
Università degli Studi di Camerino

School of Science and Technology

Master Degree in Computer Science (Class LM-18)

In collaboration with

Reykjav̀ık University

Automatic Model Abstraction for Adaptive

Level of Detail Simulation

Graduand Supervisor

Giulio Mori David J. Thue
Number 098701 Assistant Professor

Reykjav̀ık University, Iceland

Co-Supervisor

Andrea Polini
Associate Professor

Università di Camerino, Italy

A.Y. 2017/2018

“ The first step before anybody else in the world believes,
it is you have to believe it.

There is a redemptive power that making a choice has.
You just decide what its gonna be,

who you’re gonna be
and how you’re gonna do it.

Will Smith @ Yes Theory”

Abstract

One of the main problems when dealing with simulations in a large environment is the
amount of resources required to compute all of the events that are happening. Since
it is too costly to simulate them all, the developer must consider ways to reduce the
computation at the expense of the player experience, by giving up some details or
stopping the simulation of all the processes that are not observable.

The aim of the project is to develop an AI system that can determine which are the
most important elements of a simulation and then compute new models of the simula-
tion at higher levels of abstraction. Given a fully detailed model of an environment, our
solution can automatically generate an abstract model that can be used to approximate
the detailed model, but at lower computational cost.

5

Contents

Abstract 3

1 Introduction 15

1.1 Background . 16

1.1.1 Artificial Intelligence . 16

1.1.2 Unity 3D . 17

1.1.3 Tree and Graph Data Structure 17

1.1.4 GraphML . 17

1.1.5 Larger Project . 18

1.1.6 Planning Domain Definition Language (PDDL) 19

2 Problem Formulation 21

2.1 Criteria for Success . 21

3 Related Work 23

3.1 Automatic State Abstraction on Path-finding 23

3.2 Level of Detail Event Generation . 24

3.3 Other Resources . 24

4 Proposed Approach 25

4.1 PDDL Framework . 25

4.1.1 EntityType . 26

4.1.2 Entity . 26

4.1.3 Predicate . 27

4.1.4 Relation . 27

4.1.5 Action . 28

4.1.6 Domain . 29

4.1.7 WorldState . 29

4.2 Graph Generation . 32

4.2.1 Tree Generation . 32

4.2.2 Graph Data Structure . 35

4.2.3 Graph Data Generation . 36

4.3 Abstraction . 38

4.3.1 Graph Analysis . 38

4.3.2 Graph Abstraction . 40

7

5 Evaluation 47

5.1 Setup . 47

5.2 Evaluation of the PDDL Framework . 47

5.3 Evaluation of the Graph Generation . 50

5.4 Evaluation of the Abstraction Process 53

6 Discussion 57

6.1 Benefits . 57

6.2 Drawbacks . 57

6.3 Future Work . 58

7 Conclusion 59

References 60

Appendices 65

A PDDL example 67

A.1 Domain.pddl . 67

A.2 Problem.pddl . 69

A.3 First Level Domain . 70

A.4 First Level WorldState . 74

List of Figures

1.1 Components of the Consistent World Space Simulation through Level of
Detail Manipulation for Narrative-driven World, Figure from the poster
of the project[17]. 18

1.2 Example of a PDDL Domain and Problem Description. 20

3.1 The process of abstracting a graph, Figure 3 from [4]. 23

4.1 Basic components of the PDDL Framework. 25

4.2 Class Diagram of the EntityType class. 26

4.3 Class Diagram of the Entity class. 26

4.4 Class Diagram of the Predicate classes. 27

4.5 Class Diagram of the Relation classes. 28

4.6 Class Diagram of the Action class. 28

4.7 Class Diagram of the Domain class. 29

4.8 Class Diagram of the WorldState class. 30

4.9 Class Diagram of the TreeNode class. 32

4.10 Example of a generated tree printed in graphML, opened with yEd. . . 34

4.11 Example of a tree with and without revisiting states. 34

4.12 Class Diagram of the Node class. 35

4.13 Class Diagram of the Graph class. 36

4.14 Graphical representation of a directed graph generated with our methods
and visualized with yEd. 38

4.15 Graphical representation of a clique on a directed graph. 40

4.16 Graphical representation of the sub-graph we are searching inside a di-
rected graph. 40

4.17 Graphical representation of some of the variations the sub-graph can have. 41

4.18 Graphical representation of the idea of abstraction we have implemented. 41

5.1 Graphical representation of various level of graphs. 51

5.2 Graphical representation of various level of graphs with the simplification. 52

9

List of code snippets

4.1 ApplyAction method. 30

4.2 GetPossibleActions method. 31

4.3 GenerateTree method. 33

4.4 GenerateGraphMLTree method. 33

4.5 GenerateDataRoutine method. 36

4.6 GenerateGraphML method. 37

4.7 CompareStates method. 38

4.8 Compare method. 39

4.9 BFS method. 42

4.10 EvaluateNode method. 42

4.11 FindSubgraph method. 43

4.12 GetSuperActionFromSubgraph method. 44

5.1 PDDL domain and problem written with the PDDL language. 47

5.2 PDDL domain and problem example written with our framework. . . . 48

11

List of Tables

5.1 Data of the full graph generation process. 50

5.2 Data of the graph generation with the restriction of only one active
parameter for EntityType. 51

5.3 Summary of the graph generation data with and without abstract do-
main. A.D. = Abstract Domain. 54

1. Introduction

A simulation is an imitation of the operation of a real-world process or system. The act
of simulating something first requires that a model be developed; this model represents
the key characteristics, behaviors and functions of the selected physical or abstract
system or process. A computer simulation is an attempt to model a real-life or hypo-
thetical situation on a computer so that it can be studied to see how the system works.
By changing variables in the simulation, predictions may be made about the behaviour
of the system.

One of the main problems when dealing with simulations in a relatively big envi-
ronment is the amount of resources required to compute all of the events that are
happening. Since is too costly to simulate them all, the developer has to think about
ways to lighten up the computation at the expense of the player experience, by giving
up some details or stopping the simulation of all the processes that are not observable.
But in some environments this cannot be a solution since the developer has to keep
alive and believable the time-line of the events. A middle ground would be to split the
simulation in many different levels of what can be simulated, but doing that by hand is
a tedious and costly process. One possible solution is to replicate this mechanism in a
program. This can be done with the help of Artificial Intelligence (AI) methods since
they are applied in many fields when a machine needs to mimic “cognitive” function.

This project is focused on the design of an AI for video-games, since on this computer
science related area, simulations are the basics for developing games. Some of the most
recent open-world role playing video-games are set in environments so massive that
they make the task of carrying on the simulation with full detail for the whole world
prohibitive. An example could be Assassin Creed, when they want to simulate a large
amount of people on a crow, the characters near the player are rendered with full
detail, while the furthest without any detail[18]. For this reason, only some events
are simulated at any given time, and they usually are the ones that directly affect the
players in their current location of the world or what they are currently observing.
For example, if the player goes to a burning village and then leaves, upon their return
everything will be the same as it was when they first came. That is because the
simulation simply doesn’t run if the player is not nearby.

The problem I studied in this work is the following: given a fully detailed model of
an environment, find a way to automatically generate an abstract model that can be
used to approximate the detailed model, but at lower computational cost. The first
step is to find a way to represent a detailed model of the environment. This can be
done with the Planning Domain Definition Language (PDDL), a way to standardize
planning domain and problem description languages. Then, we can analyze the model
as a graph of possible plans. This will let us determine which elements of the state
should be used in the abstract model’s state (and which should be ignored), as well as
which groups of detailed actions can be represented as single abstract actions.

Background

The project of this thesis has been developed during a double degree program be-
tween University of Camerino (UNICAM) and Reykjavik University (RU) and is part
of a research project developed by the prof. David Thue with name ”Level-of-Detail
Simulation for Interactive Worlds” (see Section 1.1.5 for more information about the
research). The first part of the project (PDDL Framework) has been developed in co-
operation with Michelangelo Diamanti and Matteo Altobelli, two students who joined
the double degree project with me.

The thesis structure is as follows. In this chapter I provided an introduction to
the project and a background to give the reader context to the work. In Chapter 2, I
formulate the problem to give structure to the thesis subject and the proposed approach
to solve it. This is followed by Chapter 3, in which I give an overview of related work
to the kind of problem this thesis aims to solve. In Chapter 4, I lay out the proposed
approach I developed to solve the questions asked in the problem formulation. Then, I
present the evaluations that I performed to assess the approach in Chapter 5. I discuss
the benefits of the approach, problems with the current implementation (along with
ways to get around the problems) and future work in Chapter 6. Finally, in Chapter 7
there is the conclusion.

1.1 Background

In this section, I present the background to the work of this thesis. This starts with a
brief introduction on general themes this work belongs to and it includes information
about the larger project ”Consistent World Space Simulation through Level of Detail
Manipulation for Narrative-driven Worlds”, since my work is part of it. Then I talk
about PDDL because all my thesis refers to this standard.

1.1.1 Artificial Intelligence

Artificial intelligence (AI) is an area of computer science that emphasizes the creation
of intelligent machines that work and react like humans. AI is one of the newest fields
in science and engineering. Work started in earnest soon after World War II, and the
name itself was coined in 1956. AI currently encompasses a huge variety of sub-fields,
ranging from the general (learning and perception) to the specific, such as playing chess,
proving mathematical theorems, writing poetry, driving a car on a crowded street, and
diagnosing diseases. AI is relevant to any intellectual task; it is truly a universal field.

Nowadays, it has become an essential part of the technology industry with the in-
dustry 4.0. Research associated with artificial intelligence is highly technical and spe-
cialized. The core problems of artificial intelligence include programming computers
for certain traits such as:

• Knowledge.

• Reasoning.

• Problem solving.

• Perception.

• Learning

• Planning

16

Background

• Ability to manipulate and move objects.

Machine learning is also a core part of AI. Learning without any kind of supervision
requires an ability to identify patterns in streams of inputs, whereas learning with
adequate supervision involves classification and numerical regressions.

1.1.2 Unity 3D

Unity is a cross-platform game engine developed by Unity Technologies, first announced
and released in June 2005 at Apple Inc.’s Worldwide Developers Conference as an OS
X-exclusive game engine. As of 2018, the engine has been extended to support 27 plat-
forms. The engine can be used to create both three-dimensional and two-dimensional
games as well as simulations for its many platforms.

Unity gives users the ability to create games in both 2D and 3D, and the engine
offers a primary scripting API in C#, for both the Unity editor in the form of plugins,
and games themselves, as well as drag and drop functionality.

We decided to use Unity in this project because we had the opportunity to work
with it during our period at the Reykjavik University and we saw its potential as game
engine.

1.1.3 Tree and Graph Data Structure

Trees are well known as a non-linear data structure. It doesn’t store data in a linear
way. It organizes data in a hierarchical way. A Tree is a collection of entities called
node connected by edges. Each node contains a value or data and it can also have a
child node (or not). The first node of the tree is called the root. If this root node
is connected by another node, the root is a parent node and the connected node is
a child. Tree nodes are all connected by links called edges. It’s an important part
of trees, because it’s how we manage relationship between nodes. Leafs are the “last
nodes” from the tree, or nodes without children (like real trees). We have the root,
branches, and finally the leaves. Other important concepts to understand are height
and depth. The height of a tree is the length of the longest path to a leaf. The depth
of a node is the length of the path to its root.

In computer science, a graph is an abstract data type that is meant to implement the
undirected graph and directed graph concepts from mathematics; specifically, the field
of graph theory. A graph data structure consists of a finite (and possibly mutable) set
of vertices or nodes or points, together with a set of unordered pairs of these vertices
for an undirected graph or a set of ordered pairs for a directed graph. These pairs are
known as edges, arcs, or lines for an undirected graph and as arrows, directed edges,
directed arcs, or directed lines for a directed graph.

1.1.4 GraphML

GraphML is an XML-based file format for graphs. The GraphML file format results
from the joint effort of the graph drawing community to define a common format for
exchanging graph structure data. It uses an XML-based syntax and supports the entire
range of possible graph structure constellations including directed, undirected, mixed
graphs, hypergraphs, and application-specific attributes.

A GraphML file consists of an XML file containing a graph element, within which
is an unordered sequence of node and edge elements. Each node element should have

17

Background

a distinct id attribute, and each edge element has source and target attributes that
identify the endpoints of an edge by having the same value as the id attributes of those
endpoints.

We decided to use the GraphML language to visualize the graph generated during
the process of generating the sequence of the events. To visualize the result we used
yEd. yEd is a powerful desktop application that can be used to quickly and effectively
generate high-quality diagrams. You can create diagrams manually, or import external
data for analysis. There are automatic layout algorithms that are able to arrange even
large data sets with just the press of a button[1].

1.1.5 Larger Project

The work of my thesis belongs to a larger project called: ”Consistent World Space
Simulation through Level of Detail Manipulation for Narrative-driven World”. It is
being developed by Sigurgrimur U. Olafsson and David J. Thue and it is one of the
projects of the Center for Analysis and Design of Intelligent Agents (CADIA) of the
Reykjavik University School of Computer Science.

For the purpose of education and entertainment, simulating an interactive world of-
fers unique challenges and opportunities. While managing each user’s experience can
be a difficult task, the fact that user perception supersedes objective realism offers ripe
opportunities for both increased computational efficiency and improved personaliza-
tion. They seek to understand and exploit these opportunities toward improving their
capacity to generate large-scale simulations of interactive worlds[6].

Figure 1.1: Components of the Consistent World Space Simulation through Level of De-
tail Manipulation for Narrative-driven World, Figure from the poster of the project[17].

As we can see in Figure 1.1, the project is composed of different components to fulfill

18

Background

its objective[17]:

• The World Generator receives updates to the narrative from a narrative gen-
eration system and expands or modifies the World Data.

• The World Data represents the state of the world, its entities, and their con-
nections to each other.

• The World Manager manages the Level of Detail of the World Data as the
World State is passed to the other systems.

• The World Simulator, operating at various levels of detail, manages the be-
haviour of entities represented by the World Data, making updates to the World
Data in response to the connections between entities or to player actions.

• The World Visualizer arranges the scene depending on the World Data and
the player’s position in the world space.

• The Listener takes in feedback from player actions and feeds it to both the
Narrative Generator and the World Simulator to process.

My work places itself in the World Simulator. Until now, the World Generator and
World Manager are being developed in Java. Since our work is more game-oriented,
we chose to develop inside Unity3D with the C# framework.

1.1.6 Planning Domain Definition Language (PDDL)

The Planning Domain Definition Language (PDDL)[15] is a way to standardize Artifi-
cial Intelligence planning problems. It was first developed by Mcdermott et al. in 1998.
It was developed mainly to make the International Planning Competition (IPC) series
possible. The planning competition compares the performance of planning systems on
sets of benchmark problems, so a common language for specifying problems must be
used. They separated the model of the planning problem in two major parts: domain
description and the related problem description (Figure 1.2), such a division of the
model allows for an intuitive separation of those elements:

• The domain description consists of a domain-name definition, a definition of
requirements to declare, a definition of object-type hierarchy just like a class-
hierarchy in OOP, a definition of constant objects which are present in every
problem in the domain, a definition of predicates templates for logical facts, and
also the definition of actions as operator-schema with parameters, which should
be grounded/instantiated during execution. Actions have parameters (variables
that may be instantiated with objects), preconditions and effects.

• The problem description consists of a problem-name definition, the definition
of the related domain-name, the definition of all the possible objects (atoms
in the logical universe), initial conditions (the initial state of the planning
environment, a conjunction of true/false facts), and the definition of goal-states:
a logical expression over facts that should be true/false in a goal-state of the
planning environment.

19

Background

Figure 1.2: Example of a PDDL Domain and Problem Description.

An example of a complete PDDL domain and problem description files can be found
in Appendix A.1.

In my work I’m not using the PDDL language for its planning purpose, but for a way
to describe the initial-state of the world and all the information useful to understand
what can happen over time. I used all the components of the domain, but only the
concept of the problem description (to have an initial-state and to maintain the current
state).

20

2. Problem Formulation

The idea behind our thesis is a common problem of most story-based video-games.
How can we simulate the entire virtual world without adversely affecting the player
experience? By “entire virtual world” I mean that at every point of time I can ask
the system what is happening to a specific person/city/place. In most games, if the
player is not in range of possible actions, they just stop the simulation in that area
until the player comes back. In this large problem I am focusing on a specific question:
Knowing each possible element of the story, can we make a system that is able to
abstract the domain of the story in an automatic way, to create a more performant
simulation model? This question opens some interesting challenges to solve like:

• How can we represent a story in a structured way?

• How can we represent the sequence of the events?

• How can we generate and use an abstract domain without breaking the flow of
the story?

I present an approach to each of these challenges in Chapter 4.

2.1 Criteria for Success

The success criteria to evaluate my approach are one for each question. Firstly, to
represent a story in a structured way that can be read by a computer, I need to take a
story and try to represent it with the method developed. If, at the end, the story can
be read successfully, we can consider the first question answered.

Secondly, to evaluate the representation of the sequence of the events, we need to
give the system a story written with the method developed before and let it generate
the sequence of events. Once it has finished, we evaluate the result by checking if it is
a valid representation.

Thirdly, if we want to evaluate if the abstraction doesn’t break the story, we need
to give the system a story and let it abstract it. At the end, to check the result, if we
execute an action from the abstract domain and we apply it to a state, we should be
able to find the obtained state also a sequence line of the events of the initial story.

In general, an abstract domain is valid if it doesn’t break the story and if it has
some advantages from the initial domain. In order to prove this, we will generate some
sequences of events with the initial domain and with the abstract one. If, with the
abstract domain, we have some gain in performance, we can say that we abstracted a
domain in a good way.

All these evaluations will be presented in Chapter 5, and they will be proved with
real data.

3. Related Work

In this chapter I’m going to talk about the relevant research papers I have consulted
during the development of the thesis.

3.1 Automatic State Abstraction on Path-finding

One of the most important paper useful for my research it is ”Speeding Up Learning
in Real-time Search via Automatic State Abstraction” made by Bulitko et al. in 2005.
In this paper, they consider a simultaneous planning and learning problem. More
specifically, they require an agent to navigate on an initially unknown map. As an
example, they considered a robot driving to work every morning. The first route the
robot finds may not be optimal because the traffic jams, road conditions, and other
factors are initially unknown. With a passage of time, the robot continues to learn
and eventually converges to a nearly optimal commute. With this example in mind
they where trying to answer three questions. First how planning time per move and,
particularly the first-move delay, can be minimized so that each agent moves smoothly
and responds to user requests nearly instantly. Second, given the local nature of the
agent’s reasoning and the initially unknown terrain, how the agent can learn a better
global path. Third, how learning can be accelerated so that only a few repeated path-
finding experiences are needed before converging to a near-optimal path [4].

While answering these questions they came up with a new algorithm named: ”Path-
refinement LRTS” with a peculiarity. When abstracting an entire map, they first build
its connectivity graph and then abstract this graph.

Figure 3.1: The process of abstracting a graph, Figure 3 from [4].

As we can see in Figure 3.1 they are using one specific method: look for cliques

Level of Detail Event Generation

in the graph. This is the idea that I used to abstract in my story-based case, even if
I have been using a directed-graph. It is a really powerful method since if we consider
the case in the figure above, we can easily see that an 11 state graph can be represented
with 4 states instead.

3.2 Level of Detail Event Generation

Another important paper for my thesis is ”Level of Detail Event Generation” [8] made
by Flores and Thue in 2017. In this paper, they introduced an event generation method
to optimize the level of detail of upcoming events in a simulation. They proposed a
method able to optimize the generation of upcoming events in a simulation using a level
of detail approach. This was done using an estimate of the player’s knowledge about
the simulation and the current world state by estimating the salience of different event
properties during generation, which then determine the level of detail of the generated
events. They introduced a way to define the salience of an potential future event. The
evaluated properties were:

• the social salience, which depends on how closely the agents in the event are
related to the player in a social sense;

• the space salience of an event is calculated by checking how close the event location
is to the player;

• the time salience of an event depends on both the event time and its propagation
rate;

• the causation salience of an event to represent whether or not two events were
causally related.

• the intention salience of an event is used to represent whether or not two events
were part of the same intentional plan.

This paper was really useful to understand how the generation of the events can be
done, it also introduce the concept of level of detail when we are talking of events. This
is important for this thesis because we are trying to make ad automatic abstraction of
a story and generate levels of details.

3.3 Other Resources

The papers that I talked about above are the most important to achieve the objectives
listed during the problem formulation (Chapter 2). But they aren’t the only I consulted
during the first stages of the research. For graph abstraction I considered different
approaches like: [10], [3] and [5] but all of them were not good for our approach
because they do not consider the refinement process during the abstraction. For state
abstraction and finding whether we can abstract a state I read different approaches like:
[20], [11], [18], [2] and [9] but all of them cannot be applied to story based problems. I
read also papers about pattern recognition [13], but this approach at the end was not
utilized. Last but not least, I read a paper about story generation and possible ways of
abstraction [12], but also in this case these approaches cannot be applied in our thesis
because we are not generating story but the line of the events.

24

4. Proposed Approach

In this chapter I discuss all the solutions I developed to achieve the goals drawn up
during the Problem Formulation chapter.

4.1 PDDL Framework

During the initial stage of the development, we looked for a standard way to represent
a story with all the components in a way that can be read by a machine. So we came
up with using a standard named PDDL. This language has been used for planning
problems. For this reason, in the problem description file (as shown in section 1.1.6)
we can find the goal-state description. In our case, we don’t use it for its planning
purpose, but for its powerful method to describe stories.

After a research on internet, we didn’t find a framework that can be used in C# with
Unity 3D, so we decided to develop our own. The first step was to deeply understand
each component and decide if it was necessary to implement for our purpose.

Figure 4.1: Basic components of the PDDL Framework.

In Figure 4.1, we can see all the components of the PDDL language that we decided
to implement, and how they are connected together. The edges in this figure are colored
with different colors:

• yellow means that they are the basic component of the framework;

• blue indicates the basic components of the domain;

• read indicates the basic components of the world state.

PDDL Framework

In the following subsections, I’m going to discuss each component and how it works.

Before explaining each component with the corresponding parameters, some back-
ground is required. In the entire framework we decided to use HashSet instead of List.
This is because in C# collections like ArrayList, List, simply adds values in it without
checking for any duplication. To avoid such a duplicate data store, .NET provides a
collection name set[14]. Another reason is that this class provides high-performance
set of operations. But using HashSet instead of List opens to the implementation of
GetHashCode methods in each class. A hash code is a numeric value that is used to
identify an object during equality testing. It can also serve as an index for an object in
a collection. The GetHashCode method is suitable for use in hashing algorithms and
data structures such as a hash table[16].

4.1.1 EntityType

The EntityType component is the most basic class of the framework. It is composed
only by one field named Type and it is a string (Figure 4.2). It has two purposes:

• define a type for the entities, e.g. Giulio is a Character, Parigi is a Location. In
this case Character and Location are EntityTypes; the distinction is important
because we need a distinction between entities.

• define the types of which predicates can be applied. For example we have a
predicate Can Move and the entities described in the example before, we can
apply this predicate to Characters but not to Locations.

Figure 4.2: Class Diagram of the EntityType class.

4.1.2 Entity

The Entity component allows the developer to describe each component of the story. It
is composed of two fields: the Type that is an EntityType and a Name that is a string
(Figure 4.3). Its purpose is to differentiate entity types (e.g., Giulio is a Character,
Matteo is a Character). In this example we have two characters but they are different
because even if they are of the same type, they have different name and they can have
associated, non-identical Relations (Section 4.1.4).

Figure 4.3: Class Diagram of the Entity class.

26

PDDL Framework

4.1.3 Predicate

The Predicate component allows to define a template for logical facts. One thing that
is important to understand is that predicates in a domain definition have no intrinsic
meaning. The predicate part of a domain definition specify only what are the predicate
names used in the domain, and their number of arguments and argument types. The
“meaning” of a predicate, in the sense of for what combinations of arguments it can be
true and its relationship to other predicates, is determined by the effects that actions
in the domain can have on the predicate, and by what instances of the predicate are
listed as true in the initial state of the problem definition.

It is common to make a distinction between static and dynamic predicates: a static
predicate is not changed by any action. Thus in a problem, the true and false instances
of a static predicate will always be precisely those listed in the initial state specification
of the problem definition. Note that there is no syntactic difference between static and
dynamic predicates in PDDL: they look exactly the same in the predicates declaration.

In our framework we decided to not make any difference between static and dynamic
predicate, since this distinction is implied. We also decided each predicate can be one-
way or two-way predicate, to avoid an excessive complexity. An example of one-way
predicate is Character Can Move while a two-way predicate can be Character Knows
Character.

We developed the predicate component as an interface IPredicate that is imple-
mented by two classes: UnaryPredicate and BinaryPredicate (Figure 4.4). Both classes
are composed by Name, Description that are strings and Source that is EntityType.
BinaryPredicate has only one field more: the Destination that is an EntityType.

Figure 4.4: Class Diagram of the Predicate classes.

4.1.4 Relation

The Relation component allows the relationship between entities and predicates, and
enables the possibility to add a state of the connection. Since there is a direct link
between predicates and relations, each relation can be one-way or two-way. An example
of one way relation is Giulio Can Move = TRUE, while a two-way relation is Giulio
Knows Matteo = FALSE.

27

PDDL Framework

Figure 4.5: Class Diagram of the Relation classes.

As we can see in Figure 4.5, we developed the component starting from an inter-
face IRelation, that is implemented by two classes: UnaryRelation and BinaryRela-
tion. Both classes are composed of a Source that is an Entity, a Predicate that is a
Unary/Binary-Predicate (depending by the class) and a Value that is a RelationValue1.
BinaryRelation has only one more field: the Destination that is an Entity.

4.1.5 Action

The Action component is an operator-schema with parameters. All parts of an ac-
tion definition except the name are, according to the PDDL specification, optional
(although, an action without any effects is pretty useless). The actions are allowed to
make changes in the WorldState, so they are responsible for the process that allows the
story to proceed.

Figure 4.6: Class Diagram of the Action class.

The actions are composed by four important parts:

• Name: it is pretty self-explained, its aim is to distinguish one action to another
without checking all the other parts.

• Pre-conditions: it is a set2 of relations and its objective is to check if there is
ground for apply an action to the state.

• Post-conditions: as for the pre-conditions, it is a set of relation and it can be
described as effects of the action. Its aim is to define a set of rules that needs to

1The RelationValue is an enum with four possible values: TRUE, FALSE, PENDING TRUE and
PENDING FALSE

2The set can be also empty

28

PDDL Framework

be applied to change the state. Usually the negative effects (deletes) are denoted
by the negation.

• Parameters: it is a set of entities involved in the Pre/Post-conditions relations.

As we can see in figure 4.6, in our framework we decided to implement all the 4
components described before. We also added a parameter IgnoreOnAbstraction to allow
the developer to decide if an action needs to remain untouched during the process of
abstraction.

4.1.6 Domain

The Domain component intent is to collect each entity-type, predicate and action. Its
job is to verify that a specific element belongs to the current domain. Since we can
consider a domain as a container of all the valid elements, when something is declared
each component calls this class to verify if everything the element is composed of, or
the item itself, already exist.

In Figure 4.7, we can see the class diagram of the domain in our framework. It is
composed of three parameters: EntityTypes, Predicates and Actions. Each of them is
an HashSet of the corresponding element. Since, when declaring something, it needs
to be checked inside the domain, there are methods to search inside each parameter to
get the element.

Figure 4.7: Class Diagram of the Domain class.

4.1.7 WorldState

The WorldState component it is used to represent a PDDL state of the world. It is
derived from the problem description and it is a container of all the relations useful
to describe all the condition of the world and entities involved. Essentially it is a
conjunction of true and false facts and all the objects affected.

As we can see in Figure 4.8, in our framework the parameters of the WorldState are:

• Domain: it is important because each element of the WorldState need to belong
to the same domain.

• Relations: it is a HashSet of IRelation. It contains each relation that describes
the WorldState.

29

PDDL Framework

Figure 4.8: Class Diagram of the WorldState class.

• Entities: it is a HashSet of Entity. It contains each entity that needs to be used
inside any relation.

Since this component is really important for the work described in the next sections, I
would like to dwell a little bit longer on the methods of this class. The most complex
functions are: ApplyAction and GetPossibleActions.

4.1.7.1 ApplyAction method

This function, as we can understand from the name, allows the developer to apply one
action to the current WorldState and it gets as output a new WorldState with the
action’s post-conditions applied.

Code snippet 4.1: ApplyAction method.

1 public WorldState applyAction(Action action)
2 {
3 if (canPerformAction(action) == false)
4 throw new System.ArgumentException("The action " +

action.shortToString() + " cannot be performed in the
worldState: " + this.ToString());

5

6 WorldState resultingState = this.Clone();
7 foreach (IRelation actionEffect in action.PostConditions)
8 {
9 bool found = false;

10 foreach (IRelation newWorldRelation in
resultingState.Relations)

11 {
12 if (newWorldRelation.EqualsWithoutValue(actionEffect))
13 {
14 resultingState.Relations.Remove(newWorldRelation);
15 resultingState.Relations.Add(actionEffect);
16 found = true;
17 break;
18 }
19 }
20 if (found == false)
21 resultingState.addRelation(actionEffect.Clone());
22 }

30

PDDL Framework

23 return resultingState;
24 }
25 }

If we start analyzing the code snippet 4.1, to use this method we must provide an
Action. This parameter is checked with the function canPerformAction3. If the result
is true it continues the function; otherwise, it raise an exception. At this point, it starts
to loop each post-condition of the given action. It checks if the relation is already part
of the state: if it can find a match it updates the value, otherwise it adds a new relation.

4.1.7.2 GetPossibleActions method

The function GetPossibleActions allows the developer to get all the possible actions
that can be applied in the current WorldState. This method is crucial for generating
graphs and trees for the search problem we are trying to solve.

Code snippet 4.2: GetPossibleActions method.

1 public List<Action> getPossibleActions() {
2 foreach (Action a in _domain.Actions) {
3 foreach (ActionParameter item in a.Parameters) {
4 foreach (Entity e in _entities) {
5 if (item.Type.Equals(e.Type))
6 listapp.Add(new ActionParameter(e, item.Role));
7 }
8 dictSobstitution.Add(item, listapp);
9 }

10 ActionParameter firstKey = dictSobstitution.Keys.First();
11 List<ActionParameter> sobList = dictSobstitution[firstKey];
12 foreach (ActionParameter e in sobList) {
13 sobstitution.Add(firstKey, e);
14 sobstitutions.Add(sobstitution);
15 }
16 dictSobstitution.Remove(firstKey);
17 foreach (KeyValuePair<ActionParameter, List<ActionParameter>>

entry in dictSobstitution) {
18 foreach (Dictionary<ActionParameter, ActionParameter>

sobstitution in sobstitutions) {
19 foreach (ActionParameter e in entry.Value) {
20 tmpSobstitution.Add(entry.Key, e);
21 tmpSobstitutions.Add(tmpSobstitution);
22 }
23 }
24 sobstitutions = tmpSobstitutions;
25 }
26 foreach (Dictionary<ActionParameter, ActionParameter>

sobstitution in sobstitutions) {
27 Action action = a.sobstituteParameterInAction(sobstitution);
28 if (canPerformAction(action))
29 listActions.Add(action);
30 }
31 }
32 return listActions;
33 }

3The function canPerformAction checks if each pre-condition is valid in the WorldState and it
returns: true if the action can be applied or false otherwise.

31

Graph Generation

In the code snippet 4.2, there is a simplified version of the function under considera-
tion. The idea behind this algorithm is to first generate a dictionary which maps each
entity to a list of possible entities suitable to be substituted in the action. Then we
compute all the possible combinations of substitutions in the form of a set of tuples.
First of all, we start by looping each action in the domain. Then, for each parameter
of the action we get all the possible entities in the current WorldState which could
be substituted, according to their type. We initialize the set of mappings with the
elements of the first list. For example, if we had to substitute a list of way-points:
”WAYPOINT1”: [”ALPHA”,”BRAVO”] would become [”WAYPOINT1”: ”ALPHA”]
and [”WAYPOINT1”: ”BRAVO”]. Now, we iterate over the remaining lists of entities
and each time we combine them with every element of the set of partial combinations
that we already computed. Every substitution represents a possible action which may
or may not be performable in the current state, so we check if its preconditions are
satisfied and, if so, we add it to the list of possible actions. When we have done this
for each action in the domain, we return all the possible actions.

4.2 Graph Generation

When the PDDL framework was done, we started to think of a way of generating a
tree or a graph to start thinking about abstraction.

4.2.1 Tree Generation

Since this is an AI problem, we thought that a possible solution could be the decision
tree. Trees are well known as a non-linear data structure. It doesn’t store data in a
linear way. It organizes data in a hierarchical way. A Tree is a collection of entities
called node connected by edges. Each node contains a value or data and it can also
have a child node (or not), see Section 1.1.3 for more information about trees.

There is no standard tree data structure, because there are so many ways one could
implement it that it would be impossible to cover all bases with one solution. We
decided to implement our own. We called it TreeNode and it is a generic class where
we can decide with which data structure we want to work.

Figure 4.9: Class Diagram of the TreeNode class.

As we can see in Figure 4.9, the class is composed of all the important elements

32

Graph Generation

described before. We decided to have a node as a WorldState and the actions that
leads to new WorldStates as edges. When generating data, to have a tree, the first
node will be the root node since it doesn’t have any parent. From that we start using
the method AddChild to make references to the other nodes. At the end we just need
the root node to have the entire tree.

At this point we started generating the data to compose the tree. This has been
done with a recursive function.

Code snippet 4.3: GenerateTree method.

1 public TreeNode<WorldState> GenerateTree(int level) {
2 GenerateTreeRecoursive(_rootNode, level);
3 return _rootNode;
4 }
5

6 private TreeNode<WorldState> GenerateTreeRecoursive(TreeNode<WorldState>
currentNode, int level) {

7 if (level <= 0) {
8 return null;
9 }

10 List<Action> possibleActions = currentNode.Data.getPossibleActions();
11 foreach (Action item in possibleActions) {
12 WorldState ws = currentNode.Data.applyAction(item);
13 currentNode.AddChild(ws, new HashSet<Action>() { item });
14 }
15 if (level - 1 > 0) {
16 foreach (TreeNode<WorldState> item in currentNode.Children) {
17 GenerateTreeRecoursive(item, level - 1);
18 }
19 }
20 return currentNode;
21 }

As we can see in the code snippet 4.3, first of all we add the root node to the tree and
then we start generating the data with recursion. We generate all the possible actions
and for each of them we apply it to have the new WorldState; then we add it to the tree.
To understand better what we were doing, we decided to use the standard GraphML
and print the graph. As we discussed in Section 1.1.4, a GraphML file consists of an
XML file containing a graph element, within which is an unordered sequence of node
and edge elements. Each node element should have a distinct id attribute, and each
edge element has source and target attributes that identify the endpoints of an edge
by having the same value as the id attributes of those endpoints.

Code snippet 4.4: GenerateGraphMLTree method.

1 public void GenerateGraphMLTree() {
2 string graphml = "<?xml version=\"1.0\" encoding=\"UTF-8\"

standalone=\"no\"?> <graph id=\"G\"
edgedefault=\"directed\"><node id=\"root\"/>";

3 graphml += navigateTreeRecoursive(_root, "root");
4 graphml += "</graph></graphml>";
5 }
6 private string navigateTreeRecoursive(TreeNode<WorldState> node, string

parentId) {
7 string value = "";
8 foreach (TreeNode<WorldState> item in node.Children) {
9 string parentIdLabel = "id" + id;

10 if (parentId != "") {

33

Graph Generation

11 value += "<edge source=\"" + parentId + "\" target=\"" +
parentIdLabel + "\"/>";

12 }
13 id++;
14 if (!ids.Contains(parentIdLabel)) {
15 value += "<node id=\"" + parentIdLabel + "\"/>";
16 ids.Add(parentIdLabel);
17 }
18 value += navigateTreeRecoursive(item, parentIdLabel);
19 }
20 return value; }

After the tree was generated we started to analyze the result to understand our
problem better. In Figure 4.10 we can see an example of the tree.

Figure 4.10: Example of a generated tree printed in graphML, opened with yEd.

When deeply analyzing the resulting trees, one big problem came out: since we
weren’t looking for repeated states, in the tree that we were generating there were a
large amount of duplicated states. For a normal decision tree it wasn’t a problem,
but considering we are working on a story based problem, if we find a repeated state
we cannot just delete it and continue the process but we need to make a connection
between the two states.

Figure 4.11: Example of a tree with and without revisiting states.

In Figure 4.11 we can see a couple of examples of what can happen when checking
for revisited states. In both the examples, on the left side, we assume that the orange
nodes are the same states. If we check for duplicates the result is the right side of the
image. The outcome cannot be considered anymore as a tree but as a directed graph,
so the TreeNode described before is no more valid and we have to design another data

34

Graph Generation

structure.

4.2.2 Graph Data Structure

For the reasons described before we decided to introduce a new group of classes that
allows us to generate and print a directed graph. There are two major ways to represent
a finite directed graph:

• adjacency list: it is a collection of unordered lists used to represent a finite
graph. Each list describes a set of connected nodes of a vertex.

• adjacency matrix: it is a square matrix used to represent a finite graph. Each
element of the matrix indicate whether pairs of vertices are adjacent or not.

In our case we decided to use an adjacency list because we are using HashSets that
are effectively unordered lists. Since we are also checking for revisited states, this data
structure doesn’t allow data repetition and this is another check we don’t need to do.

Figure 4.12: Class Diagram of the Node class.

Since a graph is fundamentally a list of nodes, the first thing to do is to introduce
the Node’s class (Figure 4.12). It is composed of four parameters:

• Data: it is the data contained inside the node. In this case it is a WorldState
since, as for the tree class, we decided to use each node as a WorldState and each
edge as the action that allows the transition between states.

• Level: it is a number to represent in which level of the generation the node was
first generated.

• Edges: it is the representation of the adjacency list, made with an HashSet of
WordState. As we said before, this represent all the neighbors’ nodes of the node
data.

• Actions: it is a dictionary with key the WorldState representing the neighbor
node and value the action that was applied to get the key node.

The node class was the fundamental step to introduce the graph class. We can see
in Figure 4.13, that we decided to use a HashSet of Nodes to represent the graph.
There are other parameters that are not shown in the picture, but they are private and
strictly connected to specific functions. We can also see that in this class there is a
large number of methods. Most of them are used just for the abstraction part, so I’m
going to discuss them in Section 4.3.

35

Graph Generation

Figure 4.13: Class Diagram of the Graph class.

4.2.3 Graph Data Generation

Now that we have the data structure in mind we can start talking about the generation
of the data for the graph. To generate each possible WorldState based on the possible
Actions, we made a new class called GraphDataGenerator. This class is very simple
and we are going to discuss one important method.

Code snippet 4.5: GenerateDataRoutine method.

1 private void GenerateDataRoutine(WorldState currentState, int level) {
2 List<Action> possibleActions = currentState.getPossibleActions();
3 Dictionary<ActionParameter, List<Action>> actionsForEachActor =

Utils.explodeActionList(possibleActions);
4 foreach (var item in actionsForEachActor) {
5 if (!(actionParameterDone.Contains(item.Key.Type))) {
6 allPossibleActions.AddRange(item.Value);
7 actionParameterDone.Add(item.Key.Type);
8 }
9 }

10 foreach (Action item in allPossibleActions)
11 {
12 if (!item.IgnoreOnAbtraction) {
13 WorldState ws = currentState.applyAction(item);
14 _graph.addEdge(currentState, ws, item, level);
15 if (!_visitedStates.Contains(ws)) {
16 _visitedStates.Add(ws.Clone());
17 if (level > numberOfLevels)
18 _finalStates.Add(ws.Clone());
19 else
20 GenerateDataRoutine(ws, level + 1);
21 }
22 else {
23 if (level > numberOfLevels)
24 _finalStates.Add(ws.Clone());
25 }
26 }
27 }
28 }

36

Graph Generation

GenerateDataRoutine is a recursive method that generates the data for the graph to
make evaluation for the abstraction. As we can see in the code snippet 4.5, it starts by
generating, from the state passed as parameter, all the possible actions. Since we want
to get one possible action for each different entity that can perform an action, we use
the function explodeActionList. At this point, for each possible action we check if we
need to ignore during abstraction; if we don’t we apply the action to the current state.
The resulting state is checked to see if it was already generated and we add the node
and the edges to the graph. Since we limited how deeply the graph needs to generate,
we check how many rounds of generation we did to stop when necessary.

Once we have the graph data generated, we can start the process of printing the
results. As for the Tree part, we use GraphML to generate the code that is able to be
visualized. This method has some customization that can be made: you can choose to
print the graph with all the data of each action and WorldState or just with nodes and
edges. Each state is colored with a random different color.

Code snippet 4.6: GenerateGraphML method.

1 public void GenerateGraphML(bool lite = false, string fileName = "") {
2 string graphml = "<?xml version=\"1.0\" encoding=\"UTF-8\"

standalone=\"no\"?>";
3 [...]
4 graphml += " <graph id=\"G\" edgedefault=\"directed\">\n";
5 foreach (WorldState item in _graph.getAllNodeData()) {
6 string nodeName = "n" + id;
7 _nodes.Add(item, nodeName);
8 graphml += "<node id=\"" + nodeName + "\">\n";
9 if (!lite) {

10 graphml += "\t<data key=\"d4\"
xml:space=\"preserve\"><![CDATA[" + item.ToString() +
"]]></data>\n"; }

11 [...]
12 }
13 foreach (KeyValuePair<WorldState, HashSet<WorldState>> item in

_graph.getAllEdges()) {
14 if (_nodes.TryGetValue(item.Key, out source)) {
15 foreach (WorldState ws in item.Value) {
16 if (_nodes.TryGetValue(ws, out destination)) {
17 graphml += "<edge source=\"" + source + "\"

target=\"" + destination + "\">\n";
18 if (!lite) {
19 ru.cadia.pddlFramework.Action ac =

_graph.getActionFromSourceAndDestination(
item.Key, ws);

20 if (ac != null) {
21 graphml += "<data key=\"d8\"

xml:space=\"preserve\"><![CDATA[" +
ac.ToString() + "]]></data>\n";

22 [...] } }
23 graphml += "</edge>\n";
24 [...]
25 }
26 graphml += "</graph>\n</graphml>";
27 new FileWriter().SaveFile(fileName, graphml);
28 }

In the code snippet 4.6, there are the most important pieces of code of the method
GenerateGraphML. I replaced the remaining parts with [...]. As we can see essentially

37

Abstraction

the graphML is a string composed by XML components. Since the order is not impor-
tant, we started by generating the source for each node. If the the light graph option
is not enabled, inside the node we add the data of the world state. When all the nodes
are done, we start with the edges to connect them. Also in this case, if the light graph
option is not enabled, in each edge we add an action description. When the graph is
completed we save it to a persistent folder in a “*.graphml” file. To visualize the graph,
we can open it with yEd. One result is show in Figure 4.14.

Figure 4.14: Graphical representation of a directed graph generated with our methods
and visualized with yEd.

4.3 Abstraction

Once we have the graph printed we can start reasoning over it in order to have some
ideas for the abstraction. The initial step is to make an analysis of what the graph is
composed of. After this was done another step to do is to start searching for cliques as
described in the section 3.1.

4.3.1 Graph Analysis

The first step to start the graph analysis is to compare world states. We choose to make
a comparison between the initial state and all the final states, assuming we set a desired
tree depth during the graph generation step. This allows us to check what is changing
over the time to make evaluations on the importance of each relation/predicate and
as a consequence, actions. In the code snippet 4.5 we can see that each time we stop
generating because we went deeply enough, we save those states in a variable that is
useful for take trace of the final states.

When we launch the command CompareWorldState() from the GraphDataGenerator
class we start to loop each final state and to compare it with the initial state thanks to
the function described in the code snippet 4.7.

Code snippet 4.7: CompareStates method.

1 public void CompareStates() {
2 [...]
3 foreach (IRelation item in _previusState.Relations) {
4 if (_currentState.Relations.Contains(item))
5 _sameRelations.Add(item);
6 else
7 _differentRelations.Add(item);
8 }
9 foreach (IRelation item in _currentState.Relations) {

10 if (_previusState.Relations.Contains(item))
11 _sameRelations.Add(item);
12 else

38

Abstraction

13 _differentRelations.Add(item);
14 }
15 }

After some preliminary checks, we start looping over each relation that is stored inside
each world state and we check if each of them is contained in the other world state. If
the answer is positive we add the relation into the sameRelations variable, otherwise we
add it in differentRelations variable. This first step allows us to track what is changing
over time.

To have a better understanding of which relations are changing or not, we have to
compare all the elements we made in the first step.

Code snippet 4.8: Compare method.

1 public void Compare() {
2 foreach (WorldStateComparated item in _worldStateComparated) {
3 foreach (WorldStateComparated wsc in _worldStateComparated) {
4 if (!(_listCoupleDone.Contains(kvp) ||

_listCoupleDone.Contains(kvpr))) {
5 if (!item.Equals(wsc)) {
6 _allCommonRelations.Add(CompareRelations(item, wsc));
7 _listCoupleDone.Add(kvp);
8 }
9 } } }

10 [...]
11 foreach (CommonRelation item in _allCommonRelations) {
12 foreach (IRelation rel in item.CommonRelations) {
13 _countPredicatesOnWorldSate[rel.Predicate]++;
14 }
15 }
16 [...]
17 foreach (Action item in _currentDomain.Actions) {
18 foreach (IRelation ip in item.PreConditions) {
19 _countPredicatesOnActionsPreConditions[ip.Predicate]++;
20 }
21 foreach (IRelation ip in item.PostConditions) {
22 _countPredicatesOnActionsPostConditions[ip.Predicate]++;
23 }
24 }
25 [...]
26 }

The method described in the code snippet 4.8 has tree main features:

• The first piece of code compares each WorldStateComparated4 to find on all the
relations that are in common. It is done by looping between each comparison
and adding all the common relations into a variable of type CommonRelations5

stored in the class.

• The second piece of code counts every occurrence of each predicate between the
common relations stored in each object of the class CommonRelations. It does
a double loop to count every occurrence of each Predicate inside the common
relations.

4A WorldStateComparated is the class where the method described in the code snippet 4.7 belongs.
It has as parameters the two states compared and all the same or different relations.

5A CommonRelations is the class composed by the two WorldStateComparated that we compared
and all the common relations between them.

39

Abstraction

• The third piece of code analyzes the actions of the domain to check the occurrence
of each predicate.

4.3.2 Graph Abstraction

Once we have the graph printed and the analysis done, we can start thinking of a way
to make the abstraction. The initial idea was, as described in Section 3.1, to search
for cliques in the graph. A clique is a subset of vertices of a directed graph such that
every two distinct vertices in the clique are adjacent and strongly connected. A directed
graph is strongly connected if there is a path between all pairs of vertices. In Figure

Figure 4.15: Graphical representation of a clique on a directed graph.

4.15, we can see an example of a clique on a directed graph. Before starting to write
code for searching cliques, we made a visual analysis of the printed graph. We saw that
in a graph with depth 5, the chance to get a full clique was very low or maybe there
wasn’t any. For this reason, and also because time was passing really fast, we had to
find a solution on how to abstract the graph in another way. The idea of Bulitko et al.
was still useful, but in a new way.

Figure 4.16: Graphical representation of the sub-graph we are searching inside a di-
rected graph.

Instead of cliques, we considered possible sub-graphs that are common in our graph,
such that if we group the states during abstraction, the refinement process can be done
easily. We must also not lose sight of the fact that we are talking of a story based
problem. So, we came up with the sub-graph colored in red color in Figure 4.16. It has
four fundamental characteristics:

1. It has at maximum two nodes connected outside the sub-graph.

2. The first node has only incoming edges from the outside of the sub-graph.

40

Abstraction

3. The nodes inside the sub-graph have edges connected only with nodes in the
sub-graph.

4. The last node has outgoing edges to the outside of the sub-graph.

Figure 4.17: Graphical representation of some of the variations the sub-graph can have.

In Figure 4.17, in red we can see some of the variations that the sub-graph can have.
In each of the examples in the image, all the rules described before are satisfied. This
allows us to consider more possible sub-graphs and have more possible abstractions to
do.

Figure 4.18: Graphical representation of the idea of abstraction we have implemented.

We can see in Figure 4.18, how we can make the actual abstraction from the sub-
graph. If we decide to abstract the states A, B and C, we need to take all the pre-
conditions and post-conditions from each action and make a union between them. The
new action will be an action named as a concatenation of each name of the actions.

41

Abstraction

We searched for the sub-graph on the actual graph. Consider again the class diagram
of the class Graph in Figure 4.13. As I said when describing the class, most of the
methods in this class are used to make abstractions and for searching for sub-graphs in
the graph. The first thing was to develop a BFS6 to be able to evaluate every node of
the graph.

At this point I’m going to describe the most important methods, to have an overall
understanding of what we are doing to perform the search and the abstraction of the
sub-graph. While describing each method I also describe the flow of the search.

4.3.2.1 BFS method

The first method I need to describe is the BFS method. It is responsible for traversing
the graph to find every possible sub-graph that matches the conditions. From here the
search of sub-graphs starts.

Code snippet 4.9: BFS method.

1 public WorldState BFS(System.Func<WorldState, double> evaluateNode,
double desiredAccuracy = 1, double cutoff = Mathf.Infinity) {

2 HashSet<WorldState> visitedNodes = new HashSet<WorldState>();
3 Queue<WorldState> queue = new Queue<WorldState>();
4 visitedNodes.Add(_startingState);
5 queue.Enqueue(_startingState);
6 while (queue.Count != 0)
7 {
8 WorldState node = queue.Dequeue();
9 double nodeAccuracy = evaluateNode(node);

10 HashSet<WorldState> connectedNodes = GetEdgesByData(node);
11 if (connectedNodes != null) {
12 foreach (WorldState item in connectedNodes) {
13 if (!visitedNodes.Contains(item)) {
14 visitedNodes.Add(item);
15 queue.Enqueue(item);
16 } } } }
17 return null;
18 }

On the code snippet 4.9 we can see an implementation of the BFS standard algorithm.
The only peculiarity is that the evaluation function is passed as a parameter, so this
method can be applied with different implementations of sub-graph searching. Since we
want to search if each node can be the starting state of a sub-graph, we implemented
the function to search inside the EvaluateNode method.

4.3.2.2 EvaluateNode method

The EvaluateNode function is called every time the BFS finds a node while traversing
the graph. Its job is to call the FindSubGraph method and process with the result to
add all the new actions to the abstract domain.

Code snippet 4.10: EvaluateNode method.

1 public double EvaluateNode(WorldState worldState) {

6Breadth-first search (BFS) is an algorithm for traversing or searching tree or graph data structures.
It starts at the tree root or some arbitrary node of a graph, and explores all of the neighbor nodes at
the present depth prior to moving on to the nodes at the next depth level.

42

Abstraction

2 Graph g = findSubgraph(worldState);
3 if (g != null) {
4 string name = g.getSuperActionNameFromSubgraph();
5 if (!allSuperActionName.Contains(name)) {
6 allSuperActionName.Add(name);
7 Action action = g.getSuperActionFromSubgraph();
8 if (!_abstractState.Domain.Actions.Contains(action)) {
9 _abstractState.Domain.addAction(action);

10 }[...]}

We can see in the code snippet 4.10 that after calling the FindSubGraph (Section
4.3.2.3), if it finds a sug-graph from the WorldState it starts the process to make a
new action to add into the domain. It generates the name that is just a concatenation
of the names of each action that is on the edges of the sub-graph. If the action is
not already generated we generate it with the getSuperActionFromSubgraph (Section
4.3.2.4) method and we add it to the abstract domain.

4.3.2.3 FindSubgraph method

The FindSubgraph method is used to find the sub-graph described before, starting from
a WorldState that is a node of the initial graph.

Code snippet 4.11: FindSubgraph method.

1 public Graph findSubgraph(WorldState worldState) {
2 int level = GetLevelByData(worldState);
3 if (level > 0) {
4 if (ContainsLevel(level + 2)) {
5 connectedNodes = GetEdgesByData(worldState);
6 if (connectedNodes != null) {
7 foreach (WorldState ws in connectedNodes) {
8 if (GetLevelByData(ws) == level + 1) {
9 HashSet<WorldState> connectedNodesLevel2 =

GetEdgesByData(ws);
10 if (connectedNodesLevel2 != null) {
11 foreach (WorldState item in

connectedNodesLevel2) {
12 if (GetLevelByData(item) == level + 2) {
13 if (!nodesLevel2.Contains(item))
14 nodesLevel2.Add(item);
15 else
16 nodesLevel2Repeated.Add(item);
17 } } } } }
18 if (nodesLevel2Repeated.Count > 0) {
19 foreach (WorldState item in nodesLevel2Repeated) {
20 foreach (WorldState ws in connectedNodes) {
21 Node n = GetNodeByData(ws);
22 if (n.Edges.Contains(item))
23 hs.Add(n);
24 }
25 if (hs.Count == 2) {
26 Graph subGraph = new Graph();
27 subGraph.AddNode(worldState, 1);
28 foreach (Node ws in hs) {
29 subGraph.addEdge(worldState, ws.Data,

getActionFromSourceAndDestination(
worldState, ws.Data), 2);

30 subGraph.addEdge(ws.Data, item,
getActionFromSourceAndDestination(

43

Abstraction

ws.Data, item), 3);
31 }
32 return subGraph;
33 } } } } } } }

We can see in the code snippet 4.11 that the function starts by asking for the level
of the node given as parameter and it does some verification to avoid making useless
evaluations. It checks if there is a level+2 in the graph and if the answer is true it
gets all the connected nodes of the starting state. If there are connected nodes it loops
between them to find nodes of level+1. When it finds one it gets all the connected
nodes from this worldstate and it start cycling between them. It checks if there are any
node level+2 and if the answer is true and it is the first time it finds that node it saves
in a variable, whereas if it was already found it saves it in another variable. At the end
of all the loops, it starts cycling between all the repeated nodes and all the connected
nodes of the starting state to store in a variable all the nodes of the sub-graph. At the
end of the execution of this function we have an object of the class Graph with the
sub-graph inside.

4.3.2.4 GetSuperActionFromSubgraph method

Once we found the sub-graph with the FindSubGraph (Section 4.3.2.3) method, the
GetSuperActionFromSubgraph function allows to create the super-action from the sub-
graph. To generate the new Action it needs to create a composition of all the parameter,
pre-conditions and post-conditions of the action that are part of the sub-graph (Figure
4.18).

Code snippet 4.12: GetSuperActionFromSubgraph method.

1 public Action getSuperActionFromSubgraph() {
2 foreach (var item in getAllActions()) {
3 if (preCondition.Count == 0) {
4 preCondition.UnionWith(item.PreConditions);
5 postCondition.UnionWith(item.PostConditions);
6 actionParameter.UnionWith(item.Parameters);
7 }
8 else {
9 HashSet<ActionParameter> tobeAdded = checkParameters(item,

actionParameter);
10 if (duplicated.Count == 0) {
11 preCondition.UnionWith(item.PreConditions);
12 postCondition.UnionWith(item.PostConditions);
13 actionParameter.UnionWith(item.Parameters);
14 }
15 else {
16 preCondition = checkConditions(preCondition, tobeAdded,

actionParameter);
17 postCondition = checkConditions(postCondition,

tobeAdded, actionParameter);
18 actionParameter.UnionWith(tobeAdded);
19 } } }
20 return new Action(preCondition, getSuperActionNameFromSubgraph(),

actionParameter, postCondition);
21 }

This can be done with code snippet 4.12. The problem in this case is that we cannot
make a simple union between all the pre/post-conditions, but we have to evaluate

44

Abstraction

each of them to avoid duplicates, repeated parameters and predicates. To avoid this
repetition, we used the function checkParameters to check if the parameters lead to a
conflict. Once the parameters are checked, we call the checkConditions function. This
method makes some substitution of entities if is necessary and is able to make the union
of the various relations.

These methods are going to be evaluated in Section 5.4 with also an example.

45

5. Evaluation

In Chapter 2, the Problem Formulation, the criteria for success were stated. In this
chapter, I’m going to describe each result obtained testing the Proposed Approach
(Chapter 4). We will understand if the work done lives up to expectations or not.

5.1 Setup

I performed experiments on a MacBook Pro 15-inch 2017 running macOS Mojave ver-
sion 10.14 as operating system, with a processor Intel Core i7-7820HQ @ 2.9GHz, 16
GB of 2133 MHz DDR3 of Ram, 500 GB of NVI-SSD and Radeon Pro 560 (4 GB)
graphics card. To run the tests, I used Unity 2018.2.6f1 with the latest version of my
project.

5.2 Evaluation of the PDDL Framework

Evaluating the PDDL framework is difficult. One measurement procedure is to find a
story that has been written in PDDL, translate it with the language that our framework
is using and check if the two things are similar. As we know, the stories that are PDDL
are composed of the domain part and the problem part. For simplifying this example
we are taking only a small domain and a small initial state. We take a reduced part
of the domain and the problem description that are in the appendix A.1. First I show
the PDDL version and then the version written with our framework.

Code snippet 5.1: PDDL domain and problem written with the PDDL language.

1 (define (domain rover-domain)
2 (:predicates
3 (at ?rover ?waypoint)
4 (waypoint ?waypoint)
5 (rover ?rover)
6)
7 (:action move
8 :parameters
9 (?rover

10 ?from-waypoint
11 ?to-waypoint)
12 :precondition
13 (and
14 (rover ?rover)
15 (waypoint ?from-waypoint)
16 (waypoint ?to-waypoint)
17 (at ?rover ?from-waypoint)
18 :effect
19 (and

Evaluation of the PDDL Framework

20 (at ?rover ?to-waypoint)
21 (not (at ?rover ?from-waypoint)))
22)
23)
24

25 (define (problem rover-1)
26 (:domain
27 rover-domain
28)
29 (:objects
30 waypoint1 waypoint2
31 rover1
32)
33 (:init
34 (waypoint waypoint1) (waypoint waypoint2)
35 (rover rover1)
36 (at rover1 waypoint1)
37)
38)

In the code snippet 5.1 we have a little domain and problem description. The domain
is composed of:

• three predicates: ?rover and ?waypoint that are for checking if the parameter is
of the right type and at ?rover ?waypoint that is for saying that a rover is at a
waypoint.

• the definition of the action move that takes three parameters: ?rover, ?from-
waypoint and ?to-waypoint. It has four preconditions: rover ?rover to check
if the parameter is a rover, waypoint ?from-waypoint & waypoint ?to-waypoint
to check if the two waypoints are waypoints and at ?rover ?from-waypoint to
check if the rover is at the starting position. It has also two post-conditions: at
?rover ?to-waypoint to say that the rover is on the new position and not at ?rover
?from-waypoint to delete the previous position.

Then, at the end we have the problem description where there is:

• the declaration of three objects: waypoint1, waypoint2 and rover1 ;

• the initialization of the objects: waypoint waypoint1, waypoint waypoint2 and
rover rover1 and the predicate at rover1 waypoint1.

Code snippet 5.2: PDDL domain and problem example written with our framework.

1 //Domain
2 Domain domain = new Domain();
3 EntityType rover = new EntityType("ROVER");
4 domain.addEntityType(rover);
5 EntityType wayPoint = new EntityType("WAYPOINT");
6 domain.addEntityType(wayPoint);
7 BinaryPredicate at = new BinaryPredicate(rover, "AT", wayPoint, "is at");
8 domain.addPredicate(at);
9 Entity curiosity = new Entity(rover, "ROVER");

10 Entity fromWayPoint = new Entity(wayPoint, "WAYPOINT1");
11 Entity toWayPoint = new Entity(wayPoint, "WAYPOINT2");
12 //Parameters
13 HashSet<ActionParameter> moveActionParameters = new

HashSet<ActionParameter>();

48

Evaluation of the PDDL Framework

14 moveActionParameters.Add(new ActionParameter(curiosity,
ActionParameterRole.ACTIVE));

15 moveActionParameters.Add(new ActionParameter(fromWayPoint,
ActionParameterRole.PASSIVE));

16 moveActionParameters.Add(new ActionParameter(toWayPoint,
ActionParameterRole.PASSIVE));

17 // Preconditions
18 HashSet<IRelation> moveActionPreconditions = new HashSet<IRelation>();
19 BinaryRelation roverAtfromWP = new BinaryRelation(curiosity, at,

fromWayPoint, RelationValue.TRUE);
20 moveActionPreconditions.Add(roverAtfromWP);
21 // Postconditions
22 HashSet<IRelation> moveActionPostconditions = new HashSet<IRelation>();
23 BinaryRelation notRoverAtFromWP = new BinaryRelation(curiosity, at,

fromWayPoint, RelationValue.FALSE);
24 moveActionPostconditions.Add(notRoverAtFromWP);
25 BinaryRelation roverAtToWP = new BinaryRelation(curiosity, at,

toWayPoint, RelationValue.TRUE);
26 moveActionPostconditions.Add(roverAtToWP);
27 Action moveAction = new Action(moveActionPreconditions, "MOVE",

moveActionParameters, moveActionPostconditions);
28 domain.addAction(moveAction);
29 //Initial State
30 WorldState worldState = new WorldState(domain);
31 Entity rover1 = new Entity(new EntityType("ROVER"), "ROVER1");
32 worldState.addEntity(rover1);
33 Entity wayPoint1 = new Entity(new EntityType("WAYPOINT"), "WAYPOINT1");
34 worldState.addEntity(wayPoint1);
35 Entity wayPoint2 = new Entity(new EntityType("WAYPOINT"), "WAYPOINT2");
36 worldState.addEntity(wayPoint2);
37 BinaryRelation rover1IsAt1 =

domain.generateRelationFromPredicateName("AT", rover1, wayPoint1,
RelationValue.TRUE);

38 worldState.addRelation(rover1IsAt1);

In the code snippet 5.2 we can see the PDDL code described in the previous paragraph
translated in C# with the framework developed by us. All the classes of the framework
are described in Section 4.1. The code starts with creating a new object of class Domain
where all the entity types, predicates and actions need to be added. At this point, we
create and add to the domain: two new EntityTypes (one for the rover and one for the
waypoints) and a BinaryPredicate for the action AT. The next step is to create the
action move. We start making three new Entities: (one for the rover and two for the
waypoints) and we add them to a hash-set of ActionParamenters that will be used as
a list of parameters of the action. Now, we create all the relations that are described
as preconditions and post-conditions and we add them to their respective hash-sets.
Then, we create a new object of class Action with all the sets described before and we
add this object to the domain to complete it. For the initial state, it is kind of the
same process, but in this case it is to describe real objects in the story, not just how
they behave. We start creating a new object of the class WorldState and we add to
it three new Entities: one for the rover and two for the waypoints. Then, we add to
the world-state a new BinaryRelation that says that the rover is at one waypoint, as
described in the PDDL specification.

If we test both the cases described above we will find that there is a rover that can
move from waypoint1 to waypoint2 and vice versa. This was a very simple example but
allows us to understand how powerful this language is and that it is good for modelling

49

Evaluation of the Graph Generation

stories.

5.3 Evaluation of the Graph Generation

To evaluate if a graph is well generated we need to take a story, write it with our PDDL
framework, calculate the average branching factor 1 and from this calculate the size of
the state space 2 to check if the number of nodes of the graph is similar to the number
calculated. In general, we use these numbers when we are talking about search tree
in AI but, in this case, the graph is not a tree. For this reason, the size of the state
space column in the following tables needs to be used just as a reference. To make
these measurements, we used the domain and the worldstate listed in appendices A.3
and A.4.

Depth Nodes generated Edges generated Data generation time(s) Graph generation time(s) State space Size

2 7 6 0.035 0.031 16

3 40 48 0.0287 0.451 64

4 175 271 4.185 7.893 256

5 668 1202 59.005 126.132 1024

6 1904 3577 486.266 1018.646 4096

Table 5.1: Data of the full graph generation process.

In Table 5.1, we can see the data referenced to the generation of the graph with
all the elements described in the domain and the world state. If we look at appendix
A.4, we can see that there is the initialization of two elements of type ROVER and
this ActionParameter has role ACTIVE. It means that each action with this type can
be applied to both the objects and theoretically there is a larger number of possible
states. To calculate the size of the state space, I took 4 as branching factor and the
first column as the depth of the graph. To see if this number can be right, we should
make comparisons with the edges data since if we find a repeated state, the edge is
added to the graph. Other important data to evaluate are the nodes generated and
edges generated. We can notice that as the level of generation increases, the number of
nodes and edges grows at an exponential rate. A consequence is that the time used to
generate all the data that are necessary to make the graph increases at an exponential
rate.

In Figure 5.1, we can see the four graphs generated while I was doing the measure-
ments for the table listed above. All of them are visualized with yEd. The first graph
(Figure 5.1a), as we can see from the data, is made from two levels of generation and is
composed of seven states and six edges. The second graph (Figure 5.1b), is made from
three levels of generation and is composed of 40 nodes and 48 edges. Even from this
graph, we start seeing repeated states. In fact, we can notice that different “groups”
of states are connected. From the third and the fourth graph (Figure 5.1c and 5.1d),

1In computing, tree data structures, and game theory, the branching factor is the number of children
at each node, the out-degree. If this value is not uniform, an average branching factor can be calculated.
For example, in chess, if a ”node” is considered to be a legal position, the average branching factor
has been said to be about 35. This means that, on average, a player has about 35 legal moves at their
disposal at each turn[7].

2In theoretical computer science, the typical measure is the size of the state space graph, V + E,
where V is the set of vertices (nodes) of the graph and E is the set of edges (links). In AI, the graph is
often represented implicitly by the initial state, actions, and transition model and is frequently infinite.
For these reasons, complexity is expressed in terms of two quantities: b, the branching factor; d, the
depth of the shallowest goal node space as bd [19].

50

Evaluation of the Graph Generation

the analysis starts to become difficult. The third graph has 175 nodes and 271 edges
and the fourth graph has 668 nodes and 1202 edges.

(a) Two level graph. (b) Three level graph.

(c) Four level graph. (d) Five level graph.

Figure 5.1: Graphical representation of various level of graphs.

In Table 5.2, we can see the data referenced to the generation of the graph but
with a simplification. This can be done because, in some cases, we assume that each
entity type with role ACTIVE behaves in the same way. This simplification allows the

Depth Nodes generated Edges generated Time data generation Time graph generation Size state space

2 4 3 0.027 0.014 6

3 15 16 0.086 0.066 16

4 49 56 0.404 0.384 39

5 138 179 2.215 2.693 98

6 196 280 4.561 5.946 244

7 350 545 14.051 21.303 610

8 575 922 38.387 65.622 1526

Table 5.2: Data of the graph generation with the restriction of only one active parameter
for EntityType.

reduction of complexity and with the amount of time we use with the original method
to generate five levels of depth, we can generate a graph with eight levels of depth.
If the generation of the graph is deeper, during the abstraction we can have a better
search for the sub-graphs and ideally more cases found. This process cannot be applied
to every story because it can happen that two entities with the same entity type can
be located in different places that are not connected, and one action can be applied
only in one place. That is the reason why we let the developer chose when to use this

51

Evaluation of the Graph Generation

process or not.

(a) Two level graph. (b) Three level graph.

(c) Four level graph. (d) Five level graph.

(e) Six level graph. (f) Seven level graph.

Figure 5.2: Graphical representation of various level of graphs with the simplification.

In Figure 5.2, there is the graphical representation of the graph generated with the
simplified process while I was doing the measurements for the table listed above. All
of them are visualized with yEd. If we compare the images from Figure 5.1 and 5.2 we
can easily see that the generation without simplification generate a larger amount of
states.

If consider the data listed in the tables and the figures, we can understand that we
achieved the objective stated during the problem formulation (Section 2). We also used
the criteria for success (Section 2.1) to evaluate our approach and we can claim that
our approach to represent the sequence of the events does what it was made for.

52

Evaluation of the Abstraction Process

5.4 Evaluation of the Abstraction Process

To evaluate the abstraction process we need to take a story, write it with our PDDL
framework, let the system abstract it and evaluate the result. To do this and un-
derstand how the abstraction process has been done, we will go step by step during
the abstraction. To do this process, we use the domain and the initial state listed in
appendix A.3, A.4 and we let the system examine a depth five graph with the sim-
plification of one active entity for each entity type. The first step is to generate the
graph.

Once the generation has been done, we follow the process described in Section 4.3.2.
As a result, we have a new domain with two abstract actions:

• MOVETAKE IMAGE : It is an abstract action that is the concatenation of two
actions: MOVE and TAKE IMAGE. To have a better understanding of what the
actions are composed of, here is a summary of the contents of each action and
how the resulting action is composed:

– MOVE(ROVER ,WAYPOINT1 ,WAYPOINT2)
PRECONDITIONS :
ROVER AT WAYPOINT1: TRUE
WAYPOINT1 IS CONNECTED TO WAYPOINT2: TRUE
POSTCONDITIONS :
ROVER AT WAYPOINT1: FALSE
ROVER AT WAYPOINT2: TRUE
ROVER BEEN AT WAYPOINT2: TRUE

– TAKE IMAGE(ROVER ,OBJECTIVE ,WAYPOINT)
PRECONDITIONS :
ROVER AT WAYPOINT: TRUE
OBJECTIVE IS VISIBLE WAYPOINT: TRUE
POSTCONDITIONS :
OBJECTIVE TAKEN IMAGE : TRUE

The resulting action (from the actions described above) is a union of all the
pre-conditions and post-conditions of the actions move and take image:

– MOVETAKE IMAGE(ROVER, WAYPOINT1, WAYPOINT2, OBJEC-
TIVE)
PRECONDITIONS :
ROVER AT WAYPOINT1: TRUE
WAYPOINT1 IS CONNECTED TO WAYPOINT2: TRUE
OBJECTIVE IS VISIBLE WAYPOINT1: TRUE
POSTCONDITIONS :
ROVER AT WAYPOINT1: FALSE
ROVER AT WAYPOINT2: TRUE
ROVER BEEN AT WAYPOINT1: TRUE
OBJECTIVE TAKEN IMAGE : TRUE

There is an important process the program performs but which might pass unseen.
We can see that the action move has two waypoints while the take image action

53

Evaluation of the Abstraction Process

only one. When the super-action is created, there is a process that assign an
entity of the detailed action to an entity of the super-action.

• TAKE SAMPLETAKE IMAGE : it is an abstract action that is the concatenation
of two actions: TAKE SAMPLE and TAKE IMAGE. As for the previous action,
I insert the description of each action involved. For take image we can see the
description in the previous paragraph.

– TAKE SAMPLE(ROVER ,SAMPLE ,WAYPOINT)
PRECONDITIONS :
SAMPLE IS IN WAYPOINT: TRUE
ROVER AT WAYPOINT: TRUE
ROVER IS EMPTY : TRUE
POSTCONDITIONS :
SAMPLE IS IN WAYPOINT: FALSE
ROVER IS EMPTY : FALSE
ROVER CARRY SAMPLE: TRUE

The resulting action of the actions described above is a union of all the pre-
conditions and post-conditions of the actions take sample and take image:

– TAKE SAMPLETAKE IMAGE(ROVER ,SAMPLE ,WAYPOINT ,OB-
JECTIVE)
PRECONDITION :
SAMPLE IS IN WAYPOINT: TRUE
ROVER AT WAYPOINT: TRUE
ROVER IS EMPTY : TRUE
OBJECTIVE IS VISIBLE WAYPOINT: TRUE
POSTCONDITION :
SAMPLE IS IN WAYPOINT: FALSE
ROVER IS EMPTY : FALSE
ROVER CARRY SAMPLE: TRUE
OBJECTIVE TAKEN IMAGE : TRUE

To evaluate if the abstraction makes any advantages during the generation of the
sequence of the events, we take the data described in Table 5.2 and we use the abstract
domain to generate the sequence of the events with the same depths. In Table 5.3, we

Depth Nodes Edges Abstraction time Nodes A.D. Edges A.D.

2 4 3 0.003 4 3

3 15 16 0.03 15 16

4 49 56 0.22 49 56

5 138 179 1.62 131 165

6 196 280 3.395 187 267

7 350 545 12.585 328 508

8 575 922 39.413 533 864

Table 5.3: Summary of the graph generation data with and without abstract domain.
A.D. = Abstract Domain.

54

Evaluation of the Abstraction Process

have the time the search is using to generate the abstract domain and the numbers
of nodes and edge generated with the abstract domain. We can see that from depth
5 the search is able to find abstract actions and the number of nodes and edges start
to decrease. Looking to these data, we can see that the abstraction doesn’t make a
consistent reduction to the number of states and edges. But we have to think that
every time the abstract action is applied, the sequence of events increases the depth of
two levels in that part of the graph.

In Section 2.1, we said that to see if the abstraction is well made we need to execute
an action from the abstract domain and apply it to a state and find the obtained state in
the sequence line of the events of the initial story. With the abstraction method we are
using, this is guaranteed because we are taking each pre-condition and post-condition
from each action that composes the abstract action.

55

6. Discussion

In this chapter I am going to discuss the benefits and the drawbacks that the work of
my thesis has. At the end I am also going to discuss the future work that can be done
to improve my work.

6.1 Benefits

With the work done with this thesis, we let developers have a framework in Unity to
work with stories. We introduced the PDDL framework to the Unity world. Until now,
there wasn’t any similar plug-in able to handle a PDDL story. This opens a completely
new aspect of making a video-game, because if you implement the story with this
framework and you gradually maintain with the course of events, at any point of the
game you have the situation of the story under control.

We also added the possibility to generate the sequence of the events of a PDDL story.
This is useful for the developer because they can see if the story has some possible
loops or if it is too static by analyzing the sequence of the events that are generated,
since it generates every possible event that can happen from a starting state. This is
important because you can model the story in a more entertaining way and let avoid
player boredom.

The abstraction part gives some benefits of performance when using the abstract
domain because, as we saw in Section 5.4, the number of nodes and edges is decreased
compared to the normal domain. Another important advantage is that every time we
apply an abstract action, the story will progress two levels of depth in that part of the
graph of the events.

Overall, this project gives the basis and the basic components to work more on this
problem. With the PDDL framework now we are able to model stories on Unity, with
the generation of the events we are able to see what can happen in the story and its
changing. Last but not least, now there are the basics of abstraction of a story based
problem.

6.2 Drawbacks

A possible drawback when deciding to use the PDDL framework is the amount of work
that the author of the story needs to do. In fact, the author needs to schematize every
possible object, predicate and action that can affect the story. He/She also needs to
make categories for each object and think of the pre-conditions and post-conditions
that every action needs.

Another possible drawback is the amount of time that it takes to generate a large

Future Work

number of levels in complex story. As we saw in Section 5.3, for a story with two active
parameters the framework needs 15 minutes to generate a six level sequence of events.
This is because, every time, it needs to apply every possible action and check if the
new state was already generated, and when we have a large, complex state (as it is the
PDDL framework) this action is difficult.

Every time we talk of abstraction, there is the possibility to lose details. Also in
the case of our abstraction there is this possibility because when we apply an abstract
action we don’t know the order in which actions would have been applied in the detailed
domain.

Overall, all of this drawbacks can be developed and solved. They shall not be an
excuse to stop the development of this problem, they should be consider as motivation
to continue with this process.

6.3 Future Work

As discussed in the previous section, there are some drawbacks, but this thesis is a
first step and the work done can be improved. In the PDDL framework a possible
future work is to add a PDDL and JSON parser to allow writing the story in PDDL or
with other tools and automatically translate it into our framework language. Another
possible addition can be to the planning part of the PDDL, that is, adding the goal
state and implementing all the algorithms that are necessary to do the planning.

Another possible future work is to improve the algorithm that generates the sequence
of the events. For sure, instead of making a simple search when checking for repeated
states, there is the possibility to write an algorithm able to search with less complexity.

When talking of the abstraction part, there can also be some future work. The first
thing could be to use the data collected during the process of comparison (Section
4.3.1) to have an abstraction with also removing predicates from the domain and the
actions. Secondly, more sub-graphs can be searched on the graph to have more possible
super-actions and a better abstraction.

In general, the work done with this thesis doesn’t have the performance of the al-
gorithms as its primary objective. The primary objective was to check if an approach
to the problem of generating abstract states in an automatic way can be applied to a
story-based problem. We proved that this is an approach that can be applied and it
can give good results.

58

7. Conclusion

During the work of this thesis, we described an approach to a system that is able to
abstract the domain of the story in an automatic way. The first step was to understand
what we wanted to research and implement. With this process we stated some questions
and some criteria to evaluate these questions (Chapter 2). From this point, once we
had in mind what question we want to answer, we started to search if someone already
answered it and if their solution could be improved or applied in other ways. This
process led us to read a lot of previous research that is described in Chapter 3.

Since we could not apply any previous solution to our question, we started to think
of a way to implement the answer to the question our own. This process involved first
creating a structured way to represent a story with the PDDL framework in Unity.
This has been done with studying the PDDL language, in all its different forms, and
understanding what the most important elements are to schematize them in a C#
framework compatible with Unity. The second part of the approach was to give the
developer the possibility to see what the story looks like in a graph representation.
This has been done with the generation of all the possible events from a starting state
and from them we needed a data structure that was able to represent them in a nice
way. This led us to use a graph data structure and visualize it with the generation of
a GraphML code. Thanks to this process we are able to visualize the resulting graph
in yEd and we can analyze the graph to start thinking of possible ways of abstraction.
During our reading of papers related to the work, we discovered a method that has
been used in path finding and we thought that the same process could be applied into
a story based problem. This method is to find cliques on the graph. But when we
start applying it we saw that is really rare to have cliques in a story based graph, so
we thought that instead of cliques we needed to think of general sub-graphs. So, we
decided to search for sub-graphs like the one in Figure 4.16. All this process has been
described in Chapter 4.

The last part is the evaluation. For each question described during the problem
formulation we made a case-study and we evaluated the result. To evaluate the PDDL
framework, we proposed an example in PDDL language and we translated it with the
language of our framework. We described each approach and searched for differences
and found that there wasn’t any. To evaluate the graph generation, we presented a
domain written with our framework and we generated some graphs with different levels
of depth. We took the data from each generation and we gathered them in some tables
to have an overall understanding. Then, we presented some graphical visualization of
each graph to let the reader understand that the visualization is also working. The
last part to evaluate was the abstraction process. To evaluate this process we took
a graph with a specific depth and presented every super-action the program was able
to find, and how the super-action was made. Then we generated some graphs with
different depths and presented differences between the number of nodes and edges. All

this process is described in Chapter 5.

When the evaluation process was done, I made a final thought of the project in
general (Chapter 6). Overall, this is a positive first step into the automatic abstraction
of domains in a story based problem, but more work needs to be done to successfully
achieve this goal. Looking forward, this work opens up a variety of possibilities for
future improvements and expansions to the system. Simulating large stories in a virtual
world, as computer games are, it still is an open problem of the games industry. My
work is a step forward to reach this goal, and I hope it can be a little incentive to work
hard on this problem to have ever richer dynamic virtual worlds.

60

References

[1] yEd - Graph Editor, 2018. URL https://www.yworks.com/products/yed.

[2] David Andre and Stuart J Russell. State Abstraction for Programmable Rein-
forcement Learning Agents. In AAAI-02, pages 119–125. AAAI Press, 2002. URL
www.aaai.org.

[3] A. Bouajjani, J. C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. Minimal
state graph generation. Science of Computer Programming, 1992. ISSN 01676423.
doi: 10.1016/0167-6423(92)90018-7.

[4] Vadim Bulitko, Nathan Sturtevant, and Maryia Kazakevich. Speeding Up Learning
in Real-time Search via Automatic State Abstraction *. In AAAI-05, pages 1349–
1354. AAAI Press, 2005. URL www.aaai.org.

[5] Vadim Bulitko, Nathan Sturtevant, Jieshan Lu, and Timothy Yau. Graph abstrac-
tion in real-time heuristic search. Journal of Artificial Intelligence Research, 2007.
ISSN 10769757. doi: 10.1613/jair.2293.

[6] David Thue. David Thue open researches, 2018. URL http://www.ru.is/
kennarar/davidthue/research.html.

[7] Stefan Edelkamp and Richard E Korf. The Branching Factor of Regular Search
Spaces. In AAAI-98, pages 299–304. AAAI Press, 1998. URL www.aaai.org.

[8] Luis Flores and David Thue. Level of Detail Event Generation. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2017. ISBN 9783319710266. doi: 10.1007/
978-3-319-71027-3{\ }7.

[9] G. Cherchi G. Armano and E. Vargiu. Generating Abstractions from Static Do-
main Analysis. 2003.

[10] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS.
1997. ISBN 3540631666. doi: 10.1007/3-540-63166-6{\ }10.

[11] Nicholas K. Jong and Peter Stone. State abstraction discovery from irrelevant
state variables. In IJCAI International Joint Conference on Artificial Intelligence,
2005.

[12] Boyang Li, Stephen Lee-Urban, George Johnston, and Mark O Riedl. Story Gener-
ation with Crowdsourced Plot Graphs. In AAAI-13, pages 598–604. AAAI Press,
2013. URL www.aaai.org.

https://www.yworks.com/products/yed
www.aaai.org
www.aaai.org
http://www.ru.is/kennarar/davidthue/research.html
http://www.ru.is/kennarar/davidthue/research.html
www.aaai.org
www.aaai.org

References

[13] Feng Liu, Xin Jin, and Yunfeng She. No-Fringe U-Tree: An optimized algorithm for
reinforcement learning. In Proceedings - 2016 IEEE 28th International Conference
on Tools with Artificial Intelligence, ICTAI 2016, 2017. ISBN 9781509044597. doi:
10.1109/ICTAI.2016.47.

[14] Mahesh Sabnis. Understanding HashSet in C#, 2017. URL https://www.
dotnetcurry.com/csharp/1362/hashset-csharp-with-examples.

[15] Drew Mcdermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL - The
Planning Domain Definition Language. Technical report, 1998. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
37.212citeulike-article-id:4097279.

[16] Microsoft. GetHashCode Method. URL https://docs.microsoft.com/
en-us/dotnet/api/system.object.gethashcode?redirectedfrom=
MSDN&view=netframework-4.7.2#System_Object_GetHashCode.

[17] Sigurgrimur Unnar Ólafsson. Computationally Generated Settlement Layouts. PhD
thesis, School of Computer Science, Reykjavik University, Reykjavik, Iceland,
2018.

[18] Sébastien Paris, Stéphane Donikian, and Nicolas Bonvalet. Environmental ab-
straction and path planning techniques for realistic crowd simulation. In Computer
Animation and Virtual Worlds, 2006. ISBN 1546-427X. doi: 10.1002/cav.136.

[19] Stuart J (Stuart Jonathan) Russell. Artificial intelligence : a modern approach.
Third edition. Upper Saddle River, N.J. : Prentice Hall, [2010] c©2010. URL
https://search.library.wisc.edu/catalog/9910082172502121.

[20] Julie C Xia, Jihad El-Sana, and Amitabh Varshney. Adaptive Real-Time Level-
of-Detail-Based Rendering for Polygonal Models. IEEE Transactions on Visual-
ization and Computer Graphics, 3(2):171–183, 1997. doi: 10.1109/2945.597799.

62

https://www.dotnetcurry.com/csharp/1362/hashset-csharp-with-examples
https://www.dotnetcurry.com/csharp/1362/hashset-csharp-with-examples
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212 citeulike-article-id:4097279
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212 citeulike-article-id:4097279
https://docs.microsoft.com/en-us/dotnet/api/system.object.gethashcode?redirectedfrom=MSDN&view=netframework-4.7.2#System_Object_GetHashCode
https://docs.microsoft.com/en-us/dotnet/api/system.object.gethashcode?redirectedfrom=MSDN&view=netframework-4.7.2#System_Object_GetHashCode
https://docs.microsoft.com/en-us/dotnet/api/system.object.gethashcode?redirectedfrom=MSDN&view=netframework-4.7.2#System_Object_GetHashCode
https://search.library.wisc.edu/catalog/9910082172502121

Acknowledgements

I’d like to give some really big thanks to my supervisor, David James Thue, for his
support and patience with me throughout the work of this thesis. He was always
available for every little doubt about the word I needed to do and our chats about the
project were always insightful and educational.

Another thanks goes out to my co-supervisor, Andrea Polini, for his availability and
for taking time to give his valuable feedback to my work.

One big thanks goes to the University of Camerino and Reykjav̀ık University for
letting me to do the double degree program in a wonderful place with amazing people.

Un doveroso e speciale ringraziamento va alla mia famiglia, senza la quale non avrei
mai neppur cominciato questa carriera e che mi ha supportato durante tutto il mio
percorso universitario, ma più in generale nella vita.

Un ulteriore ringraziamento va a Michelangelo Diamanti e Matteo Altobelli per aver
condiviso i mesi di double degree passati in Islanda e per il lavoro svolto nella prima
parte di questa tesi. Ringrazio anche tutti gli amici incontrati durante i 10 mesi passati
in islanda, tra cui sopratutto la comitiva italiana composta da Elena Bolgiani, Martina
Corazza, Lara Bassi e Francesca Lupidio con le quali ho passato tanti bei momenti: dal
caffè della merenda, alle uscite con la macchina in giro per l’Islanda. Non si può dimen-
ticare di parlare di Judit Rodr̀ıguez, fantastica coinquilina con la quale ho condiviso
l’appartamento durante il periodo islandese e che, nonostante i kilometri di distanza, ci
si ride e ci si scherza spesso. Ringrazio tutti gli amici di Camerino: Dario, Alessandro,
Matteo, Elisa, Mattia, Noemi, Sara e Giulia; per il continuo supporto e per tutte le
esperienze condivise durante questi anni universitari.

Last but not least, rigrazio tutti gli amici di sempre: Riccardo, Lorenzo, Daniele,
Ramona, Ylenia, Giulia, Aurelio e tutti gli altri che non ho citato, perchè nonostante
piccoli problemi che ci possono essere stati e che probabilmente ci saranno, continuano
ad essere gli amici che ti supportano e con i quali ho passato momenti importanti.

Appendices

A. PDDL example

A.1 Domain.pddl

1 (d e f i n e (domain rover−domain)
2

3 (: p r e d i c a t e s
4 (can−move ? from−waypoint ? to−waypoint)
5 (i s−v i s i b l e ? o b j e c t i v e ? waypoint)
6 (i s−in ? sample ? waypoint)
7 (been−at ? rover ? waypoint)
8 (car ry ? rover ? sample)
9 (at ? rover ? waypoint)

10 (i s−dropping−dock ? waypoint)
11 (taken−image ? o b j e c t i v e)
12 (stored−sample ? sample)
13 (o b j e c t i v e ? o b j e c t i v e)
14 (waypoint ? waypoint)
15 (sample ? sample)
16 (rover ? rover)
17 (empty ? rover)
18)
19

20 (: a c t i on move
21 : parameters
22 (? rover
23 ? from−waypoint
24 ? to−waypoint)
25

26 : p r e cond i t i on
27 (and
28 (rover ? rover)
29 (waypoint ? from−waypoint)
30 (waypoint ? to−waypoint)
31 (at ? rover ? from−waypoint)
32 (can−move ? from−waypoint ? to−waypoint))
33

34 : e f f e c t
35 (and
36 (at ? rover ? to−waypoint)
37 (been−at ? rover ? to−waypoint)
38 (not (at ? rover ? from−waypoint)))
39)
40

41 (: a c t i on take−sample
42 : parameters
43 (? rover
44 ? sample
45 ? waypoint)

Domain.pddl

46

47 : p r e cond i t i on
48 (and
49 (rover ? rover)
50 (sample ? sample)
51 (waypoint ? waypoint)
52 (i s−in ? sample ? waypoint)
53 (at ? rover ? waypoint)
54 (empty ? rover))
55

56 : e f f e c t
57 (and
58 (not (i s−in ? sample ? waypoint))
59 (car ry ? rover ? sample)
60 (not (empty ? rover)))
61)
62

63 (: a c t i on drop−sample
64 : parameters
65 (? rover
66 ? sample
67 ? waypoint)
68

69 : p r e cond i t i on
70 (and
71 (rover ? rover)
72 (sample ? sample)
73 (waypoint ? waypoint)
74 (i s−dropping−dock ? waypoint)
75 (at ? rover ? waypoint)
76 (car ry ? rover ? sample))
77

78 : e f f e c t
79 (and
80 (i s−in ? sample ? waypoint)
81 (not (car ry ? rover ? sample))
82 (stored−sample ? sample)
83 (empty ? rover))
84)
85

86 (: a c t i on take−image
87 : parameters
88 (? rover
89 ? o b j e c t i v e
90 ? waypoint)
91

92 : p r e cond i t i on
93 (and
94 (rover ? rover)
95 (o b j e c t i v e ? o b j e c t i v e)
96 (waypoint ? waypoint)
97 (at ? rover ? waypoint)
98 (i s−v i s i b l e ? o b j e c t i v e ? waypoint))
99

100 : e f f e c t
101 (taken−image ? o b j e c t i v e)
102)
103)

68

Problem.pddl

A.2 Problem.pddl

1 (d e f i n e (problem rover −1)
2

3 (: domain
4 rover−domain
5)
6

7 (: o b j e c t s
8 waypoint1 waypoint2 waypoint3 waypoint4 waypoint5 waypoint6
9 waypoint7 waypoint8 waypoint9 waypoint10 waypoint11 waypoint12

10

11 sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8
12 sample9
13

14 o b j e c t i v e 1 o b j e c t i v e 2 o b j e c t i v e 3 o b j e c t i v e 4
15

16 rover1
17)
18

19 (: i n i t
20

21 (waypoint waypoint1) (waypoint waypoint2) (waypoint waypoint3)
22 (waypoint waypoint4) (waypoint waypoint5) (waypoint waypoint6)
23 (waypoint waypoint7) (waypoint waypoint8) (waypoint waypoint9)
24

25 (sample sample1) (sample sample2) (sample sample3) (sample
sample4)

26 (sample sample5) (sample sample6)
27

28 (o b j e c t i v e o b j e c t i v e 1) (o b j e c t i v e o b j e c t i v e 2) (o b j e c t i v e
o b j e c t i v e 3)

29 (o b j e c t i v e o b j e c t i v e 4)
30

31 (can−move waypoint1 waypoint5) (can−move waypoint1 waypoint9)
32 (can−move waypoint2 waypoint5) (can−move waypoint3 waypoint4)
33 (can−move waypoint3 waypoint6) (can−move waypoint4 waypoint3)
34 (can−move waypoint4 waypoint8) (can−move waypoint4 waypoint9)
35 (can−move waypoint5 waypoint1) (can−move waypoint5 waypoint2)
36 (can−move waypoint6 waypoint3) (can−move waypoint6 waypoint7)
37 (can−move waypoint6 waypoint8) (can−move waypoint7 waypoint6)
38 (can−move waypoint8 waypoint4) (can−move waypoint8 waypoint6)
39 (can−move waypoint9 waypoint1) (can−move waypoint9 waypoint4)
40

41 (i s−v i s i b l e o b j e c t i v e 1 waypoint2) (i s−v i s i b l e o b j e c t i v e 1
waypoint3)

42 (i s−v i s i b l e o b j e c t i v e 1 waypoint4) (i s−v i s i b l e o b j e c t i v e 2
waypoint5)

43 (i s−v i s i b l e o b j e c t i v e 2 waypoint7) (i s−v i s i b l e o b j e c t i v e 3
waypoint8)

44 (i s−v i s i b l e o b j e c t i v e 4 waypoint5) (i s−v i s i b l e o b j e c t i v e 4
waypoint1)

45

46

47 (i s−in sample1 waypoint2) (i s−in sample2 waypoint3)
48 (i s−in sample3 waypoint9) (i s−in sample4 waypoint8)
49 (i s−in sample5 waypoint3) (i s−in sample6 waypoint3)
50

51 (i s−dropping−dock waypoint7)
52

69

First Level Domain

53 (rover rover1)
54 (empty rover1)
55 (at rover1 waypoint6)
56)
57

58 (: goa l
59 (and
60 (stored−sample sample1)
61 (stored−sample sample2)
62 (stored−sample sample3)
63 (stored−sample sample4)
64 (stored−sample sample5)
65 (stored−sample sample6)
66

67 (taken−image o b j e c t i v e 1)
68 (taken−image o b j e c t i v e 2)
69 (taken−image o b j e c t i v e 3)
70 (taken−image o b j e c t i v e 4)
71

72 (at rover1 waypoint1))
73)
74)

A.3 First Level Domain

1 Domain domain = new Domain () ;
2

3 EntityType rover = new EntityType (”ROVER”) ;
4 domain . addEntityType (rover) ;
5

6 EntityType wayPoint = new EntityType (”WAYPOINT”) ;
7 domain . addEntityType (wayPoint) ;
8

9 EntityType sample = new EntityType (”SAMPLE”) ;
10 domain . addEntityType (sample) ;
11

12 EntityType o b j e c t i v e = new EntityType (”OBJECTIVE”) ;
13 domain . addEntityType (o b j e c t i v e) ;
14

15 // (can−move ? from−waypoint ? to−waypoint)
16 BinaryPred icate isConnectedTo = new BinaryPred icate (wayPoint ,

”IS CONNECTED TO” , wayPoint , ” i s connected to ”) ;
17 domain . addPredicate (isConnectedTo) ;
18 // (i s−v i s i b l e ? o b j e c t i v e ? waypoint)
19 BinaryPred icate i s V i s i b l e = new BinaryPred icate (ob j e c t i v e ,

”IS VISIBLE” , wayPoint , ” i s v i s i b l e ”) ;
20 domain . addPredicate (i s V i s i b l e) ;
21 // (i s−in ? sample ? waypoint)
22 BinaryPred icate i s I n = new BinaryPred icate (sample , ” IS IN ” , wayPoint ,

” i s in ”) ;
23 domain . addPredicate (i s I n) ;
24 // (been−at ? rover ? waypoint)
25 BinaryPred icate beenAt = new BinaryPred icate (rover , ”BEEN AT” ,

wayPoint , ”has been at ”) ;
26 domain . addPredicate (beenAt) ;
27 // (car ry ? rover ? sample)
28 BinaryPred icate car ry = new BinaryPred icate (rover , ”CARRY” , sample ,

” i s ca r ry ing ”) ;

70

First Level Domain

29 domain . addPredicate (car ry) ;
30 // (at ? rover ? waypoint)
31 BinaryPred icate at = new BinaryPred icate (rover , ”AT” , wayPoint , ” i s

at ”) ;
32 domain . addPredicate (at) ;
33 // (i s−dropping−dock ? waypoint)
34 UnaryPredicate isDroppingDock = new UnaryPredicate (wayPoint ,

”IS DROPPING DOCK” , ” i s dropping the dock”) ;
35 domain . addPredicate (isDroppingDock) ;
36 // (taken−image ? o b j e c t i v e)
37 UnaryPredicate takenImage = new UnaryPredicate (ob j e c t i v e ,

”TAKEN IMAGE” , ” i s tak ing an image”) ;
38 domain . addPredicate (takenImage) ;
39 // (stored−sample ? sample)
40 UnaryPredicate storedSample = new UnaryPredicate (sample ,

”STORED SAMPLE” , ”has s to r ed the sample”) ;
41 domain . addPredicate (storedSample) ;
42 // (empty ? rover)
43 UnaryPredicate isEmpty = new UnaryPredicate (rover , ”IS EMPTY” , ” i s

empty”) ;
44 domain . addPredicate (isEmpty) ;
45

46 Entity c u r i o s i t y = new Entity (rover , ”ROVER”) ;
47

48 // IDLE ACTION
49 Action a c t i o n I d l e = new Action (new HashSet<IRe lat ion >() , ”IDLE” ,
50 new HashSet<ActionParameter >() { new ActionParameter (c u r i o s i t y ,

ActionParameterRole .ACTIVE) } , new HashSet<IRe lat ion >() ,
true) ;

51 domain . addAction (a c t i o n I d l e) ;
52

53 // MOVE ACTION
54 // Parameters
55 Entity fromWayPoint = new Entity (wayPoint , ”WAYPOINT1”) ;
56 Entity toWayPoint = new Entity (wayPoint , ”WAYPOINT2”) ;
57

58 HashSet<ActionParameter> moveActionParameters = new
HashSet<ActionParameter >() ;

59 moveActionParameters . Add(new ActionParameter (c u r i o s i t y ,
ActionParameterRole .ACTIVE)) ;

60 moveActionParameters . Add(new ActionParameter (fromWayPoint ,
ActionParameterRole . PASSIVE)) ;

61 moveActionParameters . Add(new ActionParameter (toWayPoint ,
ActionParameterRole . PASSIVE)) ;

62

63 // Precond i t i ons
64 HashSet<IRe lat ion> moveActionPrecondit ions = new HashSet<IRe lat ion >() ;
65 BinaryRelat ion roverAtfromWP = new BinaryRelat ion (c u r i o s i t y , at ,

fromWayPoint , Relat ionValue .TRUE) ;
66 moveActionPrecondit ions . Add(roverAtfromWP) ;
67 BinaryRelat ion isConnectedFromWP1ToWP2 = new

BinaryRelat ion (fromWayPoint , isConnectedTo , toWayPoint ,
Relat ionValue .TRUE) ;

68 moveActionPrecondit ions . Add(isConnectedFromWP1ToWP2) ;
69

70 // Pos t cond i t i on s
71 HashSet<IRe lat ion> moveActionPostcondit ions = new

HashSet<IRe lat ion >() ;
72 BinaryRelat ion notRoverAtFromWP = new BinaryRelat ion (c u r i o s i t y , at ,

fromWayPoint , Relat ionValue .FALSE) ;
73 moveActionPostcondit ions . Add(notRoverAtFromWP) ;

71

First Level Domain

74 BinaryRelat ion roverAtToWP = new BinaryRelat ion (c u r i o s i t y , at ,
toWayPoint , Relat ionValue .TRUE) ;

75 moveActionPostcondit ions . Add(roverAtToWP) ;
76 BinaryRelat ion roverBeenAtToWP = new BinaryRelat ion (c u r i o s i t y ,

beenAt , toWayPoint , Relat ionValue .TRUE) ;
77 moveActionPostcondit ions . Add(roverBeenAtToWP) ;
78

79 Action moveAction = new Action (moveActionPrecondit ions , ”MOVE” ,
moveActionParameters , moveAct ionPostcondit ions) ;

80 domain . addAction (moveAction) ;
81

82 // TAKE SAMPLE ACTION
83 // Parameters
84 Entity ESample = new Entity (sample , ”SAMPLE”) ;
85 Entity EWayPoint = new Entity (wayPoint , ”WAYPOINT”) ;
86

87 HashSet<ActionParameter> takeSampleActionParameters = new
HashSet<ActionParameter >() ;

88 takeSampleActionParameters . Add(new ActionParameter (c u r i o s i t y ,
ActionParameterRole .ACTIVE)) ;

89 takeSampleActionParameters . Add(new ActionParameter (ESample ,
ActionParameterRole . PASSIVE)) ;

90 takeSampleActionParameters . Add(new ActionParameter (EWayPoint ,
ActionParameterRole . PASSIVE)) ;

91

92 // Precond i t i ons
93 HashSet<IRe lat ion> takeSampleActPrecondit ions = new

HashSet<IRe lat ion >() ;
94 BinaryRelat ion sampleIsInWayPoint = new BinaryRelat ion (ESample , i s In ,

EWayPoint , Relat ionValue .TRUE) ;
95 takeSampleActPrecondit ions . Add(sampleIsInWayPoint) ;
96 BinaryRelat ion roverIsAtWayPoint = new BinaryRelat ion (c u r i o s i t y , at ,

EWayPoint , Relat ionValue .TRUE) ;
97 takeSampleActPrecondit ions . Add(roverIsAtWayPoint) ;
98 UnaryRelation roverIsEmpty = new UnaryRelation (c u r i o s i t y , isEmpty ,

Relat ionValue .TRUE) ;
99 takeSampleActPrecondit ions . Add(roverIsEmpty) ;

100

101 // Pos t cond i t i on s
102 HashSet<IRe lat ion> takeSampleActPostcondit ions = new

HashSet<IRe lat ion >() ;
103 BinaryRelat ion sampleIsNotInWayPoint = new BinaryRelat ion (ESample ,

i s In , EWayPoint , Relat ionValue .FALSE) ;
104 takeSampleActPostcondit ions . Add(sampleIsNotInWayPoint) ;
105 UnaryRelation roverIsNotEmpty = new UnaryRelation (c u r i o s i t y , isEmpty ,

Relat ionValue .FALSE) ;
106 takeSampleActPostcondit ions . Add(roverIsNotEmpty) ;
107 BinaryRelat ion roverCarr iesSample = new BinaryRelat ion (c u r i o s i t y ,

carry , ESample , Relat ionValue .TRUE) ;
108 takeSampleActPostcondit ions . Add(roverCarr iesSample) ;
109

110 Action takeSampleAction = new Action (takeSampleActPrecondit ions ,
”TAKE SAMPLE” , takeSampleActionParameters ,
takeSampleActPostcondit ions) ;

111 domain . addAction (takeSampleAction) ;
112

113 // DROP SAMPLE ACTION
114 // Parameters
115 HashSet<ActionParameter> dropSampleActionParameters = new

HashSet<ActionParameter >() ;

72

First Level Domain

116 dropSampleActionParameters . Add(new ActionParameter (c u r i o s i t y ,
ActionParameterRole .ACTIVE)) ;

117 dropSampleActionParameters . Add(new ActionParameter (ESample ,
ActionParameterRole . PASSIVE)) ;

118 dropSampleActionParameters . Add(new ActionParameter (EWayPoint ,
ActionParameterRole . PASSIVE)) ;

119

120 // Precond i t i ons
121 HashSet<IRe lat ion> dropSampleActPrecondit ions = new

HashSet<IRe lat ion >() ;
122 UnaryRelation wayPointIsDroppingDock = new UnaryRelation (EWayPoint ,

isDroppingDock , Relat ionValue .TRUE) ;
123 dropSampleActPrecondit ions . Add(wayPointIsDroppingDock) ;
124 dropSampleActPrecondit ions . Add(roverIsAtWayPoint) ;
125 dropSampleActPrecondit ions . Add(roverCarr iesSample) ;
126

127 // Pos t cond i t i on s
128 HashSet<IRe lat ion> dropSampActPostconditions = new

HashSet<IRe lat ion >() ;
129 dropSampActPostconditions . Add(sampleIsInWayPoint) ;
130 dropSampActPostconditions . Add(roverIsEmpty) ;
131 BinaryRelat ion notRoverCarriesSample = new BinaryRelat ion (c u r i o s i t y ,

carry , ESample , Relat ionValue .FALSE) ;
132 dropSampActPostconditions . Add(notRoverCarriesSample) ;
133

134 Action dropSampleAction = new Action (dropSampleActPrecondit ions ,
”DROP SAMPLE” , dropSampleActionParameters ,
dropSampActPostconditions) ;

135 domain . addAction (dropSampleAction) ;
136

137 // TAKE IMAGE ACTION
138 // Parameters
139 Entity EObjective = new Entity (ob j e c t i v e , ”OBJECTIVE”) ;
140

141 HashSet<ActionParameter> takeImageActionParameters = new
HashSet<ActionParameter >() ;

142 takeImageActionParameters . Add(new ActionParameter (c u r i o s i t y ,
ActionParameterRole .ACTIVE)) ;

143 takeImageActionParameters . Add(new ActionParameter (EObjective ,
ActionParameterRole . PASSIVE)) ;

144 takeImageActionParameters . Add(new ActionParameter (EWayPoint ,
ActionParameterRole . PASSIVE)) ;

145

146 // Precond i t i ons
147 HashSet<IRe lat ion> takeImageAct ionPrecondit ions = new

HashSet<IRe lat ion >() ;
148 takeImageAct ionPrecondit ions . Add(roverIsAtWayPoint) ;
149 BinaryRelat ion object iveIsVis ib leFromWayPoint = new

BinaryRelat ion (EObjective , i s V i s i b l e , EWayPoint ,
Relat ionValue .TRUE) ;

150 takeImageAct ionPrecondit ions . Add(object iveIsVis ib leFromWayPoint) ;
151

152 // Pos t cond i t i on s
153 HashSet<IRe lat ion> takeImageAct ionPostcondit ions = new

HashSet<IRe lat ion >() ;
154 UnaryRelation roverHasTakenImageOfObjective = new

UnaryRelation (EObjective , takenImage , Relat ionValue .TRUE) ;
155 takeImageAct ionPostcondit ions . Add(roverHasTakenImageOfObjective) ;
156

157 Action takeImageAction = new Action (takeImageAct ionPrecondit ions ,
”TAKE IMAGE” , takeImageActionParameters ,

73

First Level WorldState

takeImageAct ionPostcondit ions) ;
158 domain . addAction (takeImageAction) ;

A.4 First Level WorldState

1 WorldState wor ldState = new WorldState (domain) ;
2

3 Entity rover1 = new Entity (new EntityType (”ROVER”) , ”ROVER1”) ;
4 Entity rover2 = new Entity (new EntityType (”ROVER”) , ”ROVER2”) ;
5

6 worldState . addEntity (rover1) ;
7 worldState . addEntity (rover2) ;
8

9 Entity wayPoint1 = new Entity (new EntityType (”WAYPOINT”) ,
”WAYPOINT1”) ;

10 Entity wayPoint2 = new Entity (new EntityType (”WAYPOINT”) ,
”WAYPOINT2”) ;

11 Entity wayPoint3 = new Entity (new EntityType (”WAYPOINT”) ,
”WAYPOINT3”) ;

12 Entity wayPoint4 = new Entity (new EntityType (”WAYPOINT”) ,
”WAYPOINT4”) ;

13 Entity wayPoint5 = new Entity (new EntityType (”WAYPOINT”) ,
”WAYPOINT5”) ;

14 Entity wayPoint6 = new Entity (new EntityType (”WAYPOINT”) ,
”WAYPOINT6”) ;

15 Entity wayPoint7 = new Entity (new EntityType (”WAYPOINT”) ,
”WAYPOINT7”) ;

16 Entity wayPoint8 = new Entity (new EntityType (”WAYPOINT”) ,
”WAYPOINT8”) ;

17 Entity wayPoint9 = new Entity (new EntityType (”WAYPOINT”) ,
”WAYPOINT9”) ;

18 worldState . addEntity (wayPoint1) ;
19 worldState . addEntity (wayPoint2) ;
20 worldState . addEntity (wayPoint3) ;
21 worldState . addEntity (wayPoint4) ;
22 worldState . addEntity (wayPoint5) ;
23 worldState . addEntity (wayPoint6) ;
24 worldState . addEntity (wayPoint7) ;
25 worldState . addEntity (wayPoint8) ;
26 worldState . addEntity (wayPoint9) ;
27

28 Entity sample1 = new Entity (new EntityType (”SAMPLE”) , ”SAMPLE1”) ;
29 Entity sample2 = new Entity (new EntityType (”SAMPLE”) , ”SAMPLE2”) ;
30 Entity sample3 = new Entity (new EntityType (”SAMPLE”) , ”SAMPLE3”) ;
31 Entity sample4 = new Entity (new EntityType (”SAMPLE”) , ”SAMPLE4”) ;
32 Entity sample5 = new Entity (new EntityType (”SAMPLE”) , ”SAMPLE5”) ;
33 Entity sample6 = new Entity (new EntityType (”SAMPLE”) , ”SAMPLE6”) ;
34 worldState . addEntity (sample1) ;
35 worldState . addEntity (sample2) ;
36 worldState . addEntity (sample3) ;
37 worldState . addEntity (sample4) ;
38 worldState . addEntity (sample5) ;
39 worldState . addEntity (sample6) ;
40

41 Entity o b j e c t i v e 1 = new Entity (new EntityType (”OBJECTIVE”) ,
”OBJECTIVE1”) ;

42 Entity o b j e c t i v e 2 = new Entity (new EntityType (”OBJECTIVE”) ,
”OBJECTIVE2”) ;

74

First Level WorldState

43 Entity o b j e c t i v e 3 = new Entity (new EntityType (”OBJECTIVE”) ,
”OBJECTIVE3”) ;

44 Entity o b j e c t i v e 4 = new Entity (new EntityType (”OBJECTIVE”) ,
”OBJECTIVE4”) ;

45 Entity o b j e c t i v e 5 = new Entity (new EntityType (”OBJECTIVE”) ,
”OBJECTIVE5”) ;

46 Entity o b j e c t i v e 6 = new Entity (new EntityType (”OBJECTIVE”) ,
”OBJECTIVE6”) ;

47 Entity o b j e c t i v e 7 = new Entity (new EntityType (”OBJECTIVE”) ,
”OBJECTIVE7”) ;

48 Entity o b j e c t i v e 8 = new Entity (new EntityType (”OBJECTIVE”) ,
”OBJECTIVE8”) ;

49 worldState . addEntity (o b j e c t i v e 1) ;
50 worldState . addEntity (o b j e c t i v e 2) ;
51 worldState . addEntity (o b j e c t i v e 3) ;
52 worldState . addEntity (o b j e c t i v e 4) ;
53 worldState . addEntity (o b j e c t i v e 5) ;
54 worldState . addEntity (o b j e c t i v e 6) ;
55 worldState . addEntity (o b j e c t i v e 7) ;
56 worldState . addEntity (o b j e c t i v e 8) ;
57

58 BinaryRelat ion isConnected1 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint1 , wayPoint5 , Relat ionValue .TRUE) ;

59 BinaryRelat ion isConnected2 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint2 , wayPoint5 , Relat ionValue .TRUE) ;

60 BinaryRelat ion isConnected3 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint3 , wayPoint6 , Relat ionValue .TRUE) ;

61 BinaryRelat ion isConnected4 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint4 , wayPoint8 , Relat ionValue .TRUE) ;

62 BinaryRelat ion isConnected5 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint5 , wayPoint1 , Relat ionValue .TRUE) ;

63 BinaryRelat ion isConnected6 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint6 , wayPoint3 , Relat ionValue .TRUE) ;

64 BinaryRelat ion isConnected7 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint6 , wayPoint8 , Relat ionValue .TRUE) ;

65 BinaryRelat ion isConnected8 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint8 , wayPoint4 , Relat ionValue .TRUE) ;

66 BinaryRelat ion isConnected9 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint9 , wayPoint1 , Relat ionValue .TRUE) ;

67 BinaryRelat ion isConnected10 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint1 , wayPoint9 , Relat ionValue .TRUE) ;

68 BinaryRelat ion isConnected11 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint3 , wayPoint4 , Relat ionValue .TRUE) ;

69 BinaryRelat ion isConnected12 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint4 , wayPoint3 , Relat ionValue .TRUE) ;

70 BinaryRelat ion isConnected13 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint4 , wayPoint9 , Relat ionValue .TRUE) ;

75

First Level WorldState

71 BinaryRelat ion isConnected14 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint5 , wayPoint2 , Relat ionValue .TRUE) ;

72 BinaryRelat ion isConnected15 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint6 , wayPoint7 , Relat ionValue .TRUE) ;

73 BinaryRelat ion isConnected16 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint7 , wayPoint6 , Relat ionValue .TRUE) ;

74 BinaryRelat ion isConnected17 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint8 , wayPoint6 , Relat ionValue .TRUE) ;

75 BinaryRelat ion isConnected18 =
domain . generateRelationFromPredicateName (”IS CONNECTED TO” ,
wayPoint9 , wayPoint4 , Relat ionValue .TRUE) ;

76 worldState . addRelat ion (isConnected1) ;
77 worldState . addRelat ion (isConnected2) ;
78 worldState . addRelat ion (isConnected3) ;
79 worldState . addRelat ion (isConnected4) ;
80 worldState . addRelat ion (isConnected5) ;
81 worldState . addRelat ion (isConnected6) ;
82 worldState . addRelat ion (isConnected7) ;
83 worldState . addRelat ion (isConnected8) ;
84 worldState . addRelat ion (isConnected9) ;
85 worldState . addRelat ion (isConnected10) ;
86 worldState . addRelat ion (isConnected11) ;
87 worldState . addRelat ion (isConnected12) ;
88 worldState . addRelat ion (isConnected13) ;
89 worldState . addRelat ion (isConnected14) ;
90 worldState . addRelat ion (isConnected15) ;
91 worldState . addRelat ion (isConnected16) ;
92 worldState . addRelat ion (isConnected17) ;
93 worldState . addRelat ion (isConnected18) ;
94

95 BinaryRelat ion i s V i s i b l e 1 =
domain . generateRelationFromPredicateName (”IS VISIBLE” , ob j e c t i v e1 ,
wayPoint2 , Relat ionValue .TRUE) ;

96 BinaryRelat ion i s V i s i b l e 2 =
domain . generateRelationFromPredicateName (”IS VISIBLE” , ob j e c t i v e1 ,
wayPoint4 , Relat ionValue .TRUE) ;

97 BinaryRelat ion i s V i s i b l e 3 =
domain . generateRelationFromPredicateName (”IS VISIBLE” , ob j e c t i v e2 ,
wayPoint7 , Relat ionValue .TRUE) ;

98 BinaryRelat ion i s V i s i b l e 4 =
domain . generateRelationFromPredicateName (”IS VISIBLE” , ob j e c t i v e4 ,
wayPoint5 , Relat ionValue .TRUE) ;

99 BinaryRelat ion i s V i s i b l e 5 =
domain . generateRelationFromPredicateName (”IS VISIBLE” , ob j e c t i v e1 ,
wayPoint3 , Relat ionValue .TRUE) ;

100 BinaryRelat ion i s V i s i b l e 6 =
domain . generateRelationFromPredicateName (”IS VISIBLE” , ob j e c t i v e2 ,
wayPoint5 , Relat ionValue .TRUE) ;

101 BinaryRelat ion i s V i s i b l e 7 =
domain . generateRelationFromPredicateName (”IS VISIBLE” , ob j e c t i v e3 ,
wayPoint8 , Relat ionValue .TRUE) ;

102 BinaryRelat ion i s V i s i b l e 8 =
domain . generateRelationFromPredicateName (”IS VISIBLE” , ob j e c t i v e4 ,
wayPoint1 , Relat ionValue .TRUE) ;

103 worldState . addRelat ion (i s V i s i b l e 1) ;
104 worldState . addRelat ion (i s V i s i b l e 2) ;
105 worldState . addRelat ion (i s V i s i b l e 3) ;

76

First Level WorldState

106 worldState . addRelat ion (i s V i s i b l e 4) ;
107 worldState . addRelat ion (i s V i s i b l e 5) ;
108 worldState . addRelat ion (i s V i s i b l e 6) ;
109 worldState . addRelat ion (i s V i s i b l e 7) ;
110 worldState . addRelat ion (i s V i s i b l e 8) ;
111

112 BinaryRelat ion i s I n 1 =
domain . generateRelationFromPredicateName (” IS IN ” , sample1 ,
wayPoint2 , Relat ionValue .TRUE) ;

113 BinaryRelat ion i s I n 2 =
domain . generateRelationFromPredicateName (” IS IN ” , sample3 ,
wayPoint9 , Relat ionValue .TRUE) ;

114 BinaryRelat ion i s I n 3 =
domain . generateRelationFromPredicateName (” IS IN ” , sample5 ,
wayPoint3 , Relat ionValue .TRUE) ;

115 BinaryRelat ion i s I n 4 =
domain . generateRelationFromPredicateName (” IS IN ” , sample2 ,
wayPoint3 , Relat ionValue .TRUE) ;

116 BinaryRelat ion i s I n 5 =
domain . generateRelationFromPredicateName (” IS IN ” , sample4 ,
wayPoint8 , Relat ionValue .TRUE) ;

117 BinaryRelat ion i s I n 6 =
domain . generateRelationFromPredicateName (” IS IN ” , sample6 ,
wayPoint3 , Relat ionValue .TRUE) ;

118 worldState . addRelat ion (i s I n 1) ;
119 worldState . addRelat ion (i s I n 2) ;
120 worldState . addRelat ion (i s I n 3) ;
121 worldState . addRelat ion (i s I n 4) ;
122 worldState . addRelat ion (i s I n 5) ;
123 worldState . addRelat ion (i s I n 6) ;
124

125 UnaryRelation isDroppingDock =
domain . generateRelationFromPredicateName (”IS DROPPING DOCK” ,
wayPoint7 , Relat ionValue .TRUE) ;

126 worldState . addRelat ion (isDroppingDock) ;
127

128 UnaryRelation rover1IsEmpty =
domain . generateRelationFromPredicateName (”IS EMPTY” , rover1 ,
Relat ionValue .TRUE) ;

129 UnaryRelation rover2IsEmpty =
domain . generateRelationFromPredicateName (”IS EMPTY” , rover2 ,
Relat ionValue .TRUE) ;

130

131 worldState . addRelat ion (rover1IsEmpty) ;
132 worldState . addRelat ion (rover2IsEmpty) ;
133

134

135 BinaryRelat ion rover1I sAt6 =
domain . generateRelationFromPredicateName (”AT” , rover1 , wayPoint6 ,
Relat ionValue .TRUE) ;

136 BinaryRelat ion rover2I sAt6 =
domain . generateRelationFromPredicateName (”AT” , rover2 , wayPoint6 ,
Relat ionValue .TRUE) ;

137

138 worldState . addRelat ion (rover1IsAt6) ;
139 worldState . addRelat ion (rover2IsAt6) ;

77

	Abstract
	Introduction
	Background
	Artificial Intelligence
	Unity 3D
	Tree and Graph Data Structure
	GraphML
	Larger Project
	Planning Domain Definition Language (PDDL)

	Problem Formulation
	Criteria for Success

	Related Work
	Automatic State Abstraction on Path-finding
	Level of Detail Event Generation
	Other Resources

	Proposed Approach
	PDDL Framework
	EntityType
	Entity
	Predicate
	Relation
	Action
	Domain
	WorldState

	Graph Generation
	Tree Generation
	Graph Data Structure
	Graph Data Generation

	Abstraction
	Graph Analysis
	Graph Abstraction

	Evaluation
	Setup
	Evaluation of the PDDL Framework
	Evaluation of the Graph Generation
	Evaluation of the Abstraction Process

	Discussion
	Benefits
	Drawbacks
	Future Work

	Conclusion
	References
	Appendices
	PDDL example
	Domain.pddl
	Problem.pddl
	First Level Domain
	First Level WorldState

