.

• The World Generator receives updates to the narrative from a narrative gen-
eration system and expands or modifies the World Data.

• The World Data represents the state of the world, its entities, and their con-
nections to each other.

• The World Manager manages the Level of Detail of the World Data as the
World State is passed to the other systems.

• The World Simulator, operating at various levels of detail, manages the be-
haviour of entities represented by the World Data, making updates to the World
Data in response to the connections between entities or to player actions.

• The World Visualizer arranges the scene depending on the World Data and
the player’s position in the world space.

• The Listener takes in feedback from player actions and feeds it to both the
Narrative Generator and the World Simulator to process.

In particular, my contributions will focus on the world manager and world simulators,
as I will propose a method for self-adjusting the level of detail of the simulation, along
with an approach for modeling the simulation itself. Both contributions can be inte-
grated into the larger system and interact with the other parts to provide a complete
simulation experience.

1.1. Background

Figure 1.3: General view of the system [10].

My proposed approach for tackling the challenges described in Section 1 is based on
two components:

• A Standard framework that enables the modeling of general-purpose simula-
tions. The chosen language on which the framework is based on is the Planning
Domain Definition Language (PDDL). It is a well-known language considered
to be a standard among Artificial Intelligence Planning languages. Having a
standard way of modeling simulations enables us to reuse the techniques for self-
adjusting level of detail.

• A LoD algorithm that, given many models for a simulation of a process rep-
resenting different level of abstraction, is able to adjust its level of detail. The
algorithm should always run the simulation at the level that requires fewest re-
sources, while still providing enough details. When we switch level of detail, the
algorithm should make sure that every transition previously computed is compli-
ant with the constraints of the new detail level. When there are some discrepan-
cies, the algorithm should re-write part of the history to fix the inconsistencies.

10

2. Problem Formulation

While experiencing a large world simulation, there are aspects that cannot be perceived
by the user because of many factors such as distance, occlusion, or even lack of interest
in that particular component.

Even so, most of the time, if we want to keep the flow of the simulation consistent,
we are bound to be accounting for every aspect of the environment at all time. In fact,
different events may be tied to one another, and the lack of simulation of one part of
the environment may affect some other part that is actually observable by the user.

The problem that I have investigated in this project is: how can we adjust the level of
detail of simulations to postpone the computation of unnecessary details if they’re not
observable by the user, while maintaining a consistent simulated environment? Since
the simulation is interactive, its progression may result in a state where the system needs
to provide more details than the ones that had been previously computed. Imagine that
we are simulating the movement of an agent at abstract level because the user cannot
directly observe it. If at a later time the user has access to a recording of the agent,
the movements that were previously computed at abstract level need to be refined
to account for the current observable details. This means that the system needs to
monitor some indicators in order to adjust the level of detail of the simulation. When
a change in level of detail is deemed necessary by the system, we need to review part
of the simulated past and make up for the lack of details in the previously computed
story-flow. The main advantage of delaying the computation of details is twofold:

• Avoid unnecessary details: If the simulation never reaches a state that com-
pels us to provide more details, then we completely avoided unnecessary compu-
tation.

• Computation Scaffolding: When we actually need to generate details, we
already have a skeleton that depicts a high level structure upon which we can
base our computation, thus greatly reducing the size of the problem.

Definition Domain Abstraction: Given two domains, δ1 and δ2, we say that δ1 is an
abstraction of δ2 if every possible outcome reachable by applying the transition model
defined by δ1 is also reachable by applying the transition model of δ2

Let D be a list of domains (δ1, δ2, ..., δn) such that for all < δi, δi+1 > pairs ∈ D, δi is
an abstraction of δi+1. Our goal is to find the δx ∈ D with lowest x such that using δx
to run the simulation will preserve perceptual consistency for the user.

Standard Framework for Simulations

2.1 Standard Framework for Simulations

The first component we try to devise in this dissertation is a framework that enables the
modeling of large simulations. There are multiple difficulties that arise while devising
such a component because it must integrate with the rest of the system, and so it must
satisfy multiple criteria:

• It should be flexible enough to allow the differentiation between multiple levels
of detail.

• It should account for the presence of multiple intelligent agents, since general
purpose simulations may contain more than one entity that is interacting with
its surroundings. This problem alone is not trivial: it forces us to account for
concurrency challenges during the simulation.

• It should be easily portable to other systems. If we want to reuse this method
in other scenarios, it should be possible to incorporate the component in other
systems.

2.2 Switch between Levels of Detail

We must devise an algorithm that estimates the observability of each event that is being
simulated in the environment, with regard to the player’s perception of the world. This
measure will then be used to adjust the level of detail of the simulation, to strike a
balance between detail level and required resources.

The main challenge in this regard is to choose good indicators that can be employed
to compute the observability estimate. They should be impartial enough to allow for
deterministic measurement, while still being relevant measures of observability.

2.3 Increasing Level of Detail

We must devise an algorithm that, when the estimated observability level is above a
certain threshold, is able to increase the level of detail of the simulation to match the
user’s new perception of the environment. It could be the case that new rules and
mechanics apply to the increased level of detail, and the resulting constraints could
have been neglected while applying the previous transition model. This means that the
system might have generated some actions that would not have been possible in the
new level of detail. In this case we need to be able to parse each abstract transition
into a series of actions whose combined effects lead to an equivalent goal state.

In this regard, we must account for concurrency challenges such as synchronization
between different agents. In fact, it could be the case that multiple transitions are
dependent on one another and they must happen in the correct sequence.

2.4 Decreasing Level of Detail

Analogously, we have to devise a method for switching from a detailed simulation state
to an abstract one. During this process we must drop all the aspects of the simulation
that are not observable by the user, while still maintaining the relevant ones.

12

Criteria for Success

2.5 Criteria for Success

While adjusting the level of detail of a simulation, we should keep in mind the following
criteria

• Consistency: the simulated story flow should be consistent at all times so as
not to challenge the user’s suspension of disbelief.

• Level of Detail: the simulation should provide enough details to account for
every aspect of the world that the user can perceive.

• Observability Switch: the observability measure employed to estimate the
user’s world perception must be adequate. The switch in level of detail should
correctly reflect this estimate.

• Performance: the system should have adequate performance. Adaptive level
of detail should result in saving resources compared to always simulating at the
highest possible level of detail.

A good solution should satisfy all the above requirements. In particular, consistency
means that if the user perceives a particular aspect of the simulation, and then puts
them in a scenario in which they can observe more details of the same aspect, the
system must never output details that contradict previous perceptions.

For example, if the user sees an agent that is moving from a location to another
at level of detail 1, then triggers the switch to the second level of detail where the
same movement is not possible (e.g. due to an obstacle that was not simulated), the
system should refine that action with a sequence of equivalent transitions that are also
compliant to the previously observed details.

13

3. Related Work

3.1 Proxy Simulations for Efficient Dynamics

Chenney, Arikan, and Forsyth [1] present an approach for decreasing the motion level
of detail for objects that are not perceivable by the user. The authors define the term
“proxy simulation” as the procedure responsible for managing the objects that are out of
scope, with a lower level of detail. The paper compares two slightly different designs for
proxy simulations: both save resources employing discrete event computation, but the
second also integrates a statistical model to account for interactions that are otherwise
expensive to simulate.

The example scenario is a simulation of the cars in traffic: all the objects that might
be observable by the player (street level) are simulated at full LoD, the others with a
proxy simulation.

3.2 Geometry Motion and Behaviour Level of Detail

The paper “Crowd and Group Simulation with Levels of Detail for Geometry Motion
and Behaviour”[2] written by O’Sullivan et al. focuses on modeling the level of detail
for groups of virtual humans. It introduces a way of adjusting the LoD of simulations
with regards to three aspects: geometry, motion and behaviour. The geometry is the
complexity of the models employed to represents the agents; motion is the level of
detail of the algorithms used to control the agents’ locomotion or grasp movements;
and behaviour can involve both spoken cues, such as language accent, or non spoken
cues such as gaze animations that express emotions.

Geometry complexity is handled by reducing the count of polygons. Motion is ad-
justed by switching from pre-determined animation to full featured inverse kinematics
movements. Behaviour is changed by modifying the number of possible cues that ex-
press speech and emotions.

3.3 LoD for Cognitive Real-time Characters

Niederberger and Gross [3] present a scheduling algorithm that divides the time allo-
cated for computing the behaviour of each agent depending on its observability. There
are two types of behaviour: proactive, which grants the agents full awareness of their
surroundings and lets them choose their own actions accordingly, and reactive, which
is a cheap behaviour that just tries to avoid inconsistencies.

The objects are collected into a quadtree which is updated using the camera’s field
of view. They’re divided in three levels: visible; near-visible if they have at least one

Collision Avoidance LoD for Large crowds

edge attached to a visible one; non-visible. The scheduling algorithm makes sure that
the reactive model is applied to every object, and reserves all the remaining time to
run the proactive model on the more important agents.

3.4 Collision Avoidance LoD for Large crowds

Paris, Gerdelan, and O’Sullivan [5] discuss the simulation of large crowd of virtual
humans. It focuses on the issues that arise in path finding and locomotion algorithms,
such as obstacle avoidance, when many agents have to be simulated at once.

The authors devised three different levels of detail associated with as many path
finding algorithms. At the most detailed level, the path is computed with full obstacle
avoidance, taking into account the entire entity’s perception of its immediate surround-
ing. The second level only takes into account one potential obstacle and quickly re-
trieves a solution using fuzzy logic. The third level doesn’t have obstacle avoidance at
all. The level of detail of each agent is adjusted based on the distance from the player.

3.5 Grouped Hierarchical Flocks of Agents

The paper from “Improving Games AI Performance Using Grouped Hierarchical Level
of Detail”[7] by Osborne, Dickinson, et al. focuses on simplifying the LoD of simulations
that are composed by hierarchical structured groups of intelligent agents. The authors
have developed a simulation of many separate groups of similar entities, comparable to
a flock, where each group may contain an arbitrary number of agents.

The LoD is adjusted based on the distance from the player. When the detail level is
decreased, an arbitrary portion of the elements of the furthest groups is merged into a
single entity. This may save a lot of resources because the functions that regulates the
behaviour of the agents needs to be applied to fewer units. When the LoD is increased,
the single entities get expanded becoming many agents.

3.6 Switching Level of Detail

The paper “Level of Detail Based Behavior Control for Virtual Characters”[8] by
Kistler, Wißner, and André focuses on providing a general way for switching the level
of detail of simulations based on a formula that takes into account multiple parameters
such as distance from the camera and occlusion.

The solution allows for an arbitrary number of different LoDs. Starting from the
most basic one, each one of them adds some complexity, until the full detailed model.

16

Planning in a Hierarchy of Abstraction Spaces

3.7 Planning in a Hierarchy of Abstraction Spaces

The paper Planning in a Hierarchy of Abstraction Spaces [11], published by Sacerdoti in
1973 dives into the difficulties of devising efficient plans for complex environments. The
work explained in the paper also serves as introduction for ABSTRIPS (Abstraction-
Based Stanford Research Institute Problem Solver) which, along with classic STRIPS,
is one of the predecessors of the PDDL syntax.

The core concept presented in the paper is that one can greatly increase the perfor-
mance of classic planners by reasoning about the problem at hand on different levels
of abstraction. The planner starts by differentiating between important parts of the
problem and the ones that can be regarded as (trivial) details. In this regard the levels
of abstraction are represented by domains, and the author assumes that each domain
can differ from the others only for the number of literals (predicates). This restriction is
justified as an effort to strike a good balance between abstraction power and similarity
between the resulting domains, so that the plans devised at high level are still relevant
once they need to account for details at ground level, and don’t need to be revised too
much.

Computing abstraction spaces requires an initial assignment of predicate importance
by the author. Then, a static analysis is performed to differentiate between predicates
that can be changed by the effects of actions which are regarded as details, and the
ones that are immutable and thus fundamental to the problem.

Figure 3.1: Abstraction Spaces [11].

The scenario in Figure 3.1 repre-
sents a planning problem of turn-
ing off the lamp in a room. The
predicates in the environment are
used to identify the object’s phys-
ical properties (type, color etc.),
and the spacial characteristics of
the agent that must execute the
plan (position, proximity etc.).
A possible predicate ranking is
shown, which is computed based
on the effects of the actions of the
domain.

Since the agent has many ways of going next to the lamp, this is regarded as a detail
(rank 1). On the other hand it cannot alter the physical properties of the lamp thus
the type and color are considered high priority.

With the ranking at hand, it is possible to compute many levels of abstraction: the
more general ones will only account for important aspects of the problems, while the
others will account for progressive amount of details. While devising a plan with this
approach it is important to commit as late as possible to decisions about details so
that it is possible to refine the plan at a later time while maintaining many different
possible solutions, thus avoiding dead ends, which are plans possible at high level but
not at ground level.

17

Planning in a Hierarchy of Abstraction Spaces

Figure 3.2: Left search tree with classic STRIPS, right ABSTRIPS [11].

We can see that formulating plans at an abstract state and then refining the details
afterwards greatly reduces the size of the state space and the size of the search tree.
Once the high-level plan is returned it is simply necessary to fill the gaps between the
various parts.

The drawback with this approach is given by the strict constraints put on the ab-
straction domain: the abstraction spaces differ from the ground spaces only in the level
of detail used to specify the preconditions of operators. This constraint helps a lot
when taking into account effective heuristics because they can prune most branches of
the search tree if we don’t have to attend many details. On the other hand it is very
constrictive, as it forbids us from devising new actions in the domain that would make
traversing the search tree much faster.

There is also a fundamental difference that does not allow us to employ this approach
to our use case: while planning an activity, one has a clearly set goal, but in our
case, we are simulating a process and the end goal is simply to strike a good balance
between performance and attention to details. Thus, we can allow more freedom in our
abstraction spaces rather then focusing too much on effective heuristics.

18

Simulation Level of Detail for Virtual Humans

3.8 Simulation Level of Detail for Virtual Humans

The paper Simulation Level of Detail for Virtual Humans[4] by Brom, Šerý, and Poch,
presents a way of adjusting the level of detail of both spacial components and be-
havioural components of simulations.

The approach is based on the concept that, if spaces are organized hierarchically,
they can be divided in multiple layers of abstraction. The example scenario in the
paper simulates miners, sitting at a pub’s table, enjoying some drinks. The hierarchy
is structured as follows: the pub is located in a suburb, that is in a city residing in a
kingdom of the world pub −→ suburb −→ city −→ kingdom.

The hierarchy is represented with a tree-structure: the leaves are the most detailed
places, which are also called “way-places”, for example tables at the pub, all the nodes
that are not leaves are referred to as “Areas”. Thanks to this hierarchy the authors
devised a way of adjusting the LoD of the objects in the space with something that
they called the “Membrane method”.

Figure 3.3: The Spacial Membrane cutting trough the layers of the tree [4].

The membrane is a virtual graphical representation of the level of detail. It can be
visualized as a line that cuts trough various levels of the tree structure, and defines the
boundary of what is observable in the world. Everything which is below the membrane
is deemed not perceivable, while the objects that are over the membrane are observable.

The membrane is used to adjust the spatial LoD. It is employed to decide what
happens for things that are below it: they can either cease to exist, or can be assigned
to some other entity that is over the membrane.

All the objects in the world have a manually assigned “existence-level”, which regu-
lates the minimum required LoD for their existence, and a “view-level” that indicates
their starting LoD. Every increase in level of detail requires to rearrange the space:
objects that remember their position from before the transition are placed in the same
spots, the others are assigned by room-specific placing algorithms.

When an object moves to a new area, one of three things can happen: if the object
is going to an area that is below its existence level, it disappears; if the area LoD is
above the existence and view level of the object, it is just placed there; finally if it is in
between the two, the LoD of the area is increased to match the view level of the object.

19

Simulation Level of Detail for Virtual Humans

Figure 3.4: The behavior tree compared with the space hierarchy [4].

To describe the behaviour of the agents they employ AND-OR trees where goals are
OR nodes and tasks are AND nodes. Every goal can be achieved by several tasks, while
every task can be achieved by adopting sub-goals. The AND-OR tree is superimposed
over the spatial hierarchy tree to understand which tasks are affordable at every layer.
For example, if we’re simulating the room of the pub, a possible action could be “en-
joying at a table”, while if we’re only simulating the pub as a leaf node, the closest
performable action would be “enjoying at a pub”.

The membrane is re-shaped in a bubble around the user, or also by a drama manager
that may decide to focus on a particular location. This does not immediately affect the
objects that are below the membrane; instead, they employ a “garbage collector” that
deallocates them only if needed (low resources).

This approach presents some limitations:

• A hierarchical space division is needed to benefit from this approach. The mem-
brane would be flat if we were to employ it on an environment characterized by
a non hierarchical structure, for example a racing game where all the different
locations might be at the same level.

• The membrane method requires a lot of human annotation. We need to assign
“view-level” and “existence level” to manage how the membrane affects the enti-
ties of the world.

• The “Room specific placing algorithms”, used to reshape the space when refining
an area, greatly hinder the reusability of the solution, as they have to be developed
ad hoc for each area.

As we hinted in the introduction, the main limitation with the aforementioned ap-
proaches is that they’re limited to their own scopes. Many of them concentrate on
simulating virtual humans, especially crowds, or other sorts of groups that can be
managed with flocks behaviours. This limits each solution’s reusability, as it would be
hard to employ it for different scenarios.

Another important difference between these approaches and our own is in the number
of levels of detail: the majority of these methods provide a fixed and predetermined
number of layers. Moreover, they often require the abstractions to be designed ad-hoc.

20

Simulation Level of Detail for Virtual Humans

With our approach we try to mitigate these limitations by providing a system which
is capable of: (i) creating subsequent abstraction models for an input detailed problem;
(ii) providing a method that estimates the best time for switching among the various
LoD; (iii) and designing a way of accounting for the challenges that arise when refining
and abstracting the simulation data among different levels of detail.

21

4. Proposed Approach

In this section we will explain the work that has been done to answer our scientific
questions presented in Section 2. We first introduce and describe the language that we
chose to model the simulation and the resulting framework that we implemented. We
then talk about how we can use the framework to model self-adjusting level of detail
simulations. We then articulate the algorithm for increasing or decreasing the level of
detail. Finally, we explain how we estimated observability and how we employed that
measurement to switch between the various levels of detail.

4.1 Planning Domain Definition Language

The Planning Domain Definition Language (PDDL) is an attempt to standardize Ar-
tificial Intelligence (AI) planning languages. A classic problem expressed in PDDL has
two main components:

• A Domain Description: contains the elements which are common across all
instances of the problem that we are modeling, including the predicates that can
be used to describe the relations of the world and the actions that each agent
can perform.

• A Problem Description: the actual instance of the problem that we are going
to plan a solution for. It contains all the entities that are part of the problem
and the relations that describe their current state. It also contains a description
of the starting state and the goal state.

Consider a simplified version of the actual problem that we modeled in our project: we
have a rover which has been assigned the task to move from a starting location to its
destination. First we define the types of entities which are part of the problem:

Rover Waypoint

Description
the type of the protagonist

of the environment,
the one that performs actions

the type of the locations
where the rover can go

Table 4.1: Entity Types in the example environment.

Then we define the keywords that we are going to use to describe the world, which are
called predicates:

Planning Domain Definition Language

CAN MOVE BEEN AT AT

Description
specifies if the rover can

move from a starting
waypoint to a destination.

specifies if the rover
has been in a

certain location

the current location
of the rover

Table 4.2: Predicates in the example environment.

Finally we must describe the actions that the entities can perform, in this case the only
one is move, which moves the rover from a location to another:

MOVE

Parameters rover, startingWayPoint, destinationWaypoint

Preconditions
rover AT startingWayPoint
startingWayPoint CAN MOVE destinationWayPoint

Postconditions

not rover AT startingWayPoint
rover AT destinationWayPoint
rover BEEN AT destinationWayPoint

Table 4.3: Move Action Example.

• The Parameters: are the rover, the starting waypoint and the destination

• The preconditions: are relations that must be true in the state to which the
action is applied in order to perform it. In this case the rover current location
must be equal to the starting point of the action, and it must be possible to move
from start to destination.

• The postconditions: is a set of relations that define how the resulting state
looks like after applying the action. After the move action the rover location
is changed from start to destination and we know that it has been at this new
location.

Once the domain has been modeled we have to create an instance of the actual problem.
In order to do that we need to populate the world with objects of the types specified
in the domain, describe how the initial state looks like using relations composed by the
aforementioned predicates and specify what is our goal state.

Referring to Figure 4.1, we can see on the left the domain of the problem with the
predicates that can be used to describe the world and the possible actions. On the right
we see the instance of the current problem, which describes the entities, the relations,
the starting state and the goal state.

24

Planning Domain Definition Language

(define (domain rover−world)

(:predicates
(can−move ? from−waypoint

? to−waypoint)
(been−at ? rover ?waypoint)
(at ? rover ?waypoint)
(waypoint ?waypoint)
(rover ? rover)

)

(:action move
:parameters

(? rover
? from−waypoint
? to−waypoint)

:precondition
(and
(rover ? rover)
(waypoint ? from−waypoint)
(waypoint ? to−waypoint)
(at ? rover ? from−waypoint)
(can−move ? from−waypoint

? to−waypoint))

:effect
(and
(at ? rover ? to−waypoint)
(been−at ? rover ? to−waypoint)
(not (at ? rover

? from−waypoint)))
)

(de f i n e (problem rover−1)

(:domain
rover−domain

)

(: o b j e c t s
waypoint1 waypoint2 waypoint3
rover1

)

(: i n i t

(waypoint waypoint1)
(waypoint waypoint2)
(waypoint waypoint3)

(can−move waypoint1 waypoint2)
(can−move waypoint2 waypoint3)
(can−move waypoint3 waypoint1)

(rover rover1)

(at rover1 waypoint1)
)

(: g o a l (at rover1 waypoint3))
)

Figure 4.1: PDDL Syntax Example.

4.1.1 PDDL for multi agent environments

The actions defined in the domain of a PDDL problem do not discriminate which of
their parameters is the one that is actually performing the action: for the MOVE action
in the example in Figure 4.1 we can see that its parameters are rover, from-waypoint
and to-waypoint. From this list of parameters a planner has no way of knowing who is
performing the move action; it could be the rover as well as the waypoints.

That is because in a simple planning problem we only have one entity performing
the actions, which in this case is the rover, and so we can avoid specifying it in the
actions. But if we want to model an environment that contains more than one active
entity, for example a situation with two rovers instead of one, we need to specify who
is the subject and who is the object or recipient.

25

Planning Domain Definition Language

4.1.2 Implementation

The EntityType class is used to express the kind of entities that we can find in our
problem. In Figure 4.1 we can see that it is part of the constraints and thus needs to
be specified whenever we need to use an entity. Making it a class of the framework
resulted in the authoring process being more convenient, since we can then declare
typed entities and avoid repetition. The Entity class represents the actual entities that
are part of our simulation problem; they must be of a specific type and have a name.

As we already mentioned, a predicate is a keyword we use to describe the environment
in the PDDL problem. IPredicate is an interface that acts as a template showing what
a predicate looks like in our framework. The basic elements that a predicate must have
are a name and an entity type.

Referring to our example in Figure 4.1, we can see that we have a collection of
predicates in the domain: the first one, can-move, indicates that the rover can go from
a starting point to a destination. This means that we can use the keyword can-move
to describe a feature in our environment, namely that two waypoints can be traversed.

Relations can either be used to describe a property of some entity, mostly in the case
of unary relations, or connections in the environment between two entities described by

26

Planning Domain Definition Language

binary relations. Our example in Figure 4.1 employs relations in the problem descrip-
tion. There we can see the association can-move wp1 wp2, indicating the connection
between two locations in the environment. Upon instantiation the constructor checks
if the entities that have been passed are of the same EntityType specified in the pred-
icates: if we are using the keyword can-move to specify the connection between two
locations, then the entities must be of type waypoint, otherwise we would violate au-
thoring constraints.

The relation value is an enumeration used to limit the values
that each relation can hold. We didn’t want to limit them
only to true and false so that we could maintain some flexibil-
ity between simulation and visualization of the environment.
The actions will have a certain duration, which is the period
of time needed for them to be visualized. During this time,
the relations modified by the action are neither true nor false
because their value is being changed; thus we can say that
they’re pending.

Actions define how the entities can inter-
act with their surrounding environment as
well as with other entities. They are defined
by a name, parameters, preconditions and
postconditions. The parameter list contains
the entities that are manipulated by the ac-
tion. The preconditions are the relations
that must be respected in order for the ac-
tion to be applicable, and the postcondi-
tions are the relations that describe how the
action affects the world state.

When a new action is defined, the constructor checks if the relations specified in its
conditions are compliant with the entities specified in the parameters: this is to ensure
self consistency of the action class. Imagine if, in the move action, we stated that it
must be possible to go from waypoint1 to waypoint2 but then in the parameters we refer
to them with the names waypointx and waypointy. We could no longer discriminate
between the two, and the behaviour of the action would be unpredictable: we could
request to move from X to Y and end up actually going from Y to X.

We use an explicit collection of parameters (instead of just computing one from the
entities contained in the conditions) because this way we give more control to the
authors: if they are forced to explicitly declare each parameter of the actions, then we
can better inform them about inconsistencies among relations. For example, if they
mistakenly give different names to the same entity in two separate conditions, but only
one of them appears in the parameters, then we can detect the inconsistency and raise
an exception that prevents unintended system behaviours.

27

Planning Domain Definition Language

As mentioned in Section 4.1.1, we had to slightly
modify the standard PDDL framework in order
to account for multiple intelligent agents in the
environment. This resulted in the creation of
the class ActionParameter which is an extension
of the Entity class. This class adds a property
called Role, an enumeration whose value can be
either active or passive. This lets us distinguish
between the subject of the action and their ob-
jects.

The Domain contains all the types, predicates
and actions of our problem. When a new do-
main is instantiated it first inserts all the input
entity-types into a collection. Then it iterates
over the input predicates and adds them only if
they’re compliant with the previously declared
types. If they’re not consistent we raise an ex-
ception. The same constraint is put on actions.
They can be added to the domain only as long
as they refer to existent types and predicates.

The WorldState represents a possible state of an
actual instance of the problem. It refers to a spe-
cific Domain and has both a set of entities and
relations. Upon instantiation, the constructor
checks if the given entities are of a type defined
in the domain. For checking the relations’ con-
sistency, it makes sure that the predicates are
defined in the domain, and also that the entities
are part of the current instance of the world-
state.

In this class we also have some relevant methods
that are used during the simulation process:

• getPossibleActions(): computes a list of all the actions defined in the domain that
can be applied to the current world state.

• getActiveEntities(): computes a shallow list of the entities that can perform at
least one action in the current world state.

• applyAction(Action a): applies the action a to the current world state, if it is
applicable, and returns the resulting world state with the modified relations. If
it is not possible to apply the action to the current world state, it throws an
exception.

• applyParallelActions(HashSet < Action > actions): applies a set of actions to
the current world state and returns the resulting state.

• canPerformAction(Action a): checks if the action a can be performed in the
current world state. Returns true if positive, false otherwise.

28

Planning Domain Definition Language

Figure 4.2: Tree structure representing the simulated environment.

We represented the simulation using a tree structure. A tree is an undirected graph
in which any two vertices are connected by exactly one edge. vertices nodes contain
the world data, while the edges that connect them are the actions from the transition
model. This is common practice for AI planning problems as tree structures have
thoroughly been studied, and there are many different search algorithms that can be
applied to traverse them.

The TreeNode is the class that contains the
WorldStates and connects them one another.
Level is an integer that stores the depth of the
current node in the tree structure, Data contains
the actual WorldState, Children is a collection
of nodes directly connected to this one at level
+ 1 and Parent is the node directly connected
at level - 1. ParentActions is a collections of
parallel actions that were performed in order to
reach this node from the previous one.

4.1.3 Optimization

HashSet is an unordered collection that contains unique elements, thus implicitly avoid-
ing repetition. It provides all the usual operations offered by collections such as Add,
Remove, Contains, but since it uses a hash-based implementation, their time complex-
ity is O(1) as opposed to other memory structures such as List, which is O(n). HashSet
also provides standard set operations such as Union, Intersection, and Symmetric dif-
ference [12].

In all our use cases, we want to preserve the uniqueness of the elements. For
example, we can’t allow the presence of multiple equal relations in the same world state,
because that would create inconsistencies, such as in the case of the rover’s position: it
would be inadmissible to define it twice or more if they have different values. We also
require fast lookups of the elements because in some cases, such as when generating
the possible actions, we perform heavy computations that access the collections very
frequently. Finally, with this kind of memory structure we are able to perform some
set operations in an efficient and convenient way: if we want to merge two actions
into a single one we can just compute the union of the collections without iterating.

29

Planning Domain Definition Language

Figure 4.3: An example of how the HashSet is managed internally.

A hash function is any function that can be used to map data of arbitrary size to data
of a fixed size. Hash functions are used for storing data in structures such as hash
tables [13], to quickly locate a data record given its search key. Specifically, the hash
function is used to map the search key to a list; the index gives the place in the hash
table where the corresponding record should be stored.

A collision occurs when we want to access an element in the collection which has
the same key as another already defined. In this case, we have to iterate over the list
of items and look for the exact element. For this reason we had to implement the
functions getHashCode() and equals() for each of our classes in the PDDL framework.

4.1.4 Unit Testing

Since this framework is the core component upon which we based all the modeling and
methods for adjusting the level of detail of the simulation, it needs to be reliable and
to behave correctly; this is why we unit tested all the classes. In every constructor, we
tested the edge cases for the passed parameters. For example, when adding objects to
the domain, we check that they’re consistent with everything that’s already there, and
raise an exception if there’s a violation of the constraints.

The more complex classes were subject to additional testing. For example, the
method that returns the possible actions contained in the class WorldState has specific
tests aimed at ensuring that it returns the correct actions.

30

Simulation

4.2 Simulation

Once we have the description of the problem in PDDL syntax, we need an algorithm
that uses that information to carry out a simulation of the resulting environment.

This process is a constant loop between planning and visualization: the simulator
chooses an action from the transition model according to the current world state and
then instructs the visualizer to perform it. The visualizer is responsible for showing
the action to the user as well as detecting any error and interaction that may occur
during the process. After the visualization cycle is completed, the simulator will receive
an acknowledgement that will inform it about the outcome of the action: if it was
successfully visualized we move forward in the simulation; otherwise, we roll back.

Figure 4.4: A general view of how the simulation-visualization cycle unfolds.

To choose an action from the transition model, we need to first compute a list of
actions that are allowed in the current world state: an action is deemed performable
if the entities in its parameter are part of the entities of the world state and all its
preconditions are satisfied by relations in the current configuration.

In Figure 4.5, we can observe a domain that contains an action: move. This action
moves the rover from a starting point to a destination (if they are connected). The
world state contains two rovers and three waypoints, so there is a certain number of
possible combinations in which this action could be performed in the current state. In
order for an action to be performable, all its preconditions must be satisfied by the
state to which it is applied. Thus, the allowed combinations are the ones in which

Figure 4.5: An example of the admissible and inadmissible actions.

31

Simulation

the rover is AT the starting location, and the starting point is CONNECTED to the
destination. In the example the only combinations that satisfy the preconditions are
MOV E(rov1, way1, way2) and MOV E(rov2, way2, way3). On the other hand there is
a high number of combinations that do not satisfy the preconditions and are thus inad-
missible. For example MOV E(rov1, way1, way3) cannot be performed since waypoint1
and waypoint3 are not connected. To compute a list of all the performable actions, we
need to compute all the admissible combinations and check which ones are applicable
to the current world state. We do this with a combinatorial algorithm:

• For each parameter of the action we compute a list of entities in the world state
that can be candidate substitutions. An entity can symbolize a parameter in a
certain action if the two are of the same type.

• We compute every
candidate combination
performing the Cartesian
product of the resulting
entities.

• Each combination represents an actual action. As opposed to the ones in the
domain that are general actions and describe the behaviour of dummy parameters,
these real actions have actual entities from the world state as parameters. This
means that they can be applied to the world state, if they satisfy the constraints.
We check if the preconditions of each action are satisfied by the relations of the
world. If they are, the action can be applied; otherwise, it can’t.

32

Level of Detail Adjustment

After this process is complete, we are left with only the combinations that are applicable
to the current world state. We then proceed to select one of them and fee it to the
visualizer to advance the simulation. For now, the selection process is done assuming
that all the actions are equally probable, so we randomly pick one of them. This could
be modified to account for some probability distribution over the actions, given certain
conditions.

4.3 Level of Detail Adjustment

As we already mentioned in previous chapters, the aim of this project is to maintain a
balance between simulation accuracy and computational needs, adjusting the level of
detail according to the perception that the user has of the current state of the world.

Figure 4.6: A possible representation of a simulation with three different levels of detail,
each identified by a threshold. The player is in the most detailed level.

Referring to Figure 4.6 we should change the level of detail of the simulation when-
ever the player triggers one of the thresholds. A very important part of this process
is to devise an algorithm that enables us to translate information between two models
of different levels of detail; this process is called abstraction (decreasing detail) and
refinement (increasing detail). Since we are employing a tree structure to store infor-
mation about our world data, as explained in Section 4.1.2, I decided to implement a
data structure that stores the last observed state of the world at each level of detail.
This allowed us to have easy access to the complete game three while only maintaining
references to the last observed nodes.

Figure 4.7: the contents of the data structure with references to the nodes at each level
of detail if the player is within threshold 3.

In Figure 4.7, we can see that while the environment is being simulated at level of detail
3, only the corresponding reference in the data structure gets updated because we can
ignore the advancements in other levels.

33

Abstraction

4.4 Abstraction

Abstraction is the process of translating information from a detailed model to a more
abstract one. Performing abstraction means that we give up on some of the details of
the current world state so that we can reduce the size of the state space, thus reducing
the resources in terms of memory, computations and time needed to traverse it.

Figure 4.8: The figure shows how we abstract some details when parsing from a state
with higher level of detail to one with less details.

To perform abstraction we rely on the domains: two states at different levels of detail
could potentially hold the same entities and relations, but they must have a different
domain. To translate between two states of different levels of detail, we begin by
abstracting the domain. In this regard, we remove all the types, predicates and actions
which appear in the detailed state’s domain but not in the abstract one. Referring to
Figure 4.8 we can see that Type 1, Predicate 2 and Action 1 are considered details while
performing abstraction and so the resulting state will ignore them. This produces a
cascade effect in the world state data, as all the entities of the types that are no longer in
the domain cannot be part of the resulting state, and this effect propagates to relations
as well.

Figure 4.9: Update process of the of the last observed state at each level.

As we can observe in Figure 4.9, when the abstraction process is completed, we store
the newly created world state in the corresponding position of the last observed state
table. After that, we continue with the simulation at the new level of detail with the
usual process of applying the transition model to the world state. After every iteration,
we only update the table position corresponding with the detail level.

It is important to notice that maintaining this memory structure updated enables us
to discard every reference to the simulated tree branches, because when we need them,
we can get them back by traversing in reverse from the last node that we stored.

34

Refinement

4.5 Refinement

Figure 4.10: Player Triggers Refinement.

Refinement is the process of
translating information from
an abstract model to a more
detailed model. This process
is employed when the player
triggers the switch from a gen-
eral simulation to a more de-
tailed one. Figure 4.10 shows
the player going towards the
simulation, thus triggering re-
finement.

If we reach a point in the simulation that requires us to provide more details than we had
previously computed, we need to roll back history and devise a plausible explanation
for the events that unfolded.

Algorithm 1: The subgoal search algorithm employed in the refinement process.

Input : A list of nodes at abstract level of detail
Output: A list of detailed nodes equivalent to the given one

1 currentNode: The node from the abstract simulation;
2 lastNodeAtCurrentLevel: The last observed node at detailed level;
3 while not at root node do
4 currentNode ← Parent(currentNode);
5 end
6 while not at leaf node do
7 currentNode ← Child(currentNode);
8 solution ← Search(lastNodeAtCurrentLevel, currentNode);
9 while solution is not root do

10 Add(result, solution);
11 solution ← Parent(solution);

12 end

13 end
14 Reverse(result);

We first roll back the simulation until we hit the root node: referring to algorithm 1
lines 3-5, we see that we do so by climbing back to the parent node. Since every time we
perform abstraction we discard the current branch and only store the last node in the
table, the root node we find will correspond to the last observed state at the previous
level. After that, we start traversing the simulation tree (lines 6-7) and pairing each
abstract action with a list of detailed ones, whose cumulative effect produce an equal
resulting node. To do that, we employ a search algorithm (line 8) that takes in input
the starting node at detailed level, and the desired node at abstract level (the input
of the algorithm). The algorithm applies the detailed transition model to traverse the
tree, and tries to reach a node, at detailed level, which is equal to the abstract one. An
equal resulting node is one that contains all the effects of the abstract actions, while
still also satisfying the constraints for the additional details.

For example, the refinement of a move(entity,start,dest) action should return a state

35

Refinement

in which: the entity is in dest, and the chosen path for reaching the destination complies
with the constraints of the new LoD.

Since the returned solution is a leaf node, we roll back and return the refined actions
in the correct order.

Figure 4.11: A visual representation of the refinement process from level 2 to level 3.

The roll back dotted line shows how we traverse the simulated branch at level 2 until
we hit the root node Sn, which is the abstract version of the node contained in the
table for level 3. After the roll back, we start pairing each node at level 2 with a list of
nodes of level 3. We do so by feeding S3

i and S2
k into a search algorithm that parses the

abstract action into a detailed plan. The most basic version of the search algorithm is
a slight modification of the classic Breadth First Search.

The method is shown in algorithm 2, and it differs from the classic breadth first search
for two parameters: desiredAccuracy represents how much the node should resemble
the goal to be considered a solution to the search problem (line 4 and 18), and cutoff,
which is the maximum depth that the algorithm can reach before returning a failure
state (line 9); this is needed because under certain circumstances it is not possible to
find a solution and the algorithm would loop forever.

Referring to algorithm 2, we begin by checking whether the input node is the goal
state (lines 4-6). Equal relations is a function that computes an indicator of similarity
between the input state and the goal state. It loops through the relations of the goal
state and checks if they’re contained in the input state as well. The result is a value
∈ R that is computed dividing the number of equal relations by the amount of relations
of the input state, thus we always get a value between 0 (completely different) and 1
(equal).

36

Refinement

After that, we start exploring the game tree by applying the transition model (ac-
tions) to the current node (lines 15-22). Each time we put all the nodes in the frontier,
thus exploring it “horizontally”. At the same time, we add them to an explored set
(line 14), to avoid checking the same node twice. If we find a node that satisfies the
goal test (line 18) we return it, otherwise, if the frontier is empty, we return a failure
because we can’t apply any more actions.

Algorithm 2: Search algorithm for refining abstract actions.

Inputs : Initial state and goal state, desired accuracy, cutoff
Output: A node holding the path to the refined solution plan

1 function breadthFirstSearch(initialState, goalState, desiredAccuracy, cutoff):
2 begin
3 node ← a node with STATE = initialState;
4 if equalRelations (goalState,node.STATE) ≥ desiredAccuracy then
5 return node
6 end
7 frontier ← a queue with node as the only element
8 explored ← an empty set
9 while level (node) < cutoff do

10 if empty (frontier) then
11 return failure
12 end
13 node ← POP (frontier)
14 add (node.STATE, explored)
15 foreach action in actions (node.STATE) do
16 child ← child (node,action)
17 if child.STATE is not in explored or frontier then
18 if equalRelations (goalState,node.STATE) ≥ desiredAccuracy

then
19 return node
20 end
21 frontier ← insert (child, frontier)

22 end

23 end

24 end

25 end

Since the equal relation function always returns a real number 0 ≤ x ≤ 1, we can easily
use it to sort the frontier, thus turning the breadth-first search into a best-first search
algorithm.

While breadth-first search explores the nodes in the frontier always following the
order of discovery, best-first search inserts them into a queue sorted with a function
that estimates how close they are to a solution.

We can see in Figure 4.12 that, in the case of breadth-first search, node B is discovered
and also expanded first, while in best-first search, even if node B is discovered before
node D, it is expanded last because it is very different from the solution to the problem.

37

Multi Agents planning synchronization

Figure 4.12: Comparison between breadth-first search and best-first search.

4.6 Multi Agents planning synchronization

Until now, we talked about the simulation process and the related abstraction and
refinement assuming that there is only one entity which can perform actions in the
world, but in reality that is not true. In fact, one could easily model a scenario in
which multiple entities perform actions at once. In Section 4.1.1, we explained how we
modified the PDDL framework to allow the modeling of multiple active entities. Now
we will discuss how we accounted for it with regard to the simulation.

4.6.1 Concurrency

If we allow multiple agents to perform actions at the same time, we will face issues
related to concurrency. Actions depend on preconditions, and their effects modify the
current state of the world. Allowing multiple actions to be executed in parallel could
result in inconsistent states, if they have conflicting effects.

Figure 4.13: An example of two actions that can’t happen safely at the same time.

38

Multi Agents planning synchronization

We can see in Figure 4.13 that the two actions can’t possibly happen at the same time.
In fact, the effects of the action close alter the world state in a way that prevents
the move action’s preconditions to be satisfied. On the other hand, there are other
combinations of actions that could be executed at the same time. For example, both
entities could perform a move operation without conflicting with one another.

Definition 4.6.1
A set of actions can be executed in parallel if every sequence resulting from their
permutation leads to a consistent world state.

Figure 4.14: Permutations of action sequences.

The Figure 4.14 represents every action that is applicable to the world state of Figure
4.13. We can see that in this scenario every entity can perform two different actions:
move from one room to the other, or close the door between the two. This means that
there are three different possible combinations of the actions:

• moving entity1 to room2 and entity2 to room1

• moving entity1 to room2 and letting entity2 close the door

• letting entity1 close the door and moving entity2 from room2 to room1

Now we need to check which ones of these combinations can be applied at the same
time. To do that, we compute every possible permutation of actions for each set. Then
we try to apply the resulting sequences to the current world state. If every action in
each sequence is applicable and results in a consistent state, it means that they can be
applied in parallel.

Figure 4.14 shows that we can have both entities change rooms in parallel, because
the possible sequences of actions given by the permutations are:

• move entity1 to room2 then move entity2 to room1

• move entity2 to room1 then move entity1 to room2

Both sequences of actions are applicable to the starting state, never violate any condi-
tion of a subsequent action, and result in a consistent state.

On the other hand, if we look at any combination that contains a close action, we
can see that its actions cannot be performed in parallel. That is because there is always
at least one sequence that is not applicable to the starting state. For example, if we

39

Multi Agents planning synchronization

wanted to move entity1 to room2 and close the door with entity2, we can observe
that, if we first close the door and then try to move we cannot do so, because one
precondition of the action move requires the door to be open.

The process for selecting one action, described in Figure 4.5, is modified to make
use of the additional information provided by the extension of the PDDL framework in
Section 4.1.1. In fact, we need to be able to discriminate between the action’s subject
and its objects in the parameters list, in order to assign one action to each active entity.

Algorithm 3: Selection algorithm for parallel actions.

Input : A set of applicable actions
Output: A tuple with one action for each active entity

1 possibleActions: list of actions applicable to the current worldstate
2 actionsForEachEntity: dictionary mapping each entity with its list of actions
3 parallelActions: list with possible actions for each entity
4 randomIndexes: indexes of parallel actions list in random order

5 possibleActions ← possibleActions (currentWorldState)
6 actionsForEachEntity ← explodeActionList (possibleActions)
7 parallelActions ← cartesianProduct (actionsForEachEntity)
8 randomIndexes ← intRange (0, size (parallelActions))
9 randomIndexes ← shuffle (randomIndexes)

10 foreach i in randomIndexes do
11 randomParallelActions ← parallelActions [i]
12 permutations ← permutations (varRandomParallelActions)
13 canPerformActions: boolean indicating if actions are applicable
14 canPerformActions ← True
15 foreach p in permutations do
16 foreach a in p do
17 if canPerformAction (currentWorldState, a) then
18 currentWorldState ← applyAction (currentWorldState, a)
19 else
20 canPerformActions ← False
21 exit loop

22 end

23 end
24 if canPerformActions is False then
25 exit loop
26 end

27 end
28 if canPerformActions is True then
29 return randomParallelActions
30 end

31 end

Referring to algorithm 3, we start by computing all the actions that are applicable
to the current world state (line 5). That returns us a list which doesn’t distinguish
between actions for each entity. Since our end goal is to assign one action to each
entity that is deemed active in the current world state, we need to parse this list into a

40

Multi Agents planning synchronization

memory structure that differentiates between them. To do that we use a function that
iterates over the list, and fills a dictionary with actions for each active entity (line 6).

Figure 4.15: Actions Divided by Active Entity.

Then, as shown in figure
4.16, we compute the Carte-
sian product of the various ac-
tions (line 7), and obtain all
the possible tuples, each con-
taining one action for every ac-
tive entity. Figure 4.16: Cartesian product of the actions

At this point, we have a structure that contains sequences of actions, that may be
applicable in parallel, divided by the entity that is performing them. Our goal is to
select one sequence that is performable in parallel. According to the definition 4.6.1,
we need to check, for each sequence, if every permutation is fully applicable to the
current world state. The mere computation required to obtain all the permutations
for every sequence is very costly. For this reason, we iterate over the list of sequences
(lines 15-30) and each time, after computing its permutations, we check if every action
of each permutation is applicable to the starting state (lines 16-26).

Figure 4.17: Permutations of actions tuples.

As shown in figure 4.17, the actions move(entity1, room1, room2) and move(entity2,
room2, room1) are performable in parallel because every possible permutation is appli-
cable to the current state. On the other hand, the set of actions containing the close
action lead to a conflicting state.

41

Multi Agents planning synchronization

4.6.2 Synchronization

Another issue that we have to consider when dealing with parallel actions is their effect
during the refinement process. In particular, we need to worry about the synchroniza-
tion of parallel actions when refining abstract plans.

Let us consider the case in which we have a give action that lets an entity give
something to another entity. Let us define a precondition of such action so that it
requires that both entities are in the same room. If we define two levels of abstraction,
one of which omits this precondition’s relation, we might need to account for that while
refining the plans.

Figure 4.18: Give action at different levels of detail.

If we roll forward the simulation with the abstract level of detail in Figure 4.18, we
could generate states in which the give action takes place without the entities being in
the same location. When we try to refine the simulation we would need to devise a
plan that respects the preconditions: in this case we would need to move each entity to
a common location. In this regard, the synchronization is not trivial. In fact, it could
be the case that different entities need different numbers of steps to reach the chosen
location.

Figure 4.19: Synchronous actions with different numbers of steps.

42

Multi Agents planning synchronization

We can see in Figure 4.19 that both entities need to reach room5 to perform the give
action. Entity1 requires three steps to reach the destination, while entity2 only needs
two actions. A possible solution to the problem would be for entity2, upon reaching
the destination, to wait for entity1. In general terms, we need to find a point of
synchronization. To achieve this, at each refinement step, we divide the detailed plan
into sequences of synchronized parallel actions.

Algorithm 4: Refinement step for synchronized parallel actions.

Input : Plan composed of refined actions
Output: Equivalent plan with sequences of synchronized parallel actions

1 actionsForEachEntity ← Split the plan into actions for each entity
2 activeEntities ← List of entities that can perform some action
3 sequentialActions ← Queue of list of actions
4 while there are actions to assign do
5 parallelActions ← An empty list of actions, will contain actions for each turn
6 foreach Entity e in activeEntities do
7 entityActions ← Queue of entity’s actions from the plan still unassigned
8 if entityActions contains some action then
9 parallelActions ← Pop(entityActions)

10 else
11 actionIdle ← make entity do nothing
12 parallelActions ← actionIdle
13 end

14 end
15 if we assigned any non-idle action then
16 sequentialActions ← add(parallelActions)
17 end

18 end

The plan returned from the refinement
step in Figure 4.19 would look like the im-
age on the right. The order is not impor-
tant as the search algorithm is just try-
ing to reach a goal state equivalent to the
one in the abstract plan. This plan is not
synchronized: entity 1 has more actions
to perform compared to entity 2. Figure 4.20: Plan not synchronized.

Following the Algorithm 4, we start by splitting the plan into the actions for each entity
(line 1). Referring to Figure 4.20, we notice that entity1 has three actions to perform
before reaching the goal, while entity2 only has two.

We divide the plan into turns; at each turn we assign one action for each entity (lines
4-17), until we assign every step of the plan (line 4). If one entity reaches its own goal,
but we still need to assign actions to other entities, that entity will continuously be
assigned idle actions at each turn (lines 10-13), until the goal is reached by everybody.

43

Level of Detail Switcher

Figure 4.21: Plan divided in synchronous turn.

Since entity2 reaches the desired location before entity3, it has to wait for one turn.
When entity3 arrives, the plan was successfully synchronized, so the give action can
take place.

4.7 Level of Detail Switcher

In previous sections, we explained how we can adjust the level of detail of the simulation
by performing abstraction and refinement. Another important function of the system
is to constantly monitor the user’s knowledge of the environment, and decide when it
should perform the switch between the various levels of detail.

To do that, we need to devise a function which outputs an estimate of the observabil-
ity of the simulation. The estimate should be based on some indicators of the player’s
ability to perceive the environment. I chose to employ a weighted average function
because it is both versatile and easy to tune.∑∏n

i←0 φiδi∑n
i←0 δi

φi : indicator measure
δi : indicator′s weight

The function’s inputs are two indicators representing the proximity of the player to the
simulation and its actual visibility.

4.7.1 Proximity

Figure 4.22: Proximity chart.

Proximity measures the inverse of the
distance between the player and the
simulation.

• If the distance exceeds the max-
imum possible value, over which
the simulation is no longer visi-
ble, it returns a value of 0.

• If the distance between the player
and the simulation is less or equal
to 0 it returns a value of 1.

• Otherwise we return a linear
value between 0 and 1.

This measure is a good factor to estimate observability, because the user’s perception
of the world will be affected by their distance from the simulated component.

44

Level of Detail Switcher

4.7.2 Visibility

The other measure is visibility, which estimates whether the player’s vision of the
simulation is occluded by some obstacle.

Figure 4.23: Normal image vs Filtered Image vs Occluded Image.

The Figure 4.23 shows an example of occlusion: the player is facing a planet while its
moon approaches from the left, partially occluding the view. To estimate how much of
the simulation is being occluded by the obstacle, we need to divide the image into layers
and filter them, so that we have a clear separation between simulation and obstacles.

To produce the picture in Figure 4.23, we
employed a setup with two cameras that
render to different textures. In the scene
we separated the relevant part of the simu-
lation from the rest using layers.
Thanks to culling masks, we were able to
make a camera render only some part of
the scene: one render texture displays the
occluded simulation, while on the other ig-
nores the obstacles. Figure 4.24 shows the
player vision of the location where the sim-
ulation is taking place. Figure 4.24: Player’s field of view.

At this point, we need to be able to compute the difference between the two layers.
One way to do that is to count how many pixels are different between the occluded
image and the one without obstacles. To do that, we first needed to apply a particular
filter to the image, so that it flattens out everything and leaves only two colors: one
for the simulation and one for obstacles. The reason behind this is that we are only
interested in obstacles that are occluding the player’s field of view. If we counted
the different pixels without filtering the image beforehand, we would account also for
obstacles that are not obstructing the player’s vision of the simulation.

To achieve this result, we used the post-processing stack offered by Unity. This tool
lets us create post-processing profiles and apply them to a particular camera using a
post-processing behaviour script. The end result is that we can apply a white profile
to the simulation layer, and a black profile to everything else.

After producing the textures in Figure 4.23, we count the white pixels in each of
them and compute the difference between the two, so that we get a measure of the
simulation’s occlusion.

45

Level of Detail Switcher

4.7.3 Parallel Computation of Visibility

All the textures are 256x256 resolution, so each one of them contains 65536 pixels.
Since we might need to update the metrics very frequently, we needed to devise a way
to count the pixels more efficiently. We did so by employing compute shaders.

Compute shaders are programs that run on the graphics card, outside of the normal
rendering pipeline. They can be used for massively parallel GPGPU (General-purpose
computing on graphics processing units) algorithms, or to accelerate parts of game
rendering [14].

Counting the white pixels of a texture is a task that could greatly benefit from
parallelization, because even if usually there is a correlation between adjacent pixels in
an image, their values are not causally related. For this reason we can treat them as
disjoint units, and split the problem into multiple parallel tasks.

Figure 4.25: White Pixels Parallel Computation.

We dispatch a number of thread groups proportional to the height of the image and
the amount of threads in each group.

G =

⌊
H + (T − 1)

T

⌋ G: number of groups
H: height of the image
T: number of threads in each group

For example, if we are dealing with an image which is 300 pixels tall, and we want
each group to contain 64 threads, we will dispatch 5 groups. The offset T − 1 is needed
to have enough threads to cover the whole image. If we computed the necessary groups
without the offset, we would have dispatched 4 groups, which are not enough since
64× 4 = 256 < 300.

After dispatching the threads, each one of them iterates over its row of the image,
and checks the color of every pixel (lines 4-10). If it is white we increase a counter in a
memory location which is shared with the group. Each thread checks if it was assigned
a row within the image boundaries (line 5). For example, if we have an image which is
300 pixels tall, processed with 5 groups of 64 threads each, in the fifth group, only the
first 44 threads would count the pixels, as the others would count something which is
not within the image.

46

Summary

There is a synchronization point after the iteration over the row (line 12), so that
each thread has to wait for the others to complete their tasks before proceeding. Once
every thread has counted its row, only the first thread of the group sums all the partial
counters, computing the sum of white pixels in the portion of the image assigned to
the group (lines 13-19).

Once every group has completed dealing with its portion of the image, we return an
array of integers that contains the white pixels of each group. Then we can easily sum
all the values in the array to obtain the total count of white pixels in the image.

Algorithm 5: Count white pixels in parallel with compute shader.

Input : The texture with the pixels to count
Output: The number of white pixels in the texture

1 groupID: ID of thread in a thread group
2 groupIndex: index within the group
3 rowSumData: white pixels for each row

4 rowSumData [groupIndex] ← 0
5 if thread is inside texture then
6 foreach Pixel p in the row do
7 if p is white then
8 rowSumData [groupIndex]++
9 end

10 end

11 end
12 SynchronizeThreadsInGroup ()
13 if groupIndex = 0 then
14 sum: sum of the white pixels in the group
15 foreach row r in rows of the group do
16 sum += rowSumData [r]
17 end
18 GroupSumBuffer [groupID] = sum
19 end

4.8 Summary

In this chapter we discussed:

• PDDL framework: we designed and implemented this component to model
general purpose simulations. Since it is based on the Planning Domain Definition
Language, we can easily apply search algorithms to traverse the simulation tree.

• Decrease the Level of Detail: we devised a way of simplifying any given state
of the simulation. We apply the abstract domain to the state of the world at
current level of detail. All the features that disappear from the world are the
details. Running the simulation at abstract LoD should be less computationally
intensive.

• Increase the Level of Detail: we devised a way of computing the additional
features required for running the simulation at a higher level of detail. We refine

47

Summary

every abstract action that already happened. This leads us to a state which is
consistent with the additional constraints of the higher level of detail. From there
we apply the transition model contained in the new domain to run the simulation.

• Level of detail switcher: we employed a function that estimates observability
to switch the simulation level of detail. This function is based on the distance
between the player and the simulation; and the occlusion of the player’s field of
view.

48

5. Evaluation

To test our approach, we devised a scenario that models the behaviour of multiple
intelligent agents in a wide environment. This setting is ideal, because the agents that
are part of the model do not have a precisely defined goal, and so we can easily simulate
their behaviour, applying the transition model. It also contains some constraints that
challenge the refinement process, and may force the system to deal with concurrency
problems.

We will now introduce the modeled environment and go trough a step by step com-
putation of the adjustment of level of detail. We will then present the obtained results.

5.1 Example Environment

The scenario contains two rovers that can perform multiple actions: moving around
the environment, taking samples of the soil, dropping the sample on a specific dock
and snapping pictures of objectives. We modeled the resulting environment with our
PDDL framework so that we could simulate it using our approach for self adjusting
level of detail. The first thing we had to do was split the general problem into multiple
levels of abstraction, to have different degrees of complexity to work with. Each level
of detail has its own domain which can vary from the others in the conditions that are
required for action execution, and can even contain new actions and mechanics.

Figure 5.1: An overview of the relation between the player and the simulation.

Everything that we’re simulating happens on the planet; the player is thought of as
an external entity far away from the place where the simulation is taking place. The
player can move toward the location of the simulation or in the opposite direction.
The lines are visual representations of the estimation function: when the observability
goes higher than a certain threshold, we switch the simulation to the respective level
of detail. As shown in figure 5.1, the environment is divided in areas denoted by the
thresholds. (i) When the observability value is between 0 and 0.4, the simulation is

Example Environment

run at level of detail 1. (ii) Between 0.4 and 0.7, the simulation is run at level of detail
2. (iii) Between 0.7 and 1 the simulation is run at level of detail 3.

5.1.1 First Level of Detail

In the first level of detail, the rovers are free to move among the waypoints as long as
they’re connected to one another. If a rover happens to be in a waypoint that contains
a sample, it can collect it. Analogously if an objective is visible from a waypoint, the
rover can take a picture of it. One of the waypoints is marked as a dropping dock, where
the rover can drop the collected sample. There are two rovers in the environment, both
starting in the same location.

Entity Type Description

ROVER
The protagonist of the world; an intelligent agent that performs

actions.

WAYPOINT
A location in the world; it can be connected to other waypoints

so the rover can move among them.

SAMPLE
A soil sample of the planet that the rover can pick up and store

in a dropping dock.

OBJECTIVE
An interesting feature of the planet; the rover can capture it by

snapping a picture.

Table 5.1: Entity Types in the first level of detail of rover’s environment.

Type Entities

ROVER ROVER1, ROVER2

WAYPOINT
WAYPOINT1,WAYPOINT2,WAYPOINT3,
WAYPOINT4,WAYPOINT5,WAYPOINT6,
WAYPOINT7,WAYPOINT8,WAYPOINT9

SAMPLE
SAMPLE1,SAMPLE2,SAMPLE3,
SAMPLE4,SAMPLE5,SAMPLE6

OBJECTIVE
OBJECTIVE1,OBJECTIVE2,OBJECTIVE3, OBJECTIVE4,
OBJECTIVE5,OBJECTIVE6, OBJECTIVE7,OBJECTIVE8,

Predicate Type Description

IS CONNECTED TO binary describes if a two waypoints are connected

IS VISIBLE binary describes wheter an objective is visible from a waypoint

IS IN binary describes if a sample is in a waypoint

BEEN AT binary describes wheter the rover has been in a waypoint

CARRY binary describes if the rover is carrying a sample

AT binary indicates the current location of the rover

IS DROPPING DOCK unary indicates if the waypoint is a dropping dock for samples

TAKEN IMAGE unary
indicates if the rover has taken an image of the

objective

STORED SAMPLE unary indicates if the rover has stored a particular sample

IS EMPTY unary indicates if the rover is empty

Table 5.2: Predicates in the first level of detail of rover’s environment.

50

Example Environment

Name Parameters Preconditions Postconditions Description

MOVE
• rover
• start
• destination

• rover AT start
• start

IS CONNECTED TO
destination

• not rover AT start
• rover AT destination

moves the rover
from a start
to a destination

TAKE
SAMPLE

• rover
• sample
• waypoint

• sample IS IN waypoint
• rover IS AT waypoint
• rover IS EMPTY

• not
sample IS IN waypoint
• not rover IS EMPTY
• rover CARRY sample

take sample
from location

DROP
SAMPLE

• rover
• sample
• waypoint

• waypoint
IS DROPPING DOCK
• rover IS AT waypoint
• rover CARRY sample

• sample IS IN waypoint
• rover IS EMPTY
• not

rover CARRY sample

drop sample
to location

TAKE
IMAGE

• rover
• objective
• waypoint

• IS VISIBLE waypoint
• rover IS AT waypoint

• objective
TAKEN IMAGE

take image
of objective

Table 5.3: Actions in the first level of detail of rover’s environment.

Source Predicate Destination

WAYPOINT1 IS CONNECTED TO WAYPOINT5

WAYPOINT2 IS CONNECTED TO WAYPOINT5

WAYPOINT3 IS CONNECTED TO WAYPOINT6

WAYPOINT4 IS CONNECTED TO WAYPOINT8

WAYPOINT5 IS CONNECTED TO WAYPOINT1

WAYPOINT6 IS CONNECTED TO WAYPOINT3

WAYPOINT6 IS CONNECTED TO WAYPOINT8

WAYPOINT8 IS CONNECTED TO WAYPOINT4

WAYPOINT9 IS CONNECTED TO WAYPOINT1

WAYPOINT1 IS CONNECTED TO WAYPOINT9

WAYPOINT3 IS CONNECTED TO WAYPOINT4

WAYPOINT4 IS CONNECTED TO WAYPOINT3

WAYPOINT4 IS CONNECTED TO WAYPOINT9

WAYPOINT5 IS CONNECTED TO WAYPOINT2

WAYPOINT6 IS CONNECTED TO WAYPOINT7

WAYPOINT7 IS CONNECTED TO WAYPOINT6

WAYPOINT8 IS CONNECTED TO WAYPOINT6

WAYPOINT9 IS CONNECTED TO WAYPOINT4

OBJECTIVE1 IS VISIBLE WAYPOINT2

OBJECTIVE1 IS VISIBLE WAYPOINT4

OBJECTIVE2 IS VISIBLE WAYPOINT7

OBJECTIVE4 IS VISIBLE WAYPOINT5

OBJECTIVE1 IS VISIBLE WAYPOINT3

OBJECTIVE2 IS VISIBLE WAYPOINT5

OBJECTIVE3 IS VISIBLE WAYPOINT8

OBJECTIVE4 IS VISIBLE WAYPOINT1

SAMPLE1 IS IN WAYPOINT2

SAMPLE3 IS IN WAYPOINT9

SAMPLE5 IS IN WAYPOINT3

SAMPLE2 IS IN WAYPOINT3

SAMPLE4 IS IN WAYPOINT8

51

Example Environment

SAMPLE6 IS IN WAYPOINT3

WAYPOINT7 IS DROPPING DOCK #

ROVER1 IS EMPTY #

ROVER2 IS EMPTY #

ROVER1 AT WAYPOINT6

ROVER2 AT WAYPOINT6

Table 5.4: Relations in the initial state for the first level of detail.

Figure 5.2: Rover Environment Level of Detail 1.

52

Example Environment

5.1.2 Second Level of Detail

The second Level of Detail in the example simulation differs only slightly from the first
one. We added one new predicate, called OBSTACLE BETWEEN, that indicates
the presence of obstacles between waypoints. The resulting relation has a directional
meaning: if there is an obstacle between waypoint1 and waypoint2, the rover cannot
go from waypoint1 to waypoint2, but it can still go from waypoint2 to waypoint1 (e.g.
rolling down a hill).

Source Predicate Destination Value

WAYPOINT4 OBSTACLE BETWEEN WAYPOINT3 TRUE

WAYPOINT8 OBSTACLE BETWEEN WAYPOINT4 TRUE

WAYPOINT6 OBSTACLE BETWEEN WAYPOINT8 TRUE

WAYPOINT3 OBSTACLE BETWEEN WAYPOINT6 TRUE

WAYPOINT1 OBSTACLE BETWEEN WAYPOINT5 FALSE

WAYPOINT2 OBSTACLE BETWEEN WAYPOINT5 FALSE

WAYPOINT4 OBSTACLE BETWEEN WAYPOINT8 FALSE

WAYPOINT5 OBSTACLE BETWEEN WAYPOINT1 FALSE

WAYPOINT6 OBSTACLE BETWEEN WAYPOINT3 FALSE

WAYPOINT9 OBSTACLE BETWEEN WAYPOINT1 FALSE

WAYPOINT1 OBSTACLE BETWEEN WAYPOINT9 FALSE

WAYPOINT3 OBSTACLE BETWEEN WAYPOINT4 FALSE

WAYPOINT4 OBSTACLE BETWEEN WAYPOINT9 FALSE

WAYPOINT5 OBSTACLE BETWEEN WAYPOINT2 FALSE

WAYPOINT6 OBSTACLE BETWEEN WAYPOINT7 FALSE

WAYPOINT7 OBSTACLE BETWEEN WAYPOINT6 FALSE

WAYPOINT8 OBSTACLE BETWEEN WAYPOINT6 FALSE

Table 5.5: Additional Relations in the initial state for the second level of detail.

53

Example Environment

Figure 5.3: Rover Environment Level of Detail 2.

As we can see from Figure 5.3, in the central part, the rover can move only in a particular
direction. For example, it cannot move from waypoint3 to waypoint6, instead it has to
go the other way around: waypoint3 −→ waypoint4 −→ waypoint8 −→ waypoint6.

54

Example Environment

5.1.3 Third Level of Detail

In the third level of detail, we added a battery to the rover: we implemented a transition
model that regulates the charge level of the battery, tied each rover with its own battery,
and modified the actions, so that they make the battery transition from one charge level
to a successor. We also implemented a new action that lets the rover charge the battery.

Entity Type Description

BATTERY Type of a battery that keeps the carge level of the rover

BATTERY LEVEL A charge level, can either perform actions or not

Table 5.6: Entity Types in the third level of detail of rover’s environment.

Predicate Type Description

HAS binary ties each rover to its own battery

HAS BATTERY LEVEL binary ties each battery to its own battery level

CAN PERFORM ACTION unary describes if a battery level can perform an action

DISCHARGES TO binary ties each battery level to its predecessor

CHARGES TO binary ties each battery level to its successor

Table 5.7: Predicates in the third level of detail of rover’s environment.

We modified all the actions so that they interact with the new system, and discharge
the battery of the rover. Here’s an example for the move action:

MOVE

Parameters rover, from, to, battery, batteryLevelFrom, batteryLevelTo

Preconditions

move preconditions from LoD2...
• rover HAS battery,
• battery HAS BATTERY LEVEL batteryLevelFrom,
• batteryLevelFrom CAN PERFORM ACTION
• batteryLevelFrom DISCHARGES TO batteryLevelTo

Postconditions
move postconditions from LoD2...
• not battery HAS BATTERY LEVEL batteryLevelFrom,
• battery HAS BATTERY LEVEL batteryLevelTo

Table 5.8: The action move discharges the battery of the rover.

Referring to Figure 5.8, we can see that the action now takes into consideration the
battery system, and is able to interact with it. For the action to be performable, its
parameter must contain: (i) the rover; (ii) the correct rover’s battery; and (iii) the
battery’s charge level. Before execution, we check if the battery level is enough to
perform an action. The last precondition is employed so that we only get the correct
charge levels. For example MOVE(..., level3, level2) is correct, while MOVE(..., level2,
level3) is not correct, because it would mean that we were charging the battery with a
move action, instead of discharging it.

55

Example Environment

CHARGE

Parameters rover, battery, batteryLevelFrom, batteryLevelTo

Preconditions
• rover HAS battery,
• battery HAS BATTERY LEVEL batteryLevelFrom,
• batteryLevelFrom CHARGES TO batteryLevelTo

Postconditions
• not battery HAS BATTERY LEVEL batteryLevelFrom,
• battery HAS BATTERY LEVEL batteryLevelTo

Table 5.9: Action charge in the third level of detail of the rover’s environment.

Figure 5.4: Rover Environment Level of Detail 3.

In Figure 5.4, we can see how we implemented the battery system in the example
simulation. Each rover is tied to its own battery with a HAS relation in the world
state, and similarly, each battery has its own charge level. The rover can increase its
battery level by performing a charge action, which transitions the battery charge to
the adjacent upper level (e.g. 2 −→ 3). Each action performed by the rover, excluding
charge, decreases the battery level by one, until it reaches a level that is not allowed to
perform actions.

56

Example Environment

5.1.4 Refinement

Let’s assume that the player starts in a setting such that the observability estimate
makes the system run the simulation at level of detail 1 (e.g. the environment of
Figure 5.1). As shown in Figure 5.5, the rovers perform three sets of parallel actions.
After all of them are completed, we put the reached state into the slot of LoD 1.

Figure 5.5: three sets of parallel actions performed at LoD 1.

Now let’s assume that the
player moves towards the sim-
ulation. In this case, he
would be able to perceive
more details of the environ-
ment. Eventually, the estima-
tion function will exceed the
threshold and trigger refine-
ment.

Once the refinement process is triggered, the system will roll back the simulation until
it hits the root node. From there, it will employ a search algorithm to compute, for
every set of parallel actions, an equivalent sequence that also accounts for the details
in the new level.

As we mentioned in Figure 5.3, the second level of detail accounts for obstacles in
the paths that the rover can take to move between locations. That means that, if some
actions performed in the previous level of detail, are not performable because of some
detail previously ignored, now we have to account for them.

In particular, referring to Figure 5.3, we can see that now the rover cannot go straight
from WAYPOINT6 to WAYPOINT8 because there is an obstacle in between. For this
reason the search algorithm will return the following detour:

waypoint6 −→ waypoint3 −→ waypoint4 −→ waypoint8.

In this regard, we can also observe the way that synchronization comes into play. Since

57

Example Environment

the single action for rover one has been refined into three actions; while rover two’s
action was directly applicable, and didn’t need refinement, rover two will wait for two
turns before performing its action.

Figure 5.7: Three sets of parallel actions performed at LoD 2.

After the refinement process is completed, the system can choose another action from
the transition model and roll forward the simulation. This time though, the simulation
will be run according to the rules of the new level of detail. We can see that rover one
takes a sample, and rover two moves to a new location (shown in green in Figure 5.7).
Both actions are compliant with the constraints of the second level of detail.

Let’s assume that the player
moves again towards the sim-
ulation. This enables them to
perceive more details of the en-
vironment. Eventually, the es-
timation function will exceed
the threshold and trigger re-
finement.

As shown in Figure 5.4, the new level of detail models the battery system. At this level
of detail, the actions discharge the battery level of the rover that is executing them.
This entails that the rovers can only perform actions as long as their battery has charge
left.

In the actual world state we have 4 battery levels, going from 3 (fully charged) to
0 (empty). If we recall the first refinement step of Figure 5.7, we parsed the move
actions into a sequence of 3 actions, and then, from S3 to S4, we performed another

58

Example Environment

set of actions. Now, since each action discharges the battery by 1 charge level, rover
1 reaches S3 with an empty battery. This means that, before performing any other
action, it must take a turn to charge its battery. In fact, we can observe that S3 −→ S4
is a charge action for rover 1, along with an idle for rover 2.

Figure 5.9: three sets of parallel actions performed at LoD 3.

5.1.5 Abstraction

Now let us imagine that an obstacle appears in front of the player while the simulation
is running at level of detail 3. This occludes the field of view of the player, causing the
observability function to drop below the threshold of level 2.

Figure 5.10: Obstacle occluding the field of view of the player.

This means that we can perform abstraction, and start running the simulation at level
of detail 2, saving resources without the player noticing the drop in detail level.

59

Example Environment

If we follow all the actions described in Figure 5.9, we end up with the following
world state at the third level of detail.

Figure 5.11: Final state of the example simulation at level of detail 3.

The relations in bold are the ones added to the world state during the course of the
simulation, as effects of the applied actions. For example, the action “take image” is
responsible for the relation “objective taken”.

All the components in red are the ones specific to this level of detail. We can see
that they describe everything related to the simulation of the battery system. As soon
as we perform abstraction, the domain of the problem is reverted back to level 2. This
means that we will lose every component related to the battery system. We should pay
particular attention to the actions. From LoD3 to LoD2 many of them get modified,
losing the parameters related to the battery system.

Since the domain is modified, the world state is affected as well. Everything related
to the missing components of the domain can no longer be part of the world state. We
see that we lose the “battery” and “battery level” entities, and all the related relations.

60

Example Environment

Figure 5.12: Final state of the example simulation at level of detail 2.

In Figure 5.12, the components in red are the ones specific to level of detail 2, namely
the ones used to describe the presence of obstacles between waypoints. If we were to
perform another abstraction step, we would end up with this basic world state:

Figure 5.13: Final state of the example simulation at level of detail 1.

61

Results

5.2 Results

The goal of the process explained in previous chapters is for the simulation to be less
computationally intensive and require less resources.

To test the gains, we first computed the theoretical size of the problem we’re dealing
with. After running the simulation on the example environment, we collected some
data to show the impact of adaptive level of detail on system resources, and compared
the practical results with the theoretical ones.

To describe a state of the simulation we use relations. A relation can either be unary
or binary, depending on how many entities are involved. A relation has a truth value
that can be either true or false. Thus, we can compute the number of different relations
obtainable from a predicate by multiplying the number of entities in the world state
that have the same type as the left side of the predicate by the number of entities in
the world state that have the same type has the right side of the predicate.

LoD Entity Types Entities

1

ROVER 2
WAYPOINT 9
SAMPLE 6
OBJECTIVE 8

3
BATTERY 2
BATTERY LEVEL 4

Table 5.10: Entities involved in each level of detail.

LoD Predicates Relations Combinations

1

WP IS CONNECTED O WP 81 2,41785E+24
OC IS VISIBLE WP 72 4,72237E+21
SP IS IN WP 54 1,80144E+16
ROV BEEN AT WP 18 262144
ROV CARRY SP 12 4096
ROV AT WP 18 262144
WP IS DROPPING DOCK 9 512
OC TAKEN IMAGE 8 256
SP STORED SAMPLE 6 64
ROV IS EMPTY 2 4
Size of the state space 1,94267E+84

2
WP OBSTACLE BETWEEN WP 81 2,41785E+24
Size of the state space 4,69709E+108

3

ROV HAS BT 4 16
BT HAS BATTERY LEVEL BL 8 256
BL CAN PERFORM ACTION 4 16
BL DISCHARGES TO BL 16 65536
BL CHARGES TO BL 16 65536
Size of the state space 1,32211E+123

Table 5.11: Size of the state space for each Level of Detail.

For example, referring to Table 5.11, the predicate “IS VISIBLE” is used to indicate
that an OBJECTIVE is visible from a certain WAYPOINT. Table 5.10 tells us that
our world state contains 8 different objectives and 9 different waypoints, so we can have
8× 9 = 72 different relations.

62

Results

Since each relation can either be true or false, and the states are composed by col-
lections of relations, we can encode a state of the environment with a bit string. So,
the number of possible states in the environment is exponential with respect to the
relations. Referring to the previous example, we would have 272 possible states just for
the “IS VISIBLE” predicate.

To get the number of all the possible states, we have to compute the product of all
the combinations. We can see from Table 5.11, that reducing the level of detail greatly
shrinks the size of the state space.

In reality however, we’re not directly instantiating states. We are rather traversing
the state space by applying actions from the transition model. So, even if the size of
the state space is important, we want to know how many actions we are exploring at
each level of detail:

Level of Detail Expanded Actions

1 524

2 522

3 16770

Table 5.12: Expanded Actions for each LoD.

Interestingly, we can see that we expand more actions in the first level of detail compared
to the second, even if it should have more detail, thus more complexity. The reason
behind this is that the complexity is represented by just more constraints: we don’t
add new types or entities; we just modify the preconditions of the “MOVE” action to
account for obstacles. But we can clearly see that the number increases greatly at the
third level of detail, by a factor of 32.

Figure 5.14: Time for computing actions at each LoD.

Hardware:

• CPU: Intel core
i7-4700mq cpu @
2.40ghz

• GPU: NVIDIA
GeForce GT 750M
with GDDR5 2GB
VRAM

• RAM: 8GB DDR3

• HDD: 256GB SSD

• OS: Windows 10

As shown in Figure 5.14, the number of actions computed at each level of detail is
strictly tied to the performances of the system. In fact, in the first two LoDs we only
require around 30 ms to compute the possible actions. This lets us run the simulation
consistently at 60 FPS. When we switch to the third level of detail, the system requires
1100ms to compute the actions, during that time the simulation is run at around
14FPS.

63

6. Discussion

The model that we presented in this dissertation focuses on the level of detail self-
adjustment for simulations. The key aspects that we discussed where: (i) the design
of a framework for modeling general purpose simulations; (ii) the design of algorithms
for maintaining simulation consistency while adjusting its level of detail; (iii) and the
implementation of an algorithm for switching the level of detail based on observability
estimates.

The first goal was met by choosing PDDL as the underlying formalism around which
we implemented our framework. This choice was made keeping in mind that PDDL is
a well known standard for AI planning, thus making it a robust formalism to model
simulations. With this formalism, we were able to model an arguably complex scenario,
that presents challenges such as concurrency and synchronization. This required us to
slightly modify a the standard framework 4.1.1.

The resulting model of the example simulation is able to express every detail that we
wanted to be part of the simulation. This includes also cause-effect relations between
various actions: all the actions at level of detail 3 have the side effect of discharging
the battery of the agent that executes them.

The second goal, namely switching the level of detail of the simulation, was reached
by devising an estimate of observability based on two parameters. Proximity is the
distance between the player and the simulation. Visibility is the actual non-occluded
portion of the user’s field of view, with respect to the simulation. These two measures,
even if they may not account for a complete estimate of observability, have the great
advantage of being impartial. Even if a more complex model could be applied to
estimate the observability of the simulation, they’re often based on some estimate of
attention, which could be subjective and biased by one’s personal attitude.

Maintaining simulation consistency while adjusting its level of detail led us to im-
plement algorithms for abstraction and refinement. As we can see in Section 5.1.4, the
results of the refinement process applied to the example are rather convincing. All the
actions that were selected from the transition model for simulating the environment at
the first level of detail were then correctly refined at higher levels. Referring to our cri-
teria for success in Section 2.5, we can see that consistency is maintained among all the
levels of detail. The plans that were returned from the refinement process, to increase
the level of detail, account for good alibis for each intelligent agent. The additional
generated details also never conflict with previously observed features of the world.
For example, while refining the first MOVE action from LoD 1 to LoD 2, the planner
finds an alternative path, since the direct one cannot be traversed. All the resulting
actions are compliant with the constraints of the world, and they do not contradict any
previously observed fact.

Analogously, the abstraction process, as explained in the example in Section 5.1.5,

Limitations

produces states that only keep the relevant part of the simulation at that particular
level of detail. Everything else is deemed unnecessary, since it is not observable by the
user, and gets dropped from the world state.

Finally, the gains in resources are appealing: from Table 5.11, we can see that we
greatly reduce the size of the state space, if we keep a low level of detail. Table 5.12
confirms that a reduction of the size of the state space entails an overall simplification
of the simulation. At LoD 1 we only need to compute 1

32 of the actions compared to
LoD 3, which is a decrease of 3200%.

Analogously, from Figure 5.14, we can see that the average time for computing the
possible actions at level of detail 3 is 1100ms, which is almost 37 times higher than
level of detail 2 (30ms). This is due to the fact that we have to check many more
combinations compared to other levels, because the state space is larger.

6.1 Limitations

Part of the limitations of the system are related to the modeling capabilities offered
by the current state of the framework. The Planning Domain Definition lLanguage is
a really powerful tool for modeling planning problems: in a classic planning problem
it is enough to design the transition model of the environment, enabling traversals of
the state space. The lack of intent of the agents is offsetted by the clearly stated goal
condition. The job of the planner is to find a path that ties the starting state to the
goal, thus finding a solution to the problem. This characteristic of the planner compels
the agents to chose actions that always maximize the performance measure towards the
goal, thus giving a sense of rationality that makes up for the lack of explicitly stated
intents.

This is not the case for simulators. In fact, the key difference between the two is
that in the latter we don’t have a clearly stated goal, because we are just simulating
a process. Since we don’t have a goal, we don’t have a way to make agents behave
rationally. For example, in the case of planners, we could be looking for a way of
moving a rover between two distant waypoints. In that case, the initial state would
be the one in which the rover is at the starting position, and the goal state the one
in which it is at the destination. This means that we don’t need to clearly state in
PDDL that the intent of the rover is to reach the destination. It will be the planner’s
job to make it behave rationally, as a side effect of finding a solution to the problem.
In similar scenario viewed from a simulation point of view, we would not have a clearly
defined goal state, and so we would be bound to blindly apply the transition model
to roll forward the simulation. Any other solution would require some other means of
expressing intent.

Another limitation of the system is related to performance: even if we’re saving a
lot of resources performing the simulation at the first level of detail, we still need to
deal with the extremely large state space of the third level of detail, when we perform
refinement. The resources required for the refinement method are proportional to the
increased size of the state space, thus the overall method could be very costly. The
frequency at which the system needs to perform refinement is inversely proportional
to the frequency at which the player changes their state. For this reason, as the size
of the simulation grows, it might be more difficult for the player to change their state
very often (e.g. the player has to travel large distances to change state). Thus the cost
of refinement may not affect performances too much, because we might not need to

66

Future Work

perform refinement very often.

Finally, there is a limitation regarding the interactiveness of the simulation. For now,
the system does not support complex interactions between the user and the simulation.
The only way that the player has, to control the flow of the simulation, is for him to
allow or deny actions that get selected for execution.

6.2 Future Work

There are many ways in which we can improve the system. To improve the expressive-
ness of the PDDL framework, with regard to giving intelligent agents intent, we could
integrate some probability model into it. For example, we could employ Bayesian net-
works to express a probabilistic transition model. This would represent the way agents
behave inside the environment in a more realistic way. This would result in a perceived
behaviour that would seem much more rational, compared to the random transition
model. For example, the current state of the system could pick the IDLE action ten
times in a row, because all actions are equiprobable. If we modeled some probability
into the system, the agents would act accordingly, and it would be less likely for them
to pick actions that are unrealistic.

We could also improve the switch between various levels of detail, by employing more
complex estimates of observability. We could integrate algorithms that account for more
subjective metrics, such as salience and the player’s attention like discussed by Flores
and Thue [15] or Sunshine-Hill [16]. This is because, sometimes, basing our estimates
solely on objective metrics (such as distance and occlusion) may not be enough to have
a complete grasp the player’s perception of the world.

We can improve the overall performance of the refinement algorithm by employing
heuristics that guide the search algorithm. This would make it expand as few states as
possible, thus reducing the time and memory needed to find a solution. We could also
implement a caching system that, each time a new state is encountered, stores all the
possible actions that are applicable to it in a memory location. If we ever happen to
re-visit the same state twice, the second time we would get the possible actions straight
from the memory, without needing to compute them.

Another improvement to the refinement process could be introduced by estimating
the memory of the user. If one particular aspect of the world has been simulated for a
long time at a shallow detail level, because the user could not perceive it, it may not
be essential to refine every single action. In fact, the user may not remember every
detail from their last observation. If we manage to estimate the user’s memory, we
could limit our refinement step to the last k actions, requiring even less resources to
keep the simulation believable.

67

7. Conclusion

Simulation level of detail self-adjustment hasn’t been studied as much as its graphical
counterpart. As simulations become continuously more complex and expressive, the
computational needs required to model the behaviour of the intelligent agents that
populate them rapidly increase. This dissertation proposes a possible approach aimed
at decreasing the amount of resources required to conduct a simulation.

There are multiple challenges to tackle when devising a way to self-adjust the level
of detail of a simulation. The first is that, as of now, there is no unified framework
for modeling them. For this reason, the developed approaches are limited to their own
scopes and implementations. It is also difficult to devise a method that is general enough
to be suitable for different applications, while still presenting considerable advantages
that are not based on context-specific optimizations.

We propose a system that could be a starting point for general level of detail self
adjustment. The system is based on a method for automatically computing different
levels of abstractions given an input problem. The underlying formalism of the system
is a framework based on PDDL, which is a well-known standard for AI planning. The
approach is based on the idea that we can save resources by avoiding the computation
of details that the user cannot perceive. The system is also responsible for interacting
with the user, displaying the resulting simulation and dealing with the received inputs.

In this dissertation I focused on my part of the project, which was to: (i) devise a
way to switch the level of detail of the simulation; (ii) deal with the related abstraction
and refinement issues; (iii) and manage the issues related to multi-agent environments.
My contributions to these goals can be summarized as follows:

(i) We compute an estimate of the player’s perception of the simulation, which is
based on impartial metrics such as proximity and visibility, and then we adjust the level
of detail accordingly. Our process for adapting the level of detail is based on the work of
Sacerdoti which introduces the concept of planning in a hierarchy of abstraction spaces
[11]. Similarly, in this dissertation, we use multiple abstraction spaces to simulate the
environment at different levels of detail.

(ii) When we need to generate more details than the ones that had previously been
computed, we refine the less detailed actions performed by the agents, up to the current
point in time. This process is taken care of by a search algorithm, which traverses the
state space to find a path leading from starting state to goal state. This is done for
each node of the abstract solution. The result is a sequence of refined actions, which
are equivalent to the abstract ones. Equivalent means that the detailed actions lead
the simulation to a world state that has every relation from the abstract one, but also
accounts for the additional constraints and features of the higher level of detail.

The opposite process is called abstraction, and is responsible for decreasing the
level of detail of the simulation when the user is not able to perceive the additional

information. This process translates a detailed state of the system into an abstract one
that requires less resources to be simulated.

(iii) Since we are dealing with multiple intelligent agents, we had to tackle issues of
concurrency and synchronization. For the first one we devised a definition of paralleliz-
ability, seen in Section 4.6.1. For the second, we devised a system that synchronizes
the refined plans, as explained in Section 4.6.2.

We tested our system on a non-trivial example, and the results are in line with
our criteria for success. The framework was capable of modelling every aspect of the
test scenario. The estimator switches the level of detail when the user’s perception
is within certain thresholds. The refined solutions comply with the constraints of the
world at every level of detail. They never contradict any previously observed fact, thus
maintaining consistency. The abstraction algorithm is capable of correctly dropping
unnecessary components from a detailed state, thus translating it to an abstract level.

The results show that by abstracting the level of detail of the simulation, we are
greatly shrinking the size of the state space. At level of detail 1 the size of the state
space is ∼ 1.94× 1084, at second level ∼ 4.70× 10108, and at third level ∼ 1.32× 10123.

These estimates are reflected in the amount of possible actions computed by the
system, at each level of detail. At level of detail 3 we are computing 16770 actions
compared to the 524 actions of level 1. This means that we can reduce computation
by a factor of 32.

In the future, we aim to improve the performance of the system. We would like to do
so by introducing more efficient heuristic search algorithms that minimize the amount
of expanded states. We also want to increase the interactiveness of the system, by
allowing the users to perform more actions that affect the course of the simulation.

70

List of Figures

1.1 High vs Low poly. 7

1.2 Frustum Culling. 7

1.3 General view of the system . 10

3.1 Abstraction Spaces [11]. 17

3.2 Sacerdoti search comparison . 18

3.3 Spacial Membrane . 19

3.4 Behaviour superimposed on space . 20

4.1 PDDL Syntax Example . 25

PDDL Entity Type . 26

PDDL Entity . 26

PDDL IPredicate . 26

PDDL Unary Predicate . 26

PDDL Binary Predicate . 26

PDDL IRelation . 26

PDDL Unary Relation . 26

PDDL Binary Relation . 26

PDDL Relation Value . 27

PDDL Action . 27

PDDL Action Parameter . 28

PDDL Domain . 28

PDDL World State . 28

4.2 The tree structure obtained from simulating a system 29

PDDL TreeNode . 29

4.3 HashSet Example . 30

4.4 simulation-visualization Cycle . 31

4.5 Example of actions computation . 31

Substitution of entities in action . 32

Possible Combinations of sobstitutions . 32

Conditions applied to combinations . 32

4.6 Level of Detail Thresholds . 33

4.7 Last Observed State Data Structure . 33

4.8 World State Abstraction . 34

List of Figures

4.9 Last Observed State Update on Abstraction 34

4.10 Player Triggers Refinement. 35

4.11 Refinement Process . 36

4.12 Breadth vs Best first search . 38

4.13 Conflicting Actions Example . 38

4.14 Parallel Actions Example . 39

4.15 Actions Divided by Active Entity . 41

4.16 Cartesian product of the actions . 41

4.17 Permutations of actions tuples . 41

4.18 Action that requires synchronization . 42

4.19 Synchronous actions with different steps 42

4.20 Plan not synchronized. 43

4.21 Plan divided in synchronous turn . 44

4.22 Proximity chart. 44

4.23 Visibility measure . 45

4.24 Player’s field of view. 45

4.25 Compute Shader . 46

5.1 Simulation and Player Example . 49

5.2 Rover Environment Level of Detail 1 . 52

5.3 Rover Environment Level of Detail 2 . 54

5.4 Rover Environment Level of Detail 3 . 56

5.5 Refinement Example LoD 1 . 57

5.6 Player enters LoD 2. 57

5.7 Refinement Example LoD 2 . 58

5.8 Player enters LoD 3. 58

5.9 Refinement Example LoD 3 . 59

5.10 Occlusion at LoD 3 . 59

5.11 Abstraction Example LoD 3 . 60

5.12 Abstraction Example LoD 2 . 61

5.13 Abstraction Example LoD 1 . 61

5.14 Time for computing actions at each LoD. 63

72

Bibliography

[1] Stephen Chenney, Okan Arikan, and David A. Forsyth. “Proxy Simulations For
Efficient Dynamics”. In: Proceedings of Eurographics 2001. Blackwell Publishers
Ltd and the Eurographics Association, 2001, 10 pages.

[2] C. O’Sullivan et al. “Levels of Detail for Crowds and Groups”. In: Computer
Graphics Forum 21.4 (), pp. 733–741. doi: 10.1111/1467-8659.00631.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-
8659.00631. url: https://onlinelibrary.wiley.com/doi/abs/10.
1111/1467-8659.00631.

[3] Christoph Niederberger and Markus Gross. “Level-of-detail for cognitive real-
time characters”. In: The Visual Computer 21.3 (Apr. 2005), pp. 188–202. issn:
1432-2315. doi: 10.1007/s00371-005-0279-1. url: https://doi.org/
10.1007/s00371-005-0279-1.

[4] Cyril Brom, Ondřej Šerý, and Tomáš Poch. “Simulation Level of Detail for Virtual
Humans”. In: Intelligent Virtual Agents. Ed. by Catherine Pelachaud et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1–14. isbn: 978-3-540-74997-4.

[5] Sébastien Paris, Anton Gerdelan, and Carol O’Sullivan. “CA-LOD: Collision
Avoidance Level of Detail for Scalable, Controllable Crowds”. In: Motion in
Games. Ed. by Arjan Egges, Roland Geraerts, and Mark Overmars. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2009, pp. 13–28. isbn: 978-3-642-10347-6.

[6] Zuoyan Lin and Zhigeng Pan. “LoD-Based Locomotion Engine for Game Char-
acters”. In: Technologies for E-Learning and Digital Entertainment. Ed. by Kin-
chuen Hui et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 214–
224. isbn: 978-3-540-73011-8.

[7] David Osborne, Patrick Dickinson, et al. “Improving games AI performance using
grouped hierarchical level of detail”. In: Proceedings of the Third International
Symposium on AI & Games, Daniela M. Romano and David C. Moffat (Eds.),
at the AISB 2010 convention, 29 March - 1 April 2010. SSAISB, 2010, pp. 19–24.

[8] Felix Kistler, Michael Wißner, and Elisabeth André. “Level of Detail Based Be-
havior Control for Virtual Characters”. In: Intelligent Virtual Agents. Ed. by Jan
Allbeck et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 118–124.
isbn: 978-3-642-15892-6.

[9] Francois Cournoyer. Massive Crowd on Assassin’s Creed Unity: AI Recycling.
2015. url: https://www.gdcvault.com/play/1022411/Massive-
Crowd-on-Assassin-s (visited on 10/07/2018).

[10] Sigurgŕımur Unnar Ólafsson. “Computationally Generated Settlement Layouts”.
MA thesis. Reykjavik, Iceland: School of Computer Science, Reykjavik University,
2018.

http://dx.doi.org/10.1111/1467-8659.00631
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00631
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00631
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00631
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00631
http://dx.doi.org/10.1007/s00371-005-0279-1
https://doi.org/10.1007/s00371-005-0279-1
https://doi.org/10.1007/s00371-005-0279-1
https://www.gdcvault.com/play/1022411/Massive-Crowd-on-Assassin-s
https://www.gdcvault.com/play/1022411/Massive-Crowd-on-Assassin-s

Bibliography

[11] Earl D. Sacerdoti. “Planning in a hierarchy of abstraction spaces”. In: Artificial
Intelligence 5.2 (1974), pp. 115–135. issn: 0004-3702. doi: https://doi.org/
10.1016/0004-3702(74)90026-5. url: http://www.sciencedirect.
com/science/article/pii/0004370274900265.

[12] Kim Hamilton. Introducing Generic HashSet. 2006. url: https://blogs.
msdn.microsoft.com/bclteam/2006/11/09/introducing-hashsett-
kim-hamilton/ (visited on 09/10/2018).

[13] A.G. Konheim. Hashing in Computer Science: Fifty Years of Slicing and Dic-
ing. Wiley, 2010. isbn: 9781118031834. url: https://books.google.it/
books?id=mU6fpT1sXCoC.

[14] Unity. Compute shaders. 2018. url: https://docs.unity3d.com/Manual/
ComputeShaders.html (visited on 10/06/2018).

[15] Luis Flores and David Thue. “Level of Detail Event Generation”. In: Interactive
Storytelling. Ed. by Nuno Nunes, Ian Oakley, and Valentina Nisi. Cham: Springer
International Publishing, 2017, pp. 75–86. isbn: 978-3-319-71027-3.

[16] Ben Sunshine-Hill. “Managing Simulation Level-of-Detail with the LOD Trader”.
In: Proceedings of Motion on Games. MIG ’13. Dublin 2, Ireland: ACM, 2013,
13:13–13:18. isbn: 978-1-4503-2546-2. doi: 10.1145/2522628.2541250. url:
http://doi.acm.org/10.1145/2522628.2541250.

74

http://dx.doi.org/https://doi.org/10.1016/0004-3702(74)90026-5
http://dx.doi.org/https://doi.org/10.1016/0004-3702(74)90026-5
http://www.sciencedirect.com/science/article/pii/0004370274900265
http://www.sciencedirect.com/science/article/pii/0004370274900265
https://blogs.msdn.microsoft.com/bclteam/2006/11/09/introducing-hashsett-kim-hamilton/
https://blogs.msdn.microsoft.com/bclteam/2006/11/09/introducing-hashsett-kim-hamilton/
https://blogs.msdn.microsoft.com/bclteam/2006/11/09/introducing-hashsett-kim-hamilton/
https://books.google.it/books?id=mU6fpT1sXCoC
https://books.google.it/books?id=mU6fpT1sXCoC
https://docs.unity3d.com/Manual/ComputeShaders.html
https://docs.unity3d.com/Manual/ComputeShaders.html
http://dx.doi.org/10.1145/2522628.2541250
http://doi.acm.org/10.1145/2522628.2541250

Acknowledgements

Contributors

Like every achievement that requires time and effort, the realization of this work could
not have been possible without the help of many people who i wish to thank. My work
is just a contribution to a larger project led by David James Thue, who deserves my
many thanks for being an exceptional supervisor, always willing to invest time helping
me overcome all the challenges that arose during the project, with his useful insights. I
want to thank professor Andrea Polini for co-supervising the thesis, giving me valuable
feedback that greatly helped shaping this dissertation. Finally, i want to thank both
UNICAM and Reykjav́ık University for giving me the wonderful opportunity of working
on a field i am passionate about.

Ringraziamenti

Ad Aurora, per aver accompagnato le mie risate nei momenti più felici ed aver
asciugato le mie lacrime in quelli più tristi; ogni attimo è stato inestimabile.

A mia madre, per il costante supporto che dimostra verso tutto ciò che faccio,
e per avermi sempre spronato ad inseguire i miei sogni.

A Gianmarco, per la sua preziosissima amicizia,
e per essermi stato vicino nonostante la grande distanza.

Alla mia Famiglia, per l’incessante e caloroso affetto
che mi è servito a raggiungere questo traguardo.

A tutti gli Amici che mi hanno affiancato durante questo percorso,
per avermi aiutato a rimanere sano di mente.

	Abstract
	Introduction
	Background

	Problem Formulation
	Standard Framework for Simulations
	Switch between Levels of Detail
	Increasing Level of Detail
	Decreasing Level of Detail
	Criteria for Success

	Related Work
	Proxy Simulations for Efficient Dynamics
	Geometry Motion and Behaviour Level of Detail
	LoD for Cognitive Real-time Characters
	Collision Avoidance LoD for Large crowds
	Grouped Hierarchical Flocks of Agents
	Switching Level of Detail
	Planning in a Hierarchy of Abstraction Spaces
	Simulation Level of Detail for Virtual Humans

	Proposed Approach
	Planning Domain Definition Language
	PDDL for multi agent environments
	Implementation
	Optimization
	Unit Testing

	Simulation
	Level of Detail Adjustment
	Abstraction
	Refinement
	Multi Agents planning synchronization
	Concurrency
	Synchronization

	Level of Detail Switcher
	Proximity
	Visibility
	Parallel Computation of Visibility

	Summary

	Evaluation
	Example Environment
	First Level of Detail
	Second Level of Detail
	Third Level of Detail
	Refinement
	Abstraction

	Results

	Discussion
	Limitations
	Future Work

	Conclusion

