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Abstract 

This thesis is about adapting a previously built mechanism called ATC that in its present 

state can place trash into five different categories (plastic, paper, aluminium cans, plastic 

bottles and general waste) by pressing a button for the selected category. Now by 

implementing a Convolution Neural Network to the mechanism an attempt will be made to 

make this process automatic and therefore the push buttons irrelevant.  

Datasets for four categories will be made in the camera chamber of the ATC mechanism 

duplicating the future environment for analysis. Dataset pre-processing with resizing and 

image augmentation will be discussed as well as splitting the data to training, validation 

and test sets.  

The main features for building, training and testing a Convolution Neural Network are 

discussed with my decisions and reasoning on selected parameters. Brief history of Neural 

Networks, Convolution Neural Networks and some successful architecture are reviewed.  

The top model accuracy and loss function on the training, validation and test data are 

displayed visually with confusion matrices and graphs along with comparison with another 

model. The resulting top model ended up having six convolution layers that achieved 

98.65% prediction accuracy on the unseen test images. 

Útdráttur 

Ritgerð þessi fjallar um betrumbætur á áður smíðuðum vélbúnaði sem kallast ATC, sem í 

núverandi ástandi er fær um að flokka sorp í fimm mismunandi hólf (plast, pappír, áldósir 

og almennt rusl) á handvirkan máta með því að þrýsta á hnapp fyrir viðkomandi flokk. 

Með innleiðingu á þyrpingarneti (Convolutional Neural Networks) er ætlunin að gera 

vélbúnaðinn sjálfvirkan og þ.a.l. gera þrýsihnappa óþarfa. 

Búin verða til gagnasett mynda fyrir þá fjóra flokka sem til þarf en myndirnar eru teknar í 

myndavélahólfi á vélbúnaði til að líkja eftir raunverulegum aðstæðum sem notaðar verða 

við greiningar í framtíðinni. Skoðuð er forvinna gagnasetta með breytingum á myndum s.s. 

stærð þeirra, skýrleika og fleira. Einnig er rætt um skiptingu alls gagnasettsins í þjálunar-, 

staðfestingar- og prufunarsett. 

Helstu atriði við hönnun, þjálfun og prufun á þyrpingarnetum eru rædd þar sem gert er 

grein fyrir minni ákvarðanatöku á mögulegum breytum hvað varðar netið. Farið er yfir 

sögu þyrpingar- og tauganeta ásamt uppbyggingu nokkurra vel heppnaðra slíkra neta. 

Þyrpingarnetið sem varð fyrir valinu náði 98.65% nákvæmni í flokkun á óséðum myndum 

en niðurstöður eru kynntar og skoðaðar á myndrænan máta fyrir gagnasettin þrjú þ.e. fyrir 

þjálfunar-, staðfestingar- og prufunarsettin. Samanburður er einnig gerður á módelinu sem 

varð fyrir valinu og því sem var næst því í nákvæmni.  
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1 Introduction 

Over the last couple of decades environmental awareness has increased significantly. This 

is a complicated issue with many aspects were some are more difficult to solve than others. 

There are however things that can be done on an individual level. One of the them is 

responsible waste disposal. When done correctly it saves resources, energy and reduces the 

amount of waste sent to landfills and incinerators.  

The focus of this research project is to see if improvements can be made in recycling for 

normal household and institution, that is improvements in classification of trash to the 

correct category. Most often the trash is categorised into five compartments (1: Plastic 

bottles, 2: Aluminium cans, 3: General waste, 4: Paper, 5: Plastic). A part of the problem is 

that consumers are not sorting it right. They may not be entirely sure about which category 

the trash belongs to or do not care enough to classify the waste and put it in general waste. 

Therefore, a mechanical way of sorting could be an effective solution to classify the waste.  

According to Sorpa[1], the biggest Icelandic recycling company, it is roughly estimated 

that up to 70% of garbage that is put in the general waste category is of recyclable matter. 

Statistics from 2014 also show that the total waste for EU nations was over 2.503 million 

tonnes the highest recorded, where only 36.2% was recycled [2]. 

This project will by no means solve these overwhelming issues of poor recycling, but 

rather show a possible way of implementing a convolutional neural network to a 

mechanical device to improve recycling for smaller attributes.  
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1.1 Project description 

This thesis project includes improving a previously built and designed prototype of a 

mechanism that I have been working on in previous courses of my studies. 

This mechanism which is called ATC (Automatic Trash Classification) and can be seen in 

figure 1. It moves trash mechanically to a category chosen by a user. The way the device 

works is that a user puts trash in to allocated compartment and decides which category the 

trash belongs to with a selection of five push buttons, that is which of the five categories: 

general waste, paper, plastic, plastic bottles or aluminium cans. The mechanism then 

rotates the trash to a camera chamber that takes a picture of the trash before rotating it to its 

category.  

 

 

 

With this thesis an attempt will be made to make this procedure automatic, by 

implementing a pretrained Convolutional Neural Network (CNN,ConvNet) that can 

automatically classify which category the trash belongs in. The process will then be that 

the user puts trash in the device, it rotates to the camera chamber where the picture is taken 

and analysed by the pretrained CNN, after analysing the picture a prediction will be made 

to which categories it belongs to. The mechanism will then rotate the trash to its designated 

category. A flowchart of the ATC functionality before and after the implementation of a 

CNN can be seen in figure 2. 

 

Figure 1: The figure shows the ATC mechanism 

designed in Inventor Autodesk. 



3 

 

1.2 Objectives 

The objective of this thesis is to obtain the best possible prediction accuracy on a test set 

for categorization in waste management by designing a CNN that later will be 

implemented to a mechanism that does the sorting for us. 

Emphasis will be on writing the CNN program written in Python programming language 

with the help of Tensor Flow and TFLearn open source library for the design. Creating or 

obtaining a dataset with the relevant images for the four classes. Go through data pre-

processing, training, validation and test phases to find optimal results with all the features 

that are required with tuning and testing the model. Final objectives will be to show the 

results graphically and display the accuracy and loss functions of training sets, validation 

sets and test sets.    

 

 

 

 

Figure 2: Flowchart for ATC functionality before (left 

side) and after (right side) implementing a CNN.  

 

 



4 

1.3 Thesis Overview 

The following summary provides an overview over the main chapters featured in the 

thesis.  

• Chapter 1 – Introduction 

Gives a brief introduction, objectives and description of the project. 

• Chapter 2 – History and structure of Neural Networks 

Brief history and structure of Neural Networks as well as the construction of 

neurons. 

• Chapter 3 – Convolutional Neural Networks 

An overview of Convolutional Neural Networks and the main features including the 

convolution layer, padding and fully connected layer. 

• Chapter 4 – Important features of the model 

The chapter involves my selections of various functions of the model as well as 

reasoning for those decisions. Building the dataset is covered with pre-processing 

and splitting the data in to training, validation and test sets. The programming 

environment and the model that was chosen is displayed and discussed in detail. 

• Chapter 5 – Results 

Result on the top model accuracy and loss is presented for the three sets of training, 

validation and test sets.  

• Chapter 6 – Conclusion   

The chapter goes briefly over the results of the model along with thoughts and 

prospects of the project.  
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2 Background 

Neural Network’s (NN’s) are the first computational processing prediction system, 

generally used today in artificial intelligence, machine learning, computer vision and 

pattern recognition. This chapter provides a brief review of Neural Network and its history. 

2.1 Brief History of Neural Networks 

The idea of Neural Networks is inspired of how neurons in the brain function, when 

neurophysiologist Warren McCulloch and mathematician Walter Pitts in 1943 made an 

electrical circuit with threshold logic to mimic the thought process [3].   

Five years later Donald Hebb wrote a book on the matter called The Organization of 

Behaviour [4], where he came to the conclusion 

that neural pathways are strengthened each time 

they are used. 

In 1957 Frank Rosenblatt, an American 

psychologist came up with the Perceptron seen in 

figure 3. It is a two layer network showing an 

ability to learn certain classifications by adjusting 

connection weights [5]. 

In 1959 Bernard Widrow and Marcian Hoff tackled 

the first real world problem by using adaptive filter 

that eliminated noise and echoes in phone lines, a 

tactic still used today [6].  

There are many other discoveries that led to gradual 

improvements in the field, but it came to a halt 

when Marvin Minsky published the book 

Perceptrons in 1969 [7]. Minsky argued that 

Rosenblatt´s perceptron had fundamental flaws to 

it, that the model could not learn how to evaluate exclusive-or logical function [8] and that 

it would take several if not infinite numbers of iterations to compute an output. This was 

widely recognised and was the beginning of the “Artificial Intelligence winters” [9] where 

government funding’s were reduced significantly for researches and therefore few 

discoveries were made for the next 13 years.  

Renewed interest in NN materialised when John Hopfield came up with a bidirectional line 

connection [10] between neurons in his paper in 1982. That same year Japan became 

competitive proclaiming their interest with a new generation attempted on neural networks 

which led to more funding’s in the field in United States for fear of being left behind with 

this potentially powerful technology [11].  

Figure 3: Mark 1 Perseptron machine. 

(Image taken from the following link: 

http://www. 

en.wikipedia.org/wiki/Perceptron) 
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Today, with ever more computing power NN and branches of it like CNN, Machine 

Learning (ML) and Deep Learning (DL) are all around us. From image recognition to self-

driving cars, diagnosis’s in the medical field or purchase patterns for marketing [12]. 

2.2 Neurons the basic of a Neural Network  

NN’s are based on a collection of connected units or nodes called artificial neurons, when 

connected together they form networks that express some computational tasks depending 

on the types of neural networks. The system is inspired by the nervous system, a similar 

manner in which the biological neural networks in the human brain processes information. 

In figure 4, a biological neuron is displayed which receives messages through the dendrites 

from another neuron and passes it along a pathway through branches to the axon terminals 

where the messages will be passed on again to the next neuron.  

 

Figure 4: Sketch of a biological neuron. (Image taken from the following link: http://www. 

commons.wikimedia.org/wiki/File:Neuron.svg) 

The computational neuron that is shown in figure 5 can have a direct input from another 

neuron or it can receive the input from an external source where the input data can be a 

binary, integers or floating point values. Along the way to the output, each input is 

multiplied with a continuous valued weight as well as added biases. The sum of the 

weighted input then gives a single output depending on the threshold activation function 

[13] (better discussed in Activation functions chapter 4.1).  

 

Figure 5: Computational neuron. (Image taken from the following link: http://www. 

researchgate.net/figure/ANN-structure-of-a-nonlinear-model_fig25_316877711) 
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2.3 Neural Network structure  

A Neural Network is simply multiple neurons connected together in layers. Feedforward 

NN’s are the first and simplest type where we have an input layer, hidden layer and an 

output layer of neurons as seen in figure 6 [14]. 

  

 

Figure 6: Example of a neural network having an input layer, hidden layer and an output layer. 

(Image taken from the following link: 

http://www.commons.wikimedia.org/wiki/File:Colored_neural_network.svg) 

Each layer consists of one or more nodes or neurons, within each layer they do not interact 

directly with one another. The lines between the nodes indicate the flow of information 

from one node to the next.  

This flow of information from the input layer is copied and sent to the nodes of the hidden 

layer, the data in the hidden layer is multiplied by weights which are just a set of fixed 

numbers stored in the model, the information is then summed up and finally passed 

through activation (see Activation functions chapter 4.1) to make an output [15][13].  
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3 Convolutional Neural Networks 

Convolutional Neural Networks also known as CNN´s or ConvNet´s are a specific type of 

neural networks used for supervised and unsupervised learning. The fundamental setup is 

the same as in a typical NN, having an input layer, output layer and some hidden layers in 

the middle. With layers made from neurons with the learnable weights and biases. 

3.1 Convolutional Layers 

What sets the CNN apart from another NN is the way that the architecture of it makes the 

explicit assumption that the inputs are images. The forward function of data is therefore 

encoded with certain properties, these properties make it more efficient to implement and 

reduces the number of parameters in the network significantly[16].  

The input for the CNN is taken in as a tensors or matrices representing the image 

resolution. The convolution layer comes after that which extracts the features from the 

input. If the image is for example a small coloured 6 × 6 pixels image, it has a height of 6 

pixels, width of 6 pixels and the depth of 3 channels representing each colour scheme 

(RGB). The convolution operation is done with a filter also known as a kernel in the 

convolution layer. In this example, there is a 3 × 3 × 3 filter that multiplies its values 

element-wise with the original input matrix and then sums them up, this is known as a 3 × 

3 convolution because of the filter size. This convolution operation is performed over the 

input matrix by sliding the kernel one pixel at a time to the right until it cannot go any 

further, then it begins on the left side again only one pixel lower, this continues until the 

operation has completed the process for the whole matrix. Part of the convolution is shown 

in figure 7. The number of steps that the filter takes over the image is called a stride, the 

stride in the example below is a 1 × 1 stride. 

 

 

Figure 7: Shows the steps of a convolutional layer operation. 
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This example of a convolution operation will result in a 4 × 4 matrix as we can see on 

figure 8 and is called an activation map or feature map that is used to detect certain 

features in the image such as horizontal and vertical lines that will help with predicting 

accurate classification. These filters are not hard-coded but is a learned process over 

training.  

 

Figure 8: Shows an input image with a convolutional filter of size 3 × 3 × 3 which outputs a 4 × 4 

matrix feature map. 

Example for figure 8 calculations for the output feature map = (n – f + 1) × (n × n × nch) × 

numbers of filters. Input matrix is represented by a (n × n × nch) where n is the height and 

width of the input matrix and nch signifies the depth of the image (RGB) [17]. The kernel 

is represented by (f × f × nch) where f is the height and width of the kernel and nch the 

depth. The output of the feature map results (6 – 3 + 1) × (6 – 3 + 1) × 1 = 4 × 4 × 1.  

 

Figure 9: Shows an input image with a convolutional filter of size 3 × 3 which outputs a 4 × 4 × 2 

matrix feature map. 

Normally there are multiple filters to detect many features in an image, when two are used 

as in figure 9 the output will be a 4 × 4 × 2 stacked layer (6 – 3 + 1) × (6 – 3 + 1) × 2 = 4 × 

4 × 2. Important to note that last number 2 in output represents number of filters and not 

number of channels as is in the filter and input.  
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3.2 Padding 

As we can see in the previous example of convolution, the input of a 6 × 6 × 3 matrix is 

reduced to a 4 × 4 × 2 matrix feature map which means reduction of spatial dimension 

(height and width). Padding or zero padding is a way to keep or control the spatial 

dimensions by padding the borders with zeros [18]. If zero padding is 1 the input image 

would be represented as an 8 × 8 × 3 matrix, then the feature map would result in a 6 × 6 × 

2 matrix, preserving the spatial size for input and output of the convolution. 

3.3 Fully connected layer 

The fully connected layer is different than the convolutional layer where the spatial 

structure is not preserved [18]. All the information from the convolution is flattened out to 

a one-dimensional vector where all the neurons in the fully connected layer are connected 

to all the activations in previous layers of the model. Together with an activation function 

such as softmax or sigmoid (Activation Functions chapter 3.1) the fully connected layer 

uses the previously obtained features form the convolution to determine the correct 

classification of an image. 

3.4 Architecture of Convolutional Neural 

Networks 

Over the years, architecture of CNN has changed with better and deeper designs, from 

constantly improving CPU power to vast collection of GPU’s connected together via 

internet for considerable impact on image classification and object detection. Below are 

shown a few successful architectures of CNN over the last 20 years most of them being 

winners from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [19], a 

competition of classifying 1000 different classes with a dataset of over one million images.  

LeNet-5 (1998) 

 

Figure 10: Shows the architecture of LeNet-5 developed in 1998. (Image taken from the following link: 

http://www. yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf)  

LeNet-5 is a 7-level Convolution Network shown in figure 10 designed for handwritten 

and machine-printed character recognition. The model’s input is a 32 × 32 pixel image, the 

model has the three fundamental layer types: Two Convolutional Layers, Two Pooling 

Layers and a Fully-Connected layers with Tanh and Sigmoid activations [20]. 
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AlexNet (2012) 

 

Figure 11: Shows the AlexNet architecture from 2012. (Image taken from the following link: 

http://www. cs.toronto.edu/~fritz/absps/imagenet.pdf) 

The ground-breaking AlexNet shown in figure 11 that won the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) in 2012 is a much deeper network than LeNet-5 

consisting of 7 hidden layers, 650,000 neurons and 60 million parameters with max 

pooling, dropout, data augmentation and ReLU activations [21]. 

Inception (2014) 

 

Figure 12: Shows a revised architecture of Inception developed by the Google team. (Image taken from 

the following link: http://www. adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-

Know-About.html) 

A ConvNet called Inception shown in figure 12 from Google won the ILSVRC 2014 

competition is inspired by LeNet-5. It is a model with much depth and width while trying 

to keep computational cost at a minimum. The input consists of a 224 x 224 RGB images 

and all convolutions are activated by rectified linear activations. In the last inception 

module global average pooling is used instead of Fully Connected layer [22]. 
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ResNet (2015) 

 

Figure 13: Shows the ResNet architecture from Microsoft. (Image taken from the following link: 

http://www.arxiv.org/pdf/1512.03385.pdf) 

Residual Neural Networks (ResNet) is a ConvNet from Microsoft that won the ILSVRC 

2015 competition. The model uses 224 x 224 randomly cropped images, augmentation and 

batch normalisation along with SGD activations on minibatches. The model introduces a 

shortcut connection that skip one or more layers it is a way of identity mapping where 

outputs are added to outputs of the stacked layer as shown in figure 13 [23][24]. 
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4 Important features of the model 

The chapter involves the selections of important functions of the model such as activations, 

pooling, overfitting and ways of minimizing chances of over and underfitting with dropout 

and early stopping. The construction of the dataset is as well covered along with data 

augmentation, pre-processing and splitting the data to test, training and validation sets.   

The architecture of the model that achieved the best results is displayed and covered in 

detail along with the programming environment. 

4.1 Activation Functions 

Activation functions or transfer functions play a vital role in Neural Networks by 

converting an input into an output [13]. The function decides which computational neuron 

fires/activates and which one does not and with that carries on useful information that will 

ultimately decide which category an image belongs to.  

Many activation functions are available, linear and non linear, the most common one´s 

being: Linear function, Sigmoid, Tanh, ReLU and Leaky ReLU. 

The sigmoid function has a range [0, 1] as shown in figure 14. It was a popular activation 

function for CNN’s but has been replaced in modern models because of a vanishing 

gradient problem and a slow convergence.   

 

Figure 14: Plot of a sigmoid activation function S(x) = e^x/(1+ e^(−x)  ) 

For the top model a rectify linear unit known as ReLU activation is used on all the hidden 

convolutional layers. ReLU is a widely used non linear activation function for CNN’s. 

There are advantages in using ReLU which has a range of [0, ∞] as seen in figure 15. 

Firstly, ReLU is a computationally easy and effective activation function compared to 

sigmoid activation making the training phase much faster. It also partially tackles the 

problem with vanishing gradient. As well as increasing sparsity resulting in better 

representation [25]. 
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Figure 15: Plot of a ReLU activation function R(x) = max(0, x) 

For the top model there are two fully connected layers used, the first one having an ReLU 

activation function and the second one having a Tanh activation function which is a type of 

hyperbolic tangent similar to the sigmoid function but varies in the range [-1, +1] and 

steepness of gradient as shown in figure 16.  

 

Figure 16: Plot of a Tanh activation function tanh(x) = 2/(1+ e^(−2x)  ) −1 

 

Softmax is a type of sigmoid function that is used on the output in fully connected layer. It 

is a way of forcing the outputs of a neural network to sum the probability’s up to one to 

represent a probability distribution of an image into a single labelled class.  
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4.2 Pooling 

Pooling operations make up another important building block in CNNs, there are a few 

types like average pooling, L2-norm pooling and max pooling [26]. For the top model max 

pooling is used that directly follows some of the convolution layers. As seen in figure 17 a 

demonstration of a 4 × 4 matrix is reduced to a 2 × 2 matrix by a 2 × 2 max pooling filter 

with a stride of 2, where the highest number in each colour is passed on forward with the 

most relevant information.  

  

Figure 17: Example of max pool 2 × 2 filter on a 4 × 4 matrix. (Image taken from the following link: 

http://www.en.wikipedia.org/wiki/File:Max_pooling.png) 

This max pooling operation decreases the computation cost in the model’s training phase 

by dropping the number of parameters to learn. It also makes the features it detects more 

robust by passing on the most relevant information. 

4.3 Overfitting and Underfitting 

Overfitting and underfitting are the two most common errors that materialise in neural 

networks during the training phase of the data. What is desired is a thin line between the 

two, so the network model can predict or generalise with respectable certainty which 

category an unseen image belongs in. 

Underfitting occurs when a model performs poorly on the training set, that is it has a poor 

percentage of accuracy that will lead to bad generalisation on unseen images in the test 

phase. Underfitting is not a problem that is hard to overcome, for it is noticeable problem 

that transpires in the training phase. Fixing it requires the model to be tested with different 

algorithm to get the test/validation accuracy of the network up, running the training phase 

for a longer time and/or tweak some parameters of the convolution layers [27]. 
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Figure 18: Shows how under and overfitting looks on a graph. (Image taken from the following link: 

http://www.medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-

how-to-deal-with-it-6803a989c76)  

 

Overfitting is a much more common problem than underfitting and can be a difficult one to 

correct. Overfitting occurs when a model preforms well on the training/validation set but 

poorly on the test set of unseen images. The reason can be that the dataset is small 

compared to the training time, it can transpire to some features of trained images to be 

learned, but that are not really a factor for prediction of images that are unseen. It is 

basically taking in the noise or random fluctuations and fitting it with the data instead of 

the underlaying relationship between the main features in each category [28]. The 

difference between over and underfitting is shown in figure 18, underfitting is shown in the 

first image where the line does not fit the points in the graph. The image on the right side 

on the other hand fits all the points but is to specific to the data it is training on and can 

therefore not generalize well on unseen images, the middle image is what is desired were 

the line is balanced with the points.  
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4.4 Dropout 

Dropout is one of the most effective way to control overfitting. The dropout function 

randomly disables or drops out units as well as their connections from the network as 

shown in figure 19. By doing that, some neurons will not contribute to the forward pass as 

well as the backpropagation of the model. Consequently, the model gets smaller which is 

computationally easier but the main benefit for implementing dropout is that by not having 

the presence of neurons all around, it prevents them from co-adapting to one another. In 

other words, dropout forces the network to learn more robust features that will lead to 

better generalisation [29]. 

 

Figure 19: Shows how dropout randomly drops neurons connections. (Image taken from the following 

link: http://www.researchgate.net/figure/Dropout-neural-network-model-a-is-a-standard-neural-

network-b-is-the-same-network_fig3_309206911) 

Dropout is used in the range of 0-1 where the neurons are multiplied with the output in that 

range. It is a process of trial and error to find out what works for each model.  

4.5 Early stopping 

Early stopping is another tactic of regularization used to prevent overfitting and 

unnecessary computation, it is used in the training phase and stops the model from 

continuing training a model when it has reached its “best” accuracy on a validation and/or 

training set [30]. The way it works is that after each epoch (one forward and backward pass 

of the entire training data) the validation accuracy and/or training accuracy is checked and 

compared to the validation accuracy and/or training accuracy in the previous epoch and if 

there has not been any increase between them, training will be stopped. This can be 

programmed in, or this can be estimated by running the program and monitoring the 

progress.  

Usually the validation accuracy goes up and down, so it is important to set “patience”, a 

feature used to wait a certain time before stopping training, that is to make the model stop 

training if it has not increased its accuracy over the last 10 epochs for example.  
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4.6 Optimization 

Optimization serve the purpose of minimizing the loss function by updating the model’s 

weights and biases in the training phase. Today there are many optimization algorithms 

available like GradientDescentOptimizer, AdadeltaOptimizer, AdagradOptimizer, 

AdagradDAOptimizer, MomentumOptimizer, AdamOptimizer, FtrlOptimizer, 

ProximalGradientDescentOptimizer, ProximalAdagradOptimizer and RMSPropOptimizer. 

This process of finding optimal (minimal) loss function is an iterative process meaning that 

one pass of the limited dataset is not enough. The dataset needs to be run through over and 

over again with the optimizers that update the weights and biases to gradually achieve the 

minimum loss function. Over the years gradient decent optimization algorithms have been 

the most popular optimization functions for NN. 

An Adaptive Moment Estimation (Adam) optimization algorithm was chosen for the top 

model which has proven itself suitable for most problems. Furthermore, it is recommended 

as the default optimization method for deep learning applications in a Stanford CS231 

course [30]. The algorithm is computationally efficient, has little memory requirements 

and is straightforward to implement.   

4.7 Dataset 

The foundation of a good image classifier is the quality of data in the dataset used to train 

the Network. In order to get decent accuracy on image predictions we need good consistent 

images. Today we do not have any trouble getting the images, but it is a tedious job to find 

the relevant ones. Even when the relevant images have been found there can be an issue if 

they are not labelled or structured as intended, which means most of the images are 

unusable or take a lot of work to get in the right format. 

The dataset needed for the CNN consist of four categories of images to classify the five 

classes. They are aluminium cans, paper, plastic and plastic bottles. 

An attempt will be made to categorise the fifth class, the general waste class. It will be 

attempted without images being collected. The images for the general waste class are very 

diversified and therefore the size and time it would take to make that dataset for the project 

is not enough. For that reason, a decision was made to leave it out of the image dataset and 

rather activate that classification by using the prediction accuracy for the other four classes. 

Then if a certain percentage of accuracy is not met for an image it would be sorted to the 

general waste category. 

4.7.1 Dataset Fabrication 

As previously mentioned, it is difficult to find the appropriate dataset that represent the 

challenges that are being confronted. In order to get the most relevant representation of real 

time functionality of the ATC mechanism a decision was made to build a new dataset for 

the categories. 
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The ATC mechanism has a camera chamber where pictures of the trash is analysed before 

it is moved mechanically to its category. The mechanism takes in a single piece of trash 

and therefore I need a dataset of images representing the analysis that occurs in ATC. All 

the images are captured with a Raspberry pi v2 camera that is positioned inside the camera 

chamber, where the distance from an object is 20 cm. Example of images from all 

categories can be seen in figure 20.  

 

Figure 20: Example of images taken above the camera chamber. Images are from the four categorise 

needed to classify. 

A setup was made where a simple Python program with four push button inputs to a 

Raspberry Pi 3 computer was constructed. Each button input was programmed to take a 

picture with a Raspberry V2 camera where a LED ribbon light output would be turned on 

while images are captured for clearer images. For each button the picture was saved to a 

specified folder and labelled appropriately that is as aluminium cans, paper, plastic or 

plastic bottles.  

The images collected are saved in HD resolution (1280 × 720 pixels) although the images 

may by resized when it comes to training. Total images collected for the dataset where 

4755, divided as follows: 
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• Aluminium cans  1000  

• Paper    1582 

• Plastic   1173 

• Plastic bottles  1000 

The aluminium cans class includes images of 330 ml and 500 ml cans from Pepsi, Coca 

Cola, Monster and many more in crumpled and whole condition. 

The paper class includes images of magazines, newspapers, white papers, paper cups, 

napkins and soft paper in any condition (shredded, wrinkled and whole).  

The plastic class includes images of see through bags, coloured bags, candy wrappers and 

plastic cups along with hard see through plastic in any condition (shredded, wrinkled and 

whole). 

Plastic bottles class includes images of 500 ml and 1L plastic bottles from Pepsi, Coca 

Cola and many more, in crumpled and whole condition. 

The dataset for plastic and paper categories where made bigger than the two other 

categories because of the similarities between them, which could cause problems 

distinguishing them apart with the CNN.  

4.8 Data pre-processing 

Popular datasets for image classification like MNIST dataset [31] have 70000 images of 

handwritten digits and CIFAR-10 dataset [32] has around 60000 images for ten classes of 

classification. My dataset of roughly 5000 images for four classes is not a large dataset, but 

it can be a good foundation to build upon. The differences between my dataset and 

previously mention datasets besides the size is that I have fewer classes of classification, 

larger images for training and a controlled environment of image capturing. The images for 

the dataset are resized to numerus sizes for later evaluations purposes. From a 450 × 450 

RGB images to 50 × 50 grayscale images compared to 32 × 32 RGB images in the CIFAR-

10 dataset and 28 × 28 grayscale images in the MNIST dataset. 

4.8.1 Dataset Augmentation 

By image augmentation the dataset can be enlarged. There are many options to do this 

[33], in my process I focused on three methods. By using rotation, flip and blur, where 

rotation takes a copy of every picture and rotates it by a set angle or random angle. Flip or 

mirror where a copy is taken of every image and flipped from right to left or upside down 

and blur where a copy is taken of every image and Gaussian Blur filter is implemented on 

the copy. Each of these methods by itself doubles the dataset size. Image augmentation is 

done in real time before convolution and training starts and is not done on the test set. 
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4.8.2 One hot encoding 

When working with labelled data it is necessary to get the images in the right format for 

algorithms cannot work with categorical data directly. One hot array is a way to deal with 

that by converting categorical data into vectors of 0’s and 1’s [34]. The vectors length is 

equal to the number of categories, as for my case I have four categorise and therefore the 

vector’s length is four where each element in the vector corresponds to one of the four 

labels.        

Table 1: Showing one hot encoding on the four classes. 

Aluminium cans 1 0 0 0 

Paper 0 1 0 0 

Plastic 0 0 1 0 

Plastic bottles 0 0 0 1 

  

Labelled images are now represented as one hot encode vectors as we can see in table 1, 

aluminium cans as [1,0,0,0], paper as [0,1,0,0], plastic as [0,0,1,0] and plastic bottles as 

[0,0,0,1].  

4.9 Training, Validation and Test sets 

Training set is part of the labelled data that the model runs over and over to learn 

algorithms by constantly updating the weights of the classifier with backpropagation.  

Like the training set the validation set consist of labelled images that are used to validate 

the model during the training phase and to tune the hyper parameter of the classifier.  

The test set is entirely separated from the training set and has nothing to do with the 

construction of the model itself. It is the final assessment of efficiency on the model by 

running unlabelled and previously unseen images through the trained network. 

 

Figure 21: Image proportion over the entire dataset, containing training, validation and testing data. 
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Splitting the dataset to training set and test set is essential for evaluation purposes. I 

decided to split my dataset of 4755 images into 75% training and 25% testing. There are 

3566 labelled images in training set and 1189 unlabelled images in the testing set. A 

portion of the training set is reserved for validation, that is 350 images of the training set as 

is shown in figure 21.  

4.10 Environment 

The CNN is programmed in Python programming language in a TensorFlow environment 

an open-source software library from Google. TensorFlow was originally developed by 

Google Brain Team to conduct machine learning research, it is used for numerical 

computation using data flow graphs. That is the main feature, expressing numeric 

computation as a computation graph. This framework allows you to build complex models 

with small operations, make gradient calculations and make each operation function 

evaluations at a given point. Another feature of TensorFlow that helps with visualisation, 

understanding, debugging and optimizing TensorFlow programs is TensorBoard [35]. 

Along with the TensorFlow environment I used TFLearn [36] which is a high-level API 

Python module for distributed machine learning. It makes some processes more accessible 

to use as well as having a Scikit-learn interface. A list of hardware and software is as 

follows: 

Computer 

• I5 intel 4 cores 

• 8GB RAM 

• GTX 1050 GPU 

o 6.1 computing capability 

o 2GB memory  

o Nvidia driver 384.111 

Programming environment 

• Ubuntu desktop version 16.04 

• Python3 

• Sublime Text3 

• TensorFlow 1.2.0 / TFLearn 

• Cuda Toolkit 9.1 

o cuDNN 4.0 

o Anaconda for Python 
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4.11 Top model 

After trying several different models of variously deep CNN with different input images 

scaling from large RGB images to small grayscale images, a decision was made to have the 

input contain grayscale 400 × 400 pixel images. This variation ended up being the top 

model with the best accuracy on the test set consisting of the typical CNN architecture that 

has an input layer, hidden layers in the middle and fully connected layers at the end. Real 

time image augmentation is performed during the training phase with random blur and 

random rotation on images.  

 

Figure 22: Flow chart of the model from TensorFlow Tensorboard revealing step by step information. 

Figure 22 shows a flow chart of the model’s functionality. The input takes in the images in 

a 400 × 400 × 1 matrix which goes to the first convolution layer that has 32 filters where 

the filter size is 5 × 5. The strides are set to [1 1 1 1] meaning that there is a thorough 

overlay for spatial recognition, as well as having no need for zero padding. Activation of 

all the convolution layers are conducted with the rectified linear unit (ReLU) function. 
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After the first convolution layer a max pooling function is conducted with a 5 × 5 filter that 

reduces the input to the next convolution to an 80 × 80 × 32 matrix. 

The second convolution consist of 64 filters also having 5 × 5 matrix size with a stride of 

[1 1 1 1]. This action produces an 80 × 80 × 64 matrix output to the next convolution layer 

that has 128 filter with the same activation and same filter sizes as before. The second max 

pooling layer follows that reduces the image most relevant information to an output of 16 × 

16 × 128 matrix. The fourth convolution has 256 filters with 5 × 5 kernel size, that outputs 

a 16 × 16 × 256 matrix that goes to the third max pooling function that decreases the 

information further to a 4 × 4 × 256 matrix. 

The fifth and sixth convolution layers with 64 and 32 filters come after that before the last 

max pooling operation that gives an output of 1 × 1 × 32 matrix to a the fully connected 

layers. 

There are two fully connected layers with different activation functions. The first fully 

connected layer is activated by ReLU with 1024 nodes and a dropout rate of 0.6 and the 

second fully connected layer is activated by a Than function which flattens the information 

to 2048 nodes and has a dropout rate of 0.7 to prevent the model from overfitting. Finally, 

we have the softmax activation for the classification for the 4 classes needed. The 

regression is performed by Adam optimizer with a learning rate of 1e-4. 

The training set contains 3216 images so the validation for the training phase was set 

around 11% or 350 images. Batch size is 12 which is low but is needed for computational 

reasons, this is a compromise between learning rate and batch size. The batch size is the 

number of images that are taken through training at a given time, because the whole dataset 

cannot be passed through the network all at once. The number of batches needed to go 

through the dataset ones is 3216 images / batch size 12 = 268 batches = 1 epoch. The 

number of epochs is set at 40 a number found after some testing with early stopping.  
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5 Results 

In this section, the results of the top model are displayed, which is the accuracy and loss 

functions of the model in training phase for the training set and validation set. The test sets 

were analysed with confusion matrices for good visualisation representation on results and 

comparisons are done on the second-best model to the top one. Smoothing on the graphs 

are applied that need to be taken into consideration.    

5.1 Accuracy results of the top model 

 

Figure 23: Showing raw accuracy results on training set. 

Results on the training set accuracy can be observed in figure 23 where the Y axis 

represents the percentage of accuracy and X axis represents the steps. By looking at the 

graph it is visible that the accuracy increases significantly for the first 3000 steps and then 

gradually increases and ending with a 0.9982 (99.82%) accuracy. 

 

 

Figure 24: Results shown for loss function on training set. 

Results on the training set loss function can be observed in figure 24 where the Y axis 

represents the percentage of loss and X axis represents the steps. By looking at the graph it 

is visible that the loss function decreases significantly for the first 3000 steps and then 

gradually approaches zero, ending with a 0.01027 (1.027%) loss.  
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Figure 25: Validation accuracy results shown. 

Results for the validation set accuracy is shown in figure 25, the Y axis represents the 

accuracy and X axis represents the steps. By observing the graph, it is clear that the main 

improvements occur over the first 2000 steps ending with a 0.9886 or a 98.86% accuracy 

on the validation set.   

 

 

Figure 26: Validation set loss shown in graph. 

The process of the loss function on the validation set can be observed in figure 26, the Y 

axis represents the accuracy and X axis represents the steps. On the graph it shows how 

drastically the loss reduces in the beginning and ends up being 0.08558 or 8.558%.   
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Table 2: Confusion matrix for test set results plotted with scikit Learn. 

 

Results from the test set were correctly predicted 1174 times out of the 1189 images giving 

a 98.74% accuracy. Most of the classification errors are between the plastic and paper 

categories as we can see in the confusion matrix in table 2 where the Y axis represents the 

true labels and the X axis represents the predicted labels. Out of 395 images in the paper 

category three of them were misclassified to be plastic and in the plastic category five out 

of the six misclassification errors were thought to be paper. There are many resemblances 

between the two categories so in advance it was expected that most prediction errors would 

be in the paper and plastic categories. Three errors were made in the plastic bottle 

category, two of the images were predicted to be aluminium cans and one to be plastic. The 

aluminium can category also had three predictions wrong, all of them predicted to be 

plastic bottles. 
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Table 3: Confusion matrix for normalized test results plotted with scikit Learn. 

 

Looking at the normalised confusion matrix in table 3, where Y axis represents the true 

labels and the X axis represents the predicted labels, we can see the prediction accuracy on 

each category. The lowest accuracy of 97.96% is in the plastic classification where 1.7% 

where misdiagnosed as paper. The best classification accuracy was achieved in the paper 

category with 99.24% accuracy. In the aluminium cans category 98.8% classification 

accuracy was achieved and plastic bottle category ended up with the same classification 

accuracy of 98.8%. 
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5.2 Accuracy results of the second-best model 

The second-best model is similar to the top model in having six convolution layers and 

containing two fully connected layers with Tanh and ReLU activations. However, the 

convolution layers in this model have either 32 or 64 filters and max pooling is applied 

directly after each convolution layer. Image augmentation is done somewhat different and 

the dropout rate of the fully connected layers are both set to 0.7. Below are the results for 

the accuracy and loss function on the training and validation sets, the test set results are 

presented with a confusion matrix. Smoothing on the graphs are applied that need to be 

taken into consideration.   

 

 

Figure 27: Showing raw accuracy results on training set. 

Results from the training set accuracy can be observed in figure 27 where the Y axis 

represents the percentage of accuracy and the X axis represents the steps. By looking at the 

graph it is visible that the accuracy increases significantly for the first 3000 steps, then 

gradually increases and ending with a 0.9917 (99.17%) accuracy. 

 

 

Figure 28: Results shown for loss function on training set. 

Results on the training set loss function can by observed in figure 28 where the Y axis 

represents the percentage of loss and the X axis represents the steps. By looking at the 

graph it is visible that the loss function decreases significantly for the first 3000 steps and 

then gradually approaches zero, ending with a 0.0214 (2.14%) loss.  
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Figure 29: Validation accuracy results shown. 

Results from the validation set accuracy is shown in figure 29, the Y axis represents the 

accuracy and the X axis represents the steps. It shows a gradual increase in prediction 

precision ending with 0.9886 or 98.86% accuracy.   

 

 

Figure 30: Validation set loss. 

The process of the loss function on the validation set can be observed in figure 30, the Y 

axis represents the accuracy and X axis represents the steps. The graph shows how the loss 

reduces considerably in the beginning and ends up being 0.05484 or 5.48%.  
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Table 4: Confusion matrix for test set results plotted with scikit Learn. 

 

Results from the test set were correctly predicted 1172 times out of the 1189 images 

producing a 98.57% accuracy. Most of the classification errors were between the plastic 

and paper categories as we can see in the confusion matrix in table 4 where the Y axis 

represents the true labels and the X axis represents the predicted labels. Out of 395 images 

in the paper category, ten of the images where predicted to be plastic. There are many 

similarities between the two categories so in advance it was expected that most prediction 

errors would be in the paper and plastic categories. Out of the 294 images of plastic two of 

them were thought to be paper and one predicted to be a plastic bottle. The accuracy of 

plastic bottles was very good with only one of the predicted as plastic. Out of the 250 

images of aluminium cans, only three of them where misdiagnosed as plastic bottles.  
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Table 5: Confusion matrix for normalized test results plotted with scikit Learn. 

 

Looking at the normalised confusion matrix table 5 where the Y axis represents the true 

labels and the X axis represents the predicted labels, we can see the prediction accuracy on 

each category. The lowest accuracy of 97.47% was in the paper classification where 2.53% 

where misdiagnosed as plastic. The best classification accuracy was achieved in the plastic 

bottle category with 99.6% accuracy. In the aluminium cans category 98.8% classification 

accuracy was achieved and plastic category ended up with a classification accuracy of 

98.98%. 
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5.3 Comparison of top and second model  

Both models have the same runtime in the training phase (40 epochs) and have very similar 

results on the accuracy of both validation and training sets. The main different between the 

two of them are in the test set results and loss function. Below is the comparison on the 

two models for test, train and validation sets. Smoothing on the graphs are applied that 

need to be taken into consideration.   

 

 

Figure 31: Showing raw accuracy comparison results on training sets. 

Comparison can be seen in figure 31 were accuracy on the training set of the top model 

(green line) and second-best model (red line) are displayed. The Y axis on graph represents 

the accuracy and the X axis represents the steps. The models perform similarly where the 

top model ends with a 99.82% accuracy compared to a slightly less 99.17% accuracy. It is 

visible that the top model has a steeper learning curve in the beginning but otherwise they 

are similar.    

 

 

Figure 32: Results comparison shown for loss function on training sets. 

Comparison on the loss function on training sets for the two models are shown in figure 31 

where the Y axis represents the accuracy and the X axis represents the steps. The top 

model (green line) has a steeper loss in the beginning and has a better final result in a 

1.027% loss function compared to 2.14% on the second-best model (red line).  
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Figure 33: Validation accuracy comparison results shown. 

Accuracy on the validation set for the top model (green line) and second-best model (red 

line) is displayed in figure 33 where the Y axis represents the accuracy and the X axis 

represents the steps. Both models achieve the same result with a 98.86% accuracy on the 

validation set. The difference is that the top model has a greater increase in the start 

compared to the second-best model. 

 

 

Figure 34: Validation set loss comparison shown. 

Loss on validation comparison for the top model (green line) and second-best model (red 

line) is shown in figure 34 where the Y axis represents the accuracy and the X axis 

represents the steps. Better result is achieved by the second-best model with 5.48% loss 

compared to the top model with 8.558% loss. 
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Table 6: Comparison of top and second model predictions on test set. 

 

The difference between the two models are interesting and can be seen in table 6 where the 

green text represents the top model predictions and red text represents the second-best 

model predictions. If the paper category is observed the difference are three prediction 

errors from the top model compered to ten from the second-best model where all of them 

are predicted to be plastic. The difference can be explained with the number of filters 

present in the top model. The highest number of filters in one of the convolutional layers  

are 256, compared to 64 filters in the second-best model. With these many filters, the top 

model is able to detect other patterns that the second-best model is not able to. In other 

categories the difference is minimally better for the second-best model. 
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6 Conclusion  

This thesis shows that a respectable classification accuracy can be achieved by 

implementing a Convolutional Neural Network on the four classes of the project. By 

creating a relatively small dataset of less than 5000 images taken in a controlled 

environment and using image augmentation an accuracy of 98.74% was achieved on the 

test set. 

With several different architecture experiments the best model ended up having an input 

containing 400 × 400 grayscale pixel images, data augmentation of rotating and blurring, 

six convolution layers and two fully connected layers. ReLU activation was applied on the 

six convolution layers that had 32, 64, 128 and 256 filters. In between the convolution 

layers, four max pooling operations were used to down sample the matrix that sped up 

computation and made the detected features more robust. The fully connected layers used 

ReLU and Tanh activation and with the help of dropout and early stopping experiments, 

overfitting was limited. The results on the training and validation set resembled the 

outcome of the test set where the most categorical errors turned out to be in the 

paper/plastic category as was expected.  

There is room for improvement that could involve a different network or some changes of 

the current model. But the groundwork for implementing a CNN model on the ATC 

mechanism has been achieved by the project.  

6.1 Discussion and future work 

The current CNN model together with the ATC mechanism can serve a role to make a 

better algorithm in the future. When the ATC is up and running digital copies will be made 

of the trash as it is sorted to the corresponding categories. These copies will be labelled 

images for each class that can be used for a new larger dataset. The model is limited by the 

quality and size of the dataset it is trained with. 

The model is categorising four classes with good accuracy for plastic bottles, aluminium 

cans, plastic and paper. There are however additional classes that need to be categorised, 

for example general waste and organic waste. Large datasets need to be made for those 

classes because of the diversity of items in them and preferably be created in a controlled 

environment like the other datasets. The attempted to categories the general waste category 

by using the “low” percentage of accuracy on the other categories to activate the general 

waste category did not return the desired results. The accuracy for the image’s predictions 

are high, even when they are incorrectly classified. The percentage fluctuates too much to 

find the fine line or percentage that is suitable to classify the general waste class.  

The input selection of grayscale images is something that should be reconsidered. When 

the images are grayscale the model is relying on pattern recognition instead of relying on 

colour as well as pattern recognition with RGB images. For my experiments the results on 

accuracy where better with grayscale images that also meant it took less time for training 

the model which is a plus for real time analysing for trash in the ATC mechanism. 

Some concerns involve the chances of the model overfitting the data in training because of 

the controlled environment that the images are taken from. That is that all the images in all 
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the categories have the same background. In retrospect I think it is not likely to have an 

impact on generalising/predicting since all future unseen images will have the same 

background, and other regularization techniques are used to control overfitting. 

The future prospect of an automatic sorting mechanism such as the ATC is great. There are 

many reasons for companies, institutions and governments to invest in this technology. The 

environmental reasons for investing are that better recycling corresponds to less landfills 

and reduction of the carbohydrate footprint. The financial advantages can be seen for 

example in the general waste compartment which is the largest category where a rough 

estimate of 50% - 70% is misclassified. It is the most expensive part in terms of disposal 

but if the general waste is categorized correctly that part of the bin will decrease 

significantly and therefore save money, even turning that cost into revenue since recycling 

centres pay for categorised plastic and paper waste at their facilities.  

Environmental and social responsibility is a large factor in today ́s organizational cultures 

and by implementing an automatic way of recycling into the company it will be in its 

benefit. It would show the determination that the company is taking, to do their part for 

better recycling. The government has even a stronger reason to take part in better recycling 

for they have to lead with an example for the rest of us to follow. 
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APPENDIX 

''' 

CNN_ATC_PREP.py 

Image preparation, resizing images to a 400 x 400 grayscale pixel images.  

Splitting them into training and test with one hot labels. 

Partly taken from Sentdex https://pythonprogramming.net tutorial and 

TFLearn tutorials tflearn.org edited Stefán Sturla Stefánsson 

''' 

 

import cv2 

import numpy as np 

import os          

from random import shuffle  

from tqdm import tqdm       

import tensorflow as tf 

import matplotlib.pyplot as plt 

import tflearn 

from tflearn.layers.conv import conv_2d, max_pool_2d 

from tflearn.layers.core import input_data, dropout, fully_connected 

from tflearn.layers.estimator import regression 

from tflearn.data_augmentation import ImageAugmentation 

from sklearn import metrics 

 

#Original image path 

TRAIN_DIR = '/home/stefan/Desktop/rusl/Train_label'                                                                                          

TEST_DIR = '/home/stefan/Desktop/rusl/Test_Label' 

IMG_SIZE = 400   

 

#Creating one hot labeling from dataset labels 

def label_img(img): 

    word_label = img.split('.')[-5]                                                                                                                         

    if word_label == 'floskur': return [1,0,0,0]    #plastic bottles 

    elif word_label == 'pappir':return [0,1,0,0]    #paper 

    elif word_label == 'dosir': return [0,0,1,0]    #aluminum cans 

    elif word_label == 'plast': return [0,0,0,1]    #plastic 

 

#Training data fabrication with 3566 400 x 400 grayscale images 

def create_train_data(): 

    training_data = [] 

    for img in tqdm(os.listdir(TRAIN_DIR)): 

        label = label_img(img) 

        path = os.path.join(TRAIN_DIR,img) 

        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)                  

        img = cv2.resize(img, (IMG_SIZE,IMG_SIZE)) 

        training_data.append([np.array(img),np.array(label)]) 

    shuffle(training_data) 

    np.save('training_data400.npy', training_data) 

    return training_data 

 

#Test set fabrication with 1189 400 x 400 grayscale images 

def create_test_data():                                            

    testing_data = [] 

    for img in tqdm(os.listdir(TEST_DIR)): 

        label = label_img(img) 
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        path = os.path.join(TEST_DIR,img) 

        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)                  

        img = cv2.resize(img, (IMG_SIZE,IMG_SIZE)) 

        testing_data.append([np.array(img),np.array(label)]) 

    shuffle(testing_data) 

    np.save('testing_data400.npy', testing_data) 

    return testing_data 

 

 

train_data = create_train_data() 

test_data = create_test_data() 

 

 

 

''' 

Stefán Sturla Stefánsson 

CNN_ATC_TRAIN.py 

Training CNN phase  

Input 400 x 400 grayscale 

Learning rate 1e-4 

Image augmentation, rotation and blur 

6 convolution layers, 32, 64, 128, 256  

4 max pooling layers, 5 x 5 

2 fully connected layers ReLU, Tanh 

''' 

 

 

import cv2 

import numpy as np 

import os          

from random import shuffle  

from tqdm import tqdm       

import tensorflow as tf 

import matplotlib.pyplot as plt 

import tflearn 

from tflearn.layers.conv import conv_2d, max_pool_2d 

from tflearn.layers.core import input_data, dropout, fully_connected 

from tflearn.layers.estimator import regression 

from tflearn.data_augmentation import ImageAugmentation 

from sklearn import metrics 

    

#image size and learning rate 

IMG_SIZE = 400                                                     

LR = 1e-4 

 

#Model name for Tensorbord visualization 

MODEL_NAME = 'prufa1'      

 

#Loading Train set images  

train_data = np.load('training_data400.npy') 

 

#Splitting train sett into validation set containing 350 images  

train = train_data[:-350] 

test = train_data[-350:] 

 

#Seperating label and image for the training  

X_train = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 

1)     

y_train = [i[1] for i in train]                                                  

#Seperating label and image for the validation set                                                                                       
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X_val = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE, IMG_SIZE, 1)       

y_val = [i[1] for i in test]                                                    

 

 

# Create extra synthetic training data rotating, flipping, blurring. 

img_aug = ImageAugmentation() 

#img_aug.add_random_flip_leftright() 

img_aug.add_random_rotation(max_angle=6) 

img_aug.add_random_blur(sigma_max=2.0) 

 

 

# Building the convolutional neural network 

tf.reset_default_graph() 

#Input of the network along with real time image augmentation 

network = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], 

data_augmentation=img_aug, name='input')   

 

#First convolution layer with 32 filters 5 x 5 in size 

network = conv_2d(network, 32, 5, activation='relu') 

#Max pooling function 5 x 5 

network = max_pool_2d(network, 5) 

 

#Second convolution layer with 64 filters 5 x 5 in size 

network = conv_2d(network, 64, 5, activation='relu') 

 

#Third convolution layer with 128 filters 5 x 5 in size                                                  

network = conv_2d(network, 128, 5, activation='relu') 

#Max pooling function 5 x 5 

network = max_pool_2d(network, 5) 

 

#Forth convolution layer with 256 filters 5 x 5 in size 

network = conv_2d(network, 256, 5, activation='relu') 

#Max pooling function 5 x 5 

network = max_pool_2d(network, 5) 

 

#Fifth convolution layer with 64 filters 5 x 5 in size 

network = conv_2d(network, 64, 5, activation='relu') 

 

#Sixth convolution layer with 32 filters 5 x 5 in size 

network = conv_2d(network, 32, 5, activation='relu') 

#Max pooling function 5 x 5 

network = max_pool_2d(network, 5) 

 

#Fully-connected 1024 node neural network, and ReLU activation function 

network = fully_connected(network, 1024, activation='relu') 

#Dropout set at 0.6 

network = dropout(network, 0.6) 

 

#Fully-connected 2048 node neural network, and Tanh activation function 

network = fully_connected(network, 2048, activation='tanh') 

#Dropout set at 0.7 

network = dropout(network, 0.7) 

 

#Regression and output for categories set 

network = fully_connected(network, 4, activation='softmax') 

network = regression(network, optimizer='adam', learning_rate=LR,  

          loss='categorical_crossentropy', name='targets') 

 

# Training the network 
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model = tflearn.DNN(network, tensorboard_dir='ATC6', 

tensorboard_verbose=0)        

           #input image          input labels                                           

model.fit({'input': X_train}, {'targets': y_train}, n_epoch=40,                    

          validation_set=({'input': X_val}, {'targets': y_val}),                    

          snapshot_step=500, show_metric=True, batch_size=12, 

run_id=MODEL_NAME)    

                                                                                     

    

#saved model name 

model.save('ATC6.tflearn') 
 

 

 

 

''' 

Stefán Sturla Stefánsson 

CNN_ATC_TEST.py 

Predictions on test set containing 1189 images 

98.7384% prediction accuracy 

''' 

 

import cv2 

import numpy as np 

import os          

from random import shuffle  

from tqdm import tqdm       

import tensorflow as tf 

import matplotlib.pyplot as plt 

import tflearn 

from tflearn.layers.conv import conv_2d, max_pool_2d 

from tflearn.layers.core import input_data, dropout, fully_connected 

from tflearn.layers.estimator import regression 

from tflearn.data_augmentation import ImageAugmentation 

from sklearn import metrics 

      

 

IMG_SIZE = 400                                                     

LR = 1e-4 

 

#Loading Test set images  

test_data = np.load('testing_data400.npy') 

 

 

#Separating label and image for the test set 

X = np.array([i[0] for i in test_data]).reshape(-1, IMG_SIZE, IMG_SIZE, 

1)           

Y = [i[1] for i in test_data]   

 

 

#The model without image augmentation 

tf.reset_default_graph() 

 

network = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')  

 

#First convolution layer with 32 filters 5 x 5 in size 

network = conv_2d(network, 32, 5, activation='relu') 

#Max pooling function 5 x 5 

network = max_pool_2d(network, 5) 
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#Second convolution layer with 64 filters 5 x 5 in size 

network = conv_2d(network, 64, 5, activation='relu') 

 

#Third convolution layer with 128 filters 5 x 5 in size                                                  

network = conv_2d(network, 128, 5, activation='relu') 

#Max pooling function 5 x 5 

network = max_pool_2d(network, 5) 

 

#Forth convolution layer with 256 filters 5 x 5 in size 

network = conv_2d(network, 256, 5, activation='relu') 

#Max pooling function 5 x 5 

network = max_pool_2d(network, 5) 

 

#Fifth convolution layer with 64 filters 5 x 5 in size 

network = conv_2d(network, 64, 5, activation='relu') 

 

#Sixth convolution layer with 32 filters 5 x 5 in size 

network = conv_2d(network, 32, 5, activation='relu') 

#Max pooling function 5 x 5 

network = max_pool_2d(network, 5) 

 

#Fully-connected 1024 node neural network, and ReLU activation function 

network = fully_connected(network, 1024, activation='relu') 

network = dropout(network, 0.6) 

 

#Fully-connected 2048 node neural network, and Tanh activation function 

network = fully_connected(network, 2048, activation='tanh') 

network = dropout(network, 0.7) 

 

#Regression and output for categories set 

network = fully_connected(network, 4, activation='softmax') 

network = regression(network, optimizer='adam', learning_rate=LR, 

loss='categorical_crossentropy', name='targets') 

 

model = tflearn.DNN(network)  

 

#load model 

model.load('ATC6.tflearn') 

 

#Running the images through the model 

i = 0 

while i < 1189:                         

    pre = model.predict([X[i]]) 

    print (pre) 

    pre = np.around([pre]) 

    print (pre) 

    print (Y[i]) 

    print('*'*70)  

    i = i + 1 

 

 


