
Università degli Studi di Camerino
School of Science and Technology

Master Degree in Computer Science (Classe LM-18)

Interactive Visualization for Hierarchical Models
of Simulation

Student Relator
Matteo Altobelli Prof. David Thue
Number 096777

Co-relator
Prof. Michele Loreti

A.A. 2017/2018

Abstract

One of the main problems when dealing with simulations is the correct visualization
of what has been calculated has the next world state. A complex system manages the
simulation process, and an equally complex state is produced. The objective of this
project is to create a system able to correctly visualize the succession of the different
states produced by the simulation. Since moving from one state to another is caused
by actions, our problem can be reduced to the correct visualization of the actions and
to the control of their success/failure. The entire project has been developed in Unity,
the well-known game development platform.

3

Contents

Abstract 3

1 Introduction 7
1.1 Background Notions . 8
1.2 Problem Formulation . 9
1.3 Criteria for Success . 10

2 Related Work 11

3 Proposed Approach 15
3.1 Planning Framework . 15
3.2 Simulation . 19
3.3 Visualization . 19

3.3.1 The GUI . 20
3.3.2 The "Gameplay" . 21
3.3.3 Errors Detection and Handling 32

3.4 Summary of the Chapter . 33

4 Discussion 35
4.1 Future Work . 36

5 Conclusion 37

5

1. Introduction

As time goes by, video games are becoming increasingly complex systems with many
interacting variables. To make sure that a game provides a satisfying experience, a
consistent data visualization is required, particularly because the quality of a game
directly relates to the experience a user gains from playing it.
Rendering takes care of this. With the term rendering we define the process that

allows one to obtain, starting from a three-dimensional (3D) model elaborated on the
computer, an artificial photorealistic image. More in detail, it is an image elaborated
on the computer following a three-dimensional modelling based on project data; the
geometric model created is covered with colours that are the same as real materials
(textures) and illuminated using light sources that reproduce natural or artificial ones.
It is obvious that the more complex the model is, the more the work necessary to create
a realistic image is greater. Furthermore, the number of models that make up a scene
contributes to make the rendering expensive.

But what happens when the amount of data to be displayed becomes increasingly
high? Since in a video game very rarely we talk about single images, but rather of
sequences of images (and therefore video), one of the main repercussions is the decrease
of the frame-rate, which has the effect of making the video less fluid. Subsequently,
to avoid an excessive loss of fluency, the quality of the images that make up the video
sequence is reduced: an image that has a lower graphic resolution, requires less rendering
work. The resolution, in computer science and graphic design, is the quantity that
indicates the degree of sharpness or clarity of an image. [4] Therefore, a lower graphic
resolution results in a loss of detail.

Many studies have addressed the topic of level of detail (LOD) generation. Efficient
LOD generation techniques for point-based surface representations have been presented
in the University of California Irvine, but they were not optimized on the bit-level for
storage cost. [12]
Other studies have described techniques for improving the performance of image

rendering by using CPU cycles going idle while the user is examining a static image
on the screen. They proposed to convey the most information to the user as early as
possible, with image quality constantly improving with time [1]. But it is evident that
in a sequence of images, such a technique cannot be applied.
Even if solutions for using level of details for time dependent meshes have been given,

[15] the problem of LOD generation when dealing with a large number of high-defined
models has not been publicly addressed yet.

Our project was born with the purpose of giving a way to manage this problem.
It aims to create an application that simulates the behaviour of a video game, which

7

then visualizes the results, and that is able to reduce the cost of the rendering process,
making a selection of the objects to be rendered.
To do this, I and two other students used a hierarchical model to create a system that

could be able to generate sets of game actions, given specific conditions. Since a video
game can be considered as a succession of states, through these actions the system is
able to recreate the progress of a game. The sets of actions are then "sent" to the class
assigned to their visualization. Based on how the visualization ends, the current state
of the game is updated and new sets of actions are produced.
The most important part of the whole project is represented by the actions. Through

thePlanningDomainDefinition Language (PDDL), we have created the base structure
of the actions.
The other students, then, developed a simulation system that takes into account the

current state of the entire game world and the player’s status, to produce new actions.
Instead, I focused on how to visualize all these actions, trying to make sense of their

behaviour, and how to detect their result as new game states.

1.1 Background Notions

Before going further, it is good to explain what a hierarchical model is and why we
chose it.

“A hierarchical database model is a data model in which the data are organized into a
tree-like structure.” [19]

A hierarchical model is a type of database; it determines the logical structure of a
database and how data are stored, organized and manipulated.
There are four structural types of database management systems:

• Hierarchical Model. This design uses a one-to-many relationship for data ele-
ments. Its tree structure links a number of disparate elements to one "owner," or
"parent", primary record. The speed of data search is high but not very flexible.

• Network Model. This model maintains the speed of search of the hierarchy
model and increases its flexibility at the price of greater structural complexity. Its
structure is, in fact, represented by an undirected graph. In this model there is
no primary record, all the elements are equally important, and the links between
tables are passable in both directions, without having to follow a particular search
order as in the previous model.

• Relational Model. This model is based on set theory and first-order logic, and
is structured around the mathematical concept of relationship. The relational
model (less efficient in terms of search-speed with respect to hierarchical and
network databases) was affirmed for its greater flexibility in data search. But it
has some drawbacks. For example, Suri and Sharma (2011) [16] found that, though
the relational database has an easy to design and use system, as the size of the
database increases, it will slow the system down, and will result in performance
degradation and data corruption.

• Object-oriented Model. In this model the information is represented in the
form of objects as in object-oriented programming languages.

The choice of an appropriate database model depends on its use. For example, the
structure of the states of a video game is very similar to a hierarchical structure, since
from an initial state several new states are reached on the basis of the action performed.
From these new states it will be possible to carry out actions that will determine other
new states, and so on. Moreover, in a real-time system that needs a quick search among
the various possibilities, speed is a key element. For this reason, among all the models,
the hierarchical one is more suited to our needs.

1.2 Problem Formulation

How can we realize an “Interactive Visualization for Hierarchical Models of Simulation”?

The first topic to be addressed, when trying to answer this question, concerns the
creation of a framework on which to run the simulation. The development of such a
framework falls within the planning problem of Artificial Intelligence, as the simulation
of a video game is about searching for actions that make the states of the world progress.
The planning problem, in Artificial Intelligence, is about the decision making per-

formed by intelligent creatures when trying to achieve some goal. It involves choosing a
sequence of actions that will (with a high likelihood) transform the state of the world,
step by step, so that it will satisfy the goal.

Subsequently, the focus moves on the simulation of the game progress. This part
not only depends on how the planning framework has been constructed, but also deter-
mines which actions need to be performed. In this phase, a tricky aspect concerns the
construction of an algorithm that expands the hierarchical tree structure of the simu-
lation in the most efficient way possible. Particular importance is given to the speed of
expansion, as in a video game a fast response of the system is required.

Finally, there is the visualization of the actions generated by the simulation. The first
step to solve this problem is the definition of a communication protocol between this
part and the simulation. Such a protocol should be simple and "clean", i.e. without
useless information.
The communication must be bidirectional: initially the simulation will communicate

its results to the visualization, which will have the task of showing them, and then
return the results of the actions to the simulation.
The most delicate part in this process is certainly the detection of the actions’ results,

in particular when an action is not successful. In order to check that an action has been
carried out without any problem it is sufficient, in fact, only to check that the post-
conditions of each of them (defined during the creation of the actions) are satisfied. In
the opposite case, instead, waiting for the post-conditions to become true could require
waiting for a very long (if not infinite) time, blocking the simulation that is waiting for
an answer.

1.3. Criteria for Success

1.3 Criteria for Success

Based on the goals we set for ourselves, to be able to state that the project is appropriate,
we have taken into consideration the following criteria:

• Suitable protocol: A protocol able to transmit only the necessary information
not only allows a simpler implementation of the visualization, but makes the
communication process less heavy, improving the reaction time between simulation
and visualization.

• Correct and efficient visualization: To ensure a good gaming experience,
we have identified two characteristics that the action visualization should satisfy:
correctness, which guarantees that the visualization of the action is consistent
with its meaning and that is displayed entirely; efficiency, which ensures that
the generation of actions and their visualization is synchronized and that it takes
place within an acceptable time.

• Reliable action result detection: Particular importance in the visualization
process must be placed on the detection of each action’s result. The main thing
to avoid, in this process, is that the simulation is suspended because for some
reason the visualization is not able to assign a value to the outcome of one or
more actions.

10

2. Related Work

Summarizing Kelly et al’s review [9], we can say that early video games used scripts and
finite state machines (FSMs) to create and control the behaviour of NPCs. Some well-
known titles, as the QUAKE series or the Blizzard Software’s WARCRAFT III, were
using finite state machines in their algorithms. Some more recent games, like HALO
2, applied the concept of Hierarchical Finite State Machines (also known as Hierarchi-
cal State Machines, HSMs), that differ from the classical FSMs for the introduction of
hierarchically nested states. [7] The biggest problem when using FSMs is that their
complexity grows quickly when the number of NPCs grows, or their behaviour become
more complicated. Thus, it is evident that the use of FSMs is not suitable for the
last video games developed, in which often there is a huge number of NPCs and in
which we also want to achieve a behaviour more similar to the human one. [11] Scripts
are programs written in a particular class of programming languages, called scripting
languages. They are used in a special run-time environment that automate the execu-
tion of tasks. Various games used scripts to model NPCs (Bioware’s NEVERWINTER
NIGHTS, or Epic Games’ UNREAL TOURNAMENT), but they have properties sim-
ilar to FSMs: their complexity grows quickly when NPCs and the world become more
complex.

Planning technology brought new techniques in Game AI for building more intelligent
non-player characters, and thus more realistic NPCs, catching the attention of develop-
ers and researchers. Even if there are still a lot of problems and questions unanswered,
planning technology has made huge steps forward in these last two decades, since being
introduced in the games industry.
Alex J. Champandard’s article [2] helped us to look back in the past at the most

notable techniques used for planning task in video games.

The first game known to make use of planning techniques is F.E.A.R. (First Encounter
Assault Recon). The AI that made the enemies relies on a STRIPS-style planner to
search through all the possible actions to find a sequence of actions that could generate a
state that matches with the goal criteria. STRIPS is a planning algorithm that uses the
proposition logic extended with predicates and a search mechanism in the state space,
to obtain a possible sequence of actions that, if performed, causes the achievement of
a final state of the world starting from an initial one. It is effective in all those cases
where the problem and the environment are known a priori with certainty, but has some
limitations: the impossibility of managing differences between model and environment;
changes to the system must always and only occur as a result of the intelligent agent,
so it is unsuitable for cooperation or interaction in general; increasing the complexity
of the model, by introducing new variables and operations, the amount of calculation
time needed to plan an operation grows exponentially.

In the last ten years, there has been a strong spread of more hierarchical techniques
over STRIP-style planning: Hierarchical TaskNetworks (HTN) planners and behavior
trees.
The HTN planner is a method of planning based on the hierarchical decomposition

of actions on different levels of abstraction. Higher Level Actions (HLAs) allow you to
analyze planning at a higher level of abstraction. The Lower Level Actions (LLAs), on
the other hand, make it possible to analyze in detail all the single steps of a particular
plan. The lower level actions are called primitive actions and are characterized by less
abstraction. In an HTN, the solution of a problem is sought by first analyzing the high-
level actions, without having to analyze the details of each action and each task. Once
the high-level action sequence has been identified to solve the problem, it is possible to
analyze the lower level actions during the execution of the planning.

Behavior Trees (BTs) are "mathematical models of plan execution used in computer
science, robotics, control systems and video games". [17] They are trees of hierarchical
nodes that control the decision making process of an AI. BTs arrive at their goal by
breaking it down into smaller tasks. This programming style facilitates the generation
of goal-based behaviors, in contrast to the approach used by the FSMs. BTs are a very
easy form of planning, but because they do not consider explicitly the future effects
of current actions, relying only on a set of pre-established behaviors, falls within the
definition of Reactive Planner.
Hierarchical planners have been implemented so that they can include patterns that

make them very similar to the industry-standard behaviour trees. [2]

Our system uses the Planning Domain Definition Language (PDDL). It is a recent
attempt to standardize planning domain and problem description languages. It was
developed mainly to make the International Planning Competition (IPC) series possible,
and was inspired by STRIPS and ADL planning systems among others. The PDDl
allowed us to model the system such that it can provide the necessary information to
execute actions.

In Interactive Storytelling [5], detecting and responding to unanticipated user activity is
a central point. Narrative Mediation is used to preserve the coherence of the narration.
Riedl, Young and Saretto (from now referred as "RYS"), in their work, [14] defined two
types of narrative mediation:

• Accommodation. It integrates exceptional user actions into the narration through
the re-planning. A narrative plan can be analyzed and preemptively revised in
order to anticipate and accommodate exceptions.

• Intervention. It is the substitution of a user’s exceptional action with an instance
of an action called a failure mode. The failure mode action is similar to the
exception action, but its effects produce results that do not conflict with any of
the causal structure in the plan.

Narrative mediation is an effective method for managing the interaction between
human and computer-controlled agents in a narrative setting. However, there are several
limitations to the approach defined by RYS. Two central limits are:

• Locality of exceptions. It occurs when a user executes a sequence of actions in

12

preparation for the exceptional act. A system that made effective predictions
about the plan being executed might find opportunities for intervention or ac-
commodation before potentially extreme responses to exceptions are required.

• Locality of intervention. Intervention involves the substitution of a single user
action in place of the action that a user intends to perform. However, it is possible
that a sequence of actions could be executed in order to intervene.

Halldórsson, Gylfason and Gunnlaugsson, [6] tryied to expand RYS research, defining
more general ways of failure, and proposing a way to handle them. We will explain better
their work on the section about handling failures.

13

3. Proposed Approach

The project has been developed through Unity. Unity is a multi-platform game engine
that allows the creation of interactive 3D content with ease. It has an excellent func-
tionality, a high-quality content, and the ability to be used for pretty much any type
of game. Moreover, it is a well-known engine for us, as we have had the opportunity
to study it thoroughly during our double degree program in Iceland, while any other
engine, however good it may be, would have required a period of time to understand
the functioning and get familiar. With the last updates, Unity started to support only
the C# (pronounced “C sharp") language.
C# is an object-oriented programming language developed by Microsoft within the

.NET initiative. The syntax and structure of C# are inspired by various languages born
previously, in particular Delphi, C++, Java and Visual Basic.

The project can be divided into three sections, connected to each other:

• Planning framework

• Simulation

• Visualization

3.1 Planning Framework

A video game can be considered as a succession of discrete states, in which actions
define the rules for going from one state to another. In fact, starting from a generic
initial state it is possible to reach a new state only if an action (or a series of actions)
is performed.
In our project, each state is defined as a set of relationships. Our definition of

relationship is quite analogous to the mathematical definition: it binds one or more
entities through a predicate.
We defined two types of relations:

• Binary

• Unary

A binary relation is a relationship that connects two entities through a predicate,
while a unary relation is a relationship that involves only one entity and a predicate. In
the latter case, rather than talking about a relationship, we are talking about a property
that is valid for the (only) entity involved. Both types of relations have a parameter

Planning Framework

called RelationValue that can be TRUE or FALSE, depending on if they are valid or
not for a certain state.
For simplicity, we choose to use only these two types of relationship (avoiding those

of higher degrees, i.e. ternary, quaternary, etc.). Here is an example for each one of
them:

• Handempty(rover1): this unary relation tells that rover1 has its robotic hand
empty, which means that it is not holding anything.

• At(rover2, waypoint7): this binary relation says that rover2 is at waypoint7.

After having defined states, we needed a way to determine the transitions from one state
to another. We decided to use the Planning Domain Definition Language (PDDL) for
this task.
A PDDL planning task is made of:

• Objects: Things in the world that interest us. We called these elements Entities.

• Predicates: Properties of objects that we are interested in; can be true or false.

• Initial state: The state of the world that we start in.

• Goal specification: Things that we want to be true. In our project, a goal state
is not defined, because we want to consider performing every possible action,
among the ones defined.

• Actions: Ways of changing the state of the world.

The term Entity, already introduced, takes on a meaning similar to the concept of entity
in the Entity-Relationship model (E-R model). It represents classes of objects (things,
people, etc.) that have common properties and autonomous existence for the purpose
of the application of interest. Thus, entities are grouped by Entity-Type. An occurrence
of an entity is an object or instance of the class that the entity represents.

In our relations, Predicates are a link between entities; they represent the "verb"
or the "adjective" of every relationship. As for the relations, We defined two types of
predicates: binary and unary. In predicates, the equivalent of entities in relationships
are the Entity-Types.
One thing that is important to understand is that predicates in a domain definition

have no intrinsic meaning. Within the domain definition is specified only what the pred-
icate names are, their number of arguments, and the argument types. The "meaning"
of a predicate, in the sense of for what combinations of arguments it can be true and its
relationship to other predicates, is determined by the effects that actions in the domain
can have on the predicate, and by what instances of the predicate are listed as true in
the initial state of the problem definition.

Both Relations and Predicates are defined through an interface. In the C# language,
an interface contains only the declaration of methods, events, and properties, but not
their implementation. The class that implements the interface has the task of imple-
menting all the members of the interface. The main contribution of an interface is that
it makes it easy to maintain a program.

16

Planning Framework

An interface can be defined using the interface keyword. Following are the two
definitions of our interfaces:

1 pub l i c i n t e r f a c e IRe l a t i on
2 {
3 Entity Source { get ; }
4 IP r ed i ca t e Pred i ca te { get ; }
5 Relat ionValue Value { get ; s e t ; }
6 bool EqualsThroughPredicate (IRe l a t i on other) ;
7 bool EqualsWithoutValue (IRe l a t i on other) ;
8 bool Equals (ob j e c t obj) ;
9 IRe l a t i on Clone () ;

10 i n t GetHashCode () ;
11 s t r i n g ToString () ;
12 }

1 pub l i c i n t e r f a c e IP r ed i ca t e
2 {
3 s t r i n g Name { get ; }
4 EntityType Source { get ; }
5 IP r ed i ca t e Clone () ;
6 bool Equals (ob j e c t obj) ;
7 s t r i n g ToString () ;
8 }

Different classes can implement the interfaces using <Class Name> : <Interface Name>
syntax. These classes need thus to provide an implementation of the methods and
properties of the interfaces they are implementing. An example is now given:

1 pub l i c c l a s s BinaryPred icate : IP r ed i ca t e , System . IEquatable<IPred i ca t e>
2 {
3 pr i va t e s t r i n g _name ;
4 pr i va t e Ent i tyType _source ;
5

6 . . .
7

8 pub l i c s t r i n g Name
9 {

10 get { return _name ; }
11 }
12

13 pub l i c Ent i tyType Source
14 {
15 get { return _source ; }
16 }
17

18 . . .
19

20 pub l i c IP r ed i ca t e Clone ()
21 {
22 return new BinaryPred icate (_source . Clone () , _name ,

_dest inat ion . Clone ()) ;
23 }
24

25 pub l i c over r ide bool Equals (ob j e c t obj)
26 {
27 i f (obj == nu l l)
28 return f a l s e ;

17

Planning Framework

29

30 i f (obj . GetType () != typeo f (BinaryPred icate))
31 return f a l s e ;
32

33 BinaryPred icate o the rPred i ca t e = obj as BinaryPred icate ;
34 i f (_source . Equals (o the rPred i ca t e . Source) == f a l s e)
35 return f a l s e ;
36 i f (_name . Equals (o the rPred i ca t e .Name) == f a l s e)
37 return f a l s e ;
38 i f (_dest inat ion . Equals (o the rPred i ca t e . Des t inat i on) == f a l s e)
39 return f a l s e ;
40 return true ;
41 }
42

43 pub l i c over r ide s t r i n g ToString ()
44 {
45 return _source + " " + _name + " " + _dest inat ion ;
46 }
47 . . .
48 }

Following the PDDL structure, the initial state is defined inside the Domain. For our
specific case, the Initial state is formed by the following relations:

• IS_CONNECTED_TO(wayPoint1, wayPoint5)

• IS_CONNECTED_TO(wayPoint2, wayPoint5)

• IS_CONNECTED_TO(wayPoint3, wayPoint6)

• IS_CONNECTED_TO(wayPoint4, wayPoint8)

• IS_CONNECTED_TO(wayPoint5, wayPoint1)

• IS_CONNECTED_TO(wayPoint6, wayPoint3)

• IS_CONNECTED_TO(wayPoint6, wayPoint8)

• IS_CONNECTED_TO(wayPoint8, wayPoint4)

• IS_CONNECTED_TO(wayPoint9, wayPoint1)

• IS_CONNECTED_TO(wayPoint1, wayPoint9)

• IS_CONNECTED_TO(wayPoint3, wayPoint4)

• IS_CONNECTED_TO(wayPoint4, wayPoint3)

• IS_CONNECTED_TO(wayPoint4, wayPoint9)

• IS_CONNECTED_TO(wayPoint5, wayPoint2)

• IS_CONNECTED_TO(wayPoint6, wayPoint7)

• IS_CONNECTED_TO(wayPoint7, wayPoint6)

• IS_CONNECTED_TO(wayPoint8, wayPoint6)

• IS_CONNECTED_TO(wayPoint9, wayPoint4)

18

Simulation

• AT(rover1, wayPoint6)

• AT(rover2, wayPoint6)

• IS_IN(sample1, wayPoint2)

• IS_IN(sample2, wayPoint9)

• IS_IN(sample5, wayPoint3)

• IS_IN(sample2, wayPoint3)

• IS_IN(sample4, wayPoint8)

• IS_IN(sample6, wayPoint3)

• IS_EMPTY(rover1)

• IS_EMPTY(rover1)

Actions define how to progress in the game. An action has:

• A Name, used as identifier.

• Pre-Conditions, that need to be satisfied in order for the action to be performed.

• Post-Conditions, that affect the world state once the action is finished.

• Parameters, which are the entities involved in the action.

Pre-conditions and post-conditions are lists of relations, binary and/or unary.

3.2 Simulation

The simulation has the task of exploring the actions that can be performed for any
given state. It checks which relationships are currently true, compares them with the
preconditions of each defined action, and then selects the actions that can be performed
(those whose preconditions are met). Among these, one is chosen for each rover and
then sent to the visualization. Thus, the simulation allows the progress of the game,
generating actions.

3.3 Visualization

To test the simulation, a scene was created with Unity. We discussed the choice of
a scene that could be adapted to our project. Initially it was thought to recreate the
behaviour of two villages with a player who travels from one to another. But, we needed
an example that could show our results directly and clearly, so we opted for a simpler
scene with fewer elements that could not confuse the observer.
At the end, we came up with a scene in which the player, represented by a satellite, is

moving between two planets. Each planet has two rovers that are performing the actions
produced by the simulation. Depending on which planet the player moves toward and

19

Visualization

his distance from it, they can see a certain amount of details, until they get to influence
the actions of the planet’s rovers.
Let’s begin the description of how the visualization is structured from the graphic

interface.

3.3.1 The GUI

A Graphic User Interface (GUI) allows users to navigate through the applications of
a computer. [20]
There are studies that have identified basic psychological factors to take into consid-

eration when designing a good GUI [8]:

• the physical limits of visual acuity: it is one of the main visual abilities of the
visual system and is defined as the ability of the eye to solve and perceive fine
details of an object and depends directly on the sharpness of the image projected
on the retina. [3]

• the limits of absolute memory: it refers to the fact that there is a limit to the
amount of information that a person can process at one time. Through his work,
the psychologist George A. Miller showed that “the span of absolute judgment
and the span of immediate memory impose severe limitations on the amount of
information that we are able to receive, process, and remember”. [10]

• the principles of grouping (or Gestalt laws of grouping): they are a set of
principles in psychology that explain that human beings naturally perceive objects
as models and organized objects. [13]

Figure 3.1 the first view when entering the “game”.

Figure 3.1: Game’s First View.

20

Visualization

As can be noticed immediately, the scene appears divided into two parts by an imag-
inary vertical line placed at the centre of the screen and, with respect to this line, the
elements appear arranged following a reflection symmetry (or mirror symmetry, or line
symmetry). This technique, shown in Figure 3.2, has been used to create a sort of logi-
cal division between the two planets and the information concerning them, and exploits
the Proximity principle belonging to the Gestalt laws. This principle states that within
the same scene or image, the elements close to each other are perceived as a unitary
element. In this way, users can easily locate the information they are looking for.

Figure 3.2: Representation of Gestalt laws of grouping.

As the player starts moving and, thus, interacting with the space, the GUI changes,
showing or hiding elements.

3.3.2 The "Gameplay"

Because of the nature of the project, which is not focused on the creation of a video
game, but on the correct display of a simulation of states, the level of interaction is
limited. Initially, the user can only move the satellite horizontally to the right or left.
The closer the satellite gets to one of the planets, the more details will be shown on the
screen.
The two planets, the moon, and the artificial satellite are the only actual 3D objects

that can be seen when the application is initially run. Their movements (respectively,
rotation, revolution, and translation) are made by acting directly on the Transform
component attached to these game objects. Figure 3.3 sums up the initial possible
interaction. At this point, some explanation is necessary. Every element inside the scene
is a game object; GameObject is the base class for all entities in Unity scenes. Game
objects are made of components; a Component is the base class for everything attached
to GameObjects. Finally, every object in the scene has a Transform component. It

21

Visualization

Figure 3.3: The initial possible Interaction.

stores the position, rotation and scale of the object, and is also used to manipulate
these parameters. [6] A lot of other components exist in Unity (Image, Text, Audio
Source/Listener, Mesh Renderer, and so on...) and are used to define characteristics for
game objects. The ones used for this project will be explained when encountered.

Here is a list of all the 3D game objects rendered in our scene:

• Artificial satellite, which represents the player.

• Two planets. We decided to call them Venus (the one to the left) and Mars (the
one to the right).

• A moon. This object has the effect of reducing the vision of Venus to the player

• 4 rovers, 2 for each planet.

• 18 waypoints, 9 for each planet.

• 2 terrains that represent the planet’s landscape.

The terrains are Navigation Meshes in the Unity Navigation System. This system allows
one to create objects which can navigate the game world. The Unity NavMesh system
consists of the following pieces:

• NavMesh (that stands for Navigation Mesh) is a data structure which describes
the walkable surfaces of the world and allows to find path from one location
to another. The data structure is built, or baked, automatically from the level
geometry.

• NavMesh Agent is a component with several functions that allow the component
to which it is attached to navigate the scene using the NavMesh.

22

Visualization

• The Off-Mesh Link component allows to add navigation shortcuts which cannot
be represented using a walkable surface. For example, jumping over a pit or
opening a door before walking through it.

• The NavMesh Obstacle component allows to describe moving obstacles the
agents should avoid while navigating the world.

Each rover has a NavMesh Agent attached to it. The Off-Mesh Link and NavMesh
Obstacle components are not used in this project.

We can now go back describing the “game”.
Each planet has different levels of detail, depending on the distance the player is away

from them. Entering a higher LOD (which can be translated as “moving closer to one
planet”) means having increased and more detailed information.
Figure 3.4 shows the view of LODs of our two planets from the editor.

Figure 3.4: Editor’s view of LOD.

As soon as the player (as the satellite) enters the first LoD, the connection is made
with the rovers of the planet to which it is moving. Following the logical division of the
screen, the two rectangles placed below the chosen planet are activated. These game
objects simulate the screens that transmit the view of the two rovers. They are shown
in Figure 3.5.
Henceforth, the explanation begins to go down into detail and the terminology will

become more and more specific. I will try to make it clear for everybody.
What we need to come up with is a rectangle that transmits what is happening on

the planet, live. As it occurs in the real world when live images of a faraway place are
required, a camera that captures them is necessary. Thus, each rover has a Camera
object that follows it, as shown in Figure 3.6.
The images collected from the camera are then recorded in the form of a Render

Texture. A Render Texture is a special type of Texture that is updated at runtime;
instead of being a fixed texture, its content is modified every frame with what is captured
by the camera. To do this, a camera is designated to render into it.
Now that there is a way to record what happens on the planets, we need to create a

system that can visualize these images, a sort of screen. Our screen will be a simple rect-
angular game object with a RawImage component attached. We used this component,
instead of a normal Image component, because the latter requires the texture to be a

23

Visualization

Figure 3.5: Cameras’ screens

Figure 3.6: Editor’s view of a rover’s camera.

24

Visualization

Sprite, while the RawImage can accept any kind of texture, including RenderTexture,
which is exactly what we were looking for.

Figure 3.7: Cameras Rendering Scheme

Figure 3.7 summarizes what has been explained previously. It shows that the Camera
(a) is rendering into the RenderTexture (b), which is then used as texture for the
RawImage component (c) attached to the rectangle that simulates the screen.

Another change that can be seen when entering the first LoD is the appearance of two
icons, one for each rover live screen. These icons, representing a container, belong to
the inventory game object and are accompanied by other icons that appear when the
LoD increases.

Figure 3.8: Samples Icon.

As shown in Figure 3.8, there are two possible states for the sample icon:

• Disabled, in which the icon is in a scale of grey. It means that the rover does
not hold any sample.

• Enabled, in which the icon is coloured. It means that the rover is holding a
sample.

25

Visualization

The number that appears on top-right of the icon is the unique number of the sample
held (it is empty when no sample is held). Other icons related to the samples will be
introduced and explained when talking about the action representation.

When the player’s satellite enters the second LoD, another icon appears inside the
inventory game object. This icon represents the battery level of the rover.

Figure 3.9: Battery icons.

Figure 3.9 shows the battery icons in the inventory, while Figure 3.10 shows their
possible different levels: Full, Medium, and Low.

(a) Full (b) Medium (c) Low

Figure 3.10: Battery levels.

Entering the third LoD, in which there is the maximum level of information, allows the
player to interact directly with the rovers’ actions, deciding if they should be performed
or not. For this purpose, the system will show a panel that asks about allowing (or not)
the actions chosen by the simulation, as can be seen in Figure 3.11. If the user does
not make a choice, the system will choose automatically, after a fixed period of time, to
NOT perform the actions.
Now that the explanation of the interface part of the project (i.e. how it appears to

the user and the possible interactions that may exist) is complete, we can move on to the
description of the design and development of the source code behind the visualization.

Most of the logic of the visualization is included in a class that, for this reason, is called
Visualization. It derives from MonoBehaviour. MonoBehaviour is the class from which
all the components of a game inherit. It is essential to talk about this class, since it allows
one to associate to each object in the scene some particular behaviours when certain
conditions occur. Conditions are represented by the methods of the MonoBehaviour
class in the form of events, to which each object can react. Whenever a specific event
occurs, Unity automatically calls the method that handles it. At this point, for an
object to react to an event, there must be a function assigned to it, in which will be
written the behaviour of our object. This behaviour is a set of instructions necessary
to react to the event. At each frame, Unity runs all the scripts active on the scene,

26

Visualization

Figure 3.11: Interaction panel.

and if it finds one of these predefined functions, it calls it (passing the control to the
function). At the end of the execution, the control is returned to Unity.
The functions that are used to manage events are typically called event handlers, but

in Unity they take the name of event functions, for simplicity. Among these functions,
two assume a relevant role, so as to be automatically created (even if empty, i.e., without
any instruction) on the creation of each MonoBehaviour script. These functions are:

• START: it is called only once at the beginning of the life cycle of an object. it is
useful to perform operations of preparation for the game, such as creating arrays
that will be filled later, or searching for elements in the scene whose reference we
want to save and then work on it later during execution.
In any case, Unity will NEVER call Start more than once in the entire life cycle
of a script.

• UPDATE: it is called every frame just before it is rendered, which makes it
dependent on the frame-rate. It is often used to update the position of moving
objects (through operations on their Transform and/or Rigidbody components),
so that they are rendered in the new position giving the player the illusion of
movement. In addition, checks on player input are usually performed in the
Update. For example, many features of the Input class are designed to read the
player’s inputs in that given frame. It is important to understand that everything
contained in the Update is executed completely in the space of a frame, before
the player can see anything.

The Visualization class contains two main methods, visualize and interact, which are
Coroutines. Let’s see what the difference is between a normal function and a coroutine.
The normal behaviour when a function is called is that it runs to completion before
returning. This means that every action taking place in a function must be done within
a single frame. Thus, a function call cannot contain an animation or a sequence of

27

Visualization

events over time, because they take more than one frame to be performed. As an
example (which is not used in our project, but is very explanatory), consider the task
of gradually reducing the opacity of an object until it becomes completely invisible.

1 void Fade () {
2 f o r (f l o a t f = 1 f ; f >= 0 ; f −= 0.1 f)
3 {
4 Color c o l o r = rendere r . mate r i a l . c o l o r ;
5 c o l o r . a = f ; //Color . a r e t u rn s the a lpha component o f t h e c o l o r

//(0 i s t ransparen t , 1 i s opaque) .
6 r ende re r . mate r i a l . c o l o r = c ;
7 }
8 }

As it stands, the Fade function will not have the expected result. In order for the fading
effect to be visible, the alpha must be reduced over a sequence of frames to show the
intermediate values being rendered. However, the function will execute entirely within
a single frame update. The intermediate values will never be seen and the object will
disappear instantly.
It is possible to handle situations like this by adding code to the Update function

that executes the fade on a frame-by-frame basis. However, it is awkward to manage
more complex situations with the Update function, in which more than one function
that require several frames to be completed, need to be executed at the same time.
A coroutine is like a function that has the ability to pause execution and return

control to Unity but then to continue where it left off on the following frame. In C#, a
coroutine has to be declared with a return type of IEnumerator and with a yield return
statement included somewhere in the body.
IEnumerator is a .NET type that is used to fragment large collection or files, or simply

to pause an iteration. The yield return line is the point at which execution will pause
and be resumed the following frame. To set a coroutine running, the StartCoroutine
function is used:

1 Star t Coroutine ("Fade") ;

It is important to notice that any variable or parameter used by a coroutine will be
correctly preserved between yields.

By default, a coroutine is resumed on the frame after it yields, but it is also possible
to introduce a time delay using WaitForSeconds. This can be used as a way to spread
an effect over a period of time, but it is also a useful optimization. Many tasks in a
game need to be carried out periodically and the most obvious way to do this is to
include them in the Update function. However, this function will typically be called
many times per second. When a task doesn’t need to be repeated quite so frequently,
you can put it in a coroutine to get an update regularly but not every single frame:

1 y i e l d return new WaitForSeconds (1 . 0 f) ;

Last thing to be aware about Coroutines is how to stop them. They are not stopped
when a MonoBehaviour is disabled, but only when it is definitely destroyed. Coroutines

28

Visualization

can also be stopped using MonoBehaviour.StopCoroutine and MonoBehaviour.StopAllCoroutines.

Now that we have explained what coroutines are and how they behave, we can continue
with the description of the two main Visualization methods. Both are called by the
simulation and to both is sent a HashSet of actions. In particular, when the LOD is
less than or equal to 2, the coroutine visualize is called. W hen the LOD is maximum
(i.e. equal to 3), the interact coroutine is called.
When the visualize method is invoked, it takes each of the actions in the HashSet

and executes a new coroutine for each one of them, then waits for a response from the
coroutine just executed:

1 f o reach (Action a in a c t i on s)
2 {
3 Coroutine newCoroutine = Star t Coroutine (v i s u a l i z e S i n g l e Action (a)) ;
4 l i s tO f S t a r t e d Action s .Add(newCoroutine) ;
5 y i e l d return nu l l ;
6 }

As can be seen from the snippet, the coroutine that is called for each action is visu-
alizeSingleAction. This coroutine has, in fact, the task of showing the effects of every
single action that is given to it. It checks the name of the action received and, based
on this, produces a specific effect.

Six possible actions have been defined:

• IDLE

• MOVE

• TAKE_SAMPLE

• DROP_SAMPLE

• TAKE_IMAGE

• CHARGE_BATTERY

For each action (except for IDLE) the script checks which entity has the role ACTIVE.
This will be the subject of the action. Let’s now look at the behaviour of each individual
action in detail.

IDLE
If the input is an IDLE action, the coroutine will wait for 2 seconds without doing
anything.

MOVE
The display of the MOVE action is the most complex. When the coroutine receives
this action, it first calculates the distance between the entity that is ACTIVE and the
destination to be reached. Based on the subject’s movement speed, the execution time
of the action is then estimated according to the relationship: time = space / speed.
To understand which of the possible destinations is the one to which the action refers,

the relations that form the post-conditions of the action are analysed. Among these,

29

Visualization

the one with the "AT" predicate and the RelationValue equal to TRUE is taken. The
entity DESTINATION of this relationship will in fact be the destination to which the
ACTIVE entity will have to move.
Once the active rover and the destination waypoint are known, a path that makes

the rover move from its position to that of the waypoint can be created by executing
the following command:

1 agent . Se tDes t ina t i on (d e s t i n a t i on . trans form . po s i t i o n) ;

The rover then starts moving: if it reaches the destination within the initially estimated
time, the coroutine visualizeSingleAction returns a value of true, otherwise, the value
false is returned.

The remaining actions will no longer act on 3D objects, but on the graphic elements
that make up the User Interface (UI).

TAKE_SAMPLE
The estimated time for this action is 6 seconds. The visualization is made through a
sequence of images and words. Initially, a text appears on the screen of the rover that
is performing the action, telling that the rover is “Taking Sample...”, as shown in Figure
3.12.

(a) (b) (c)

Figure 3.12: Text Sequence for the TAKE_SAMPLE animation.

Then, the result of the action is randomly chosen in the following way:

1 outcome = Random . Range (0 , 100) ;
2 i f (outcome <= 50)
3 {
4 // do something
5 r e s = true ;
6 }
7 e l s e
8 {
9 // do something

10 r e s = f a l s e ;
11 }

As it is shown, there is a 50% of success and 50% of failure. If the action is successful,
an image of an intact sample is shown on the rover’s screen, and the sample icon in the
inventory is updated. Otherwise, the image of a broken sample appears on the rover’s
screen and the coroutine ends with a false result. Figure 3.13 shows these images.

30

Visualization

(a) (b)

Figure 3.13: TAKE_SAMPLE images.

DROP_SAMPLE
The behaviour of this action is very similar to the TAKE_SAMPLE action. The only
differences are the text displayed, which for this action is “Dropping Sample...”, and the
images displayed on the action’s success or failure that are shown in Figure 3.14:

(a) (b)

Figure 3.14: DROP_SAMPLE images.

TAKE_IMAGE
Although there seems to be no visualization for this action, it does something. The
coroutine, in fact, calls another class, called TakeImage, to take a screenshot of the
active rover’s camera. This class creates a folder called Screenshots (if it does not exist
yet) and then creates a new thread to save the current camera’s image into a file with
a unique, progressive name. Here is the snippet about the creation of the thread:

1 new System . Thread ing . Thread (() =>
2 {
3 // c r e a t e f i l e and wr i t e o p t i o n a l header wi th image b y t e s
4 var f = System . IO . F i l e . Create (f i l ename) ;
5 i f (f i l eHeade r != nu l l)
6 f . Write (f i l eHeade r , 0 , f i l eHead e r . Length) ;
7 f . Write (f i l eData , 0 , f i l eDa t a . Length) ;
8 f . Close () ;
9 }) . S ta r t () ;

This thread first creates a file whose name is generated using the UniqueFileName
method of this class. This method generates a string that results from the combination
of three elements: the destination folder, a counter that is updated when each new
image is created, and the chosen format of the image. Then it adds information to the
file needed to display the image: a header and the image data.
The header is used only to save the image in Portable PixMap format (PPM); it

consists of at least three parts delineated by carriage returns. The first "line" is a
magic number, [18] it represent the PPM identifier and can be P3 or P6. The next line
consists of the width and height of the image as ASCII numbers. The last part of the
header gives the maximum value of the colour components for the pixels; this allows the

31

Visualization

format to describe more than single byte (from 0 to 255) colour values. The format of
the image data itself depends on the PPM identifier. If it is P3 then the image is given
as ASCII text, the numerical value of each pixel ranges from 0 to the maximum value
given in the header. If the PPM identifier is P6 then the image data is stored in byte
format, one byte per colour component (red, green, blue - i.e. RGB). P6 image files are
obviously smaller than P3 and much faster to read. The image data are the raw data
that make up the texture. They are used to fill texture pixel memory according to its
width, height, data format and mipmap count.

CHARGE_BATTERY
The effect of this action is to fill the battery charge, bringing its level to 100%. Its
visualization is as simple as its description: the full battery level icon is enabled, while
all the others (medium and low) are disabled.

3.3.3 Errors Detection and Handling

We considered three possible ways of failure in our game, based on prior work: [6]

• Bug in the game: The term bug refers to a failure or an error in the soft-
ware that produces unexpected or incorrect results. For example, imagine that
one of the rovers can not reach the destination waypoint due to an unexpected
NavMesh malfunction. The rover will continue to try to reach its destination and
the simulation will remain suspended waiting for the action’s completion.

• Colliding stories: If the game has multiple stories occurring, since the resources
(characters and objects) are limited, it can happen that a story tries to access a
resource which has been made unavailable by the events of another story. This
causes the story to stop going forward, waiting for the resource to be available.

• System out of sync: It can happen that the simulation checks the current state
of the world and starts planning the actions to be performed, but in the meantime
the world state changes. These changes can be irrelevant or significant. In the
latter case, the simulation could fail and stop.

To solve the first two errors, I implemented a timeout system. As pointed out in
Halldórsson, Gylfason, Gunnlaugsson and Thue’s technical report, [6] the logic that
estimates the maximum execution time of an action and the start of the timer should
be on the game environment side, and not on the simulation side. This is because
estimating the duration of actions depends on the implementation of the game and
the respective timer should start exactly when the action starts and not when it is
simulated. Thus, each action has a way to calculate a maximum time that is required
for its completion (as described during each action’s explanation). If the visualization
takes more time than the estimated one, the action is interrupted, the result "false" is
returned to the simulation, and the system is rolled back to the previous state.
To roll back, parameters and objects involved in every action are saved before it

starts, and then are restored in case of failure. For example, when the action MOVE is
requested, the system saves the initial position of the active rover and then, in case of
failure, the initial position is restored.

32

Summary of the Chapter

3.4 Summary of the Chapter

Here is a short summary helpful to go through the chapter:

• Planning Framework. It provides a way to define actions and the current world
state.

Relations. They define the properties valid for a world state.

Entities. They represent each object that can be involved in an action.

Predicates. They define the properties valid for a relation.

Actions. They are the only way to move from one state to another.

• Simulation. It gives a way to progress through states, picking up a random action
among the possible ones.

• Visualization. It takes care of displaying the chosen actions.

The GUI. It describes how the game looks like.

The "Gameplay". It contains the ways a user can interact with the game.

Actions Description. It describes the effects of all the actions in the project.

• Errors Detection and Handling. It explain our approach on detecting the possible
failures of the visualization and how to solve them.

33

4. Discussion

In Section 1.3 (Criteria for Success) we have defined two parameters through which to
evaluate the visualization. Now, we want to analyze the results obtained for each of
these points:

• Correctness: Every action has a set of pre-conditions to be satisfied so that it
can be performed, and a set of post-conditions that represents its final result.
Even if how the visualization is made cannot be defined with the action, we used
its effects as references to get a correct display. If all the relationships that make
up the post-conditions (which represent the effects of the action) are satisfied by
the visualization, the latter can be considered correct.

• Efficiency: To obtain this property, the simulation starts a coroutine to require
that the actions are displayed. In this way, the simulation will wait for a result,
while the visualization, as soon as the request is received, will execute the nec-
essary functions. Moreover, each action’s duration is calculated respecting the
parameters decided during the authoring process. For example, the duration of
the MOVE action is estimated taking into consideration the distance to be covered
and the speed of the rovers.

At present, the only control performed to detect the actions result is the estimation
of a time limit for each action. Once the estimated time expires, if the action has
not returned a result yet, it is automatically stopped and the system is rolled back to
the previous state. For our study case, this system was good enough to always detect
when the action fails, but future development could require a more robust system. For
example, the estimated-time system can not be used to handle the system going out of
sync. In this case, a way to fix the problem is to check the pre-conditions of actions
both in the simulation system and in the game environment. [6]

Our system is able to use a planning method (the PDDL) to simulate game actions.
In particular, we managed to get the information available to the player about the state
of the world to be dependent on the current LOD. In particular, the information that
are useless for the purpose of the visualization are cut off, making the actions rendering
easier and faster. For example, considering our project, if the player is not enough close
to the planet, they can not see the battery level of the rovers, so that information is not
given to the visualization.
Such a system had not yet been realized, so our work offers a new approach to the

problem of rendering management based on the LOD. Given the need to test this system,
a scene in Unity and the visualization of the actions were realized. About this part, it
was important the error detection task that we solved providing a good solution (that
of estimating the execution time of the actions) valid for the test case dealt with.

Future Work

There are two main limitations, which can however be compensated in the future:

• The states are defined using only unary and binary relations that limit the ex-
pressiveness of the project.

• The absence of a "smart" system to pick a goal state and find out the best sequence
of actions to reach it.

4.1 Future Work

As already said, one of the first features to add to the project could be the creation of
a goal state in the planning framework. It would make sense of the sequence of actions
for each rover, which is now random.
Also, expanding the framework so that it can take into consideration relationships of

a greater degree than 2 may be a future development. Such a modification would give
the system the ability to generate increasingly complex states and actions, creating a
more realistic simulation.
Another development of the project could concern the possibility of "fixing" the sim-

ulation in case errors occur, instead of rolling back to the previous state, thus avoiding
the teleportation effect of objects. Also, as explained in the previous section, the visu-
alization can be expanded by adding a way to avoid the system from going out of sync
(the "double-check" of preconditions).
Finally, for reasons of time and complexity, a large-scale evaluation could not be

carried out. Therefore, it is advisable to perform more and more detailed tests, to check
that the evaluation made in this project is still valid.

36

5. Conclusion

Through this project we presented the basis for a planning framework that is capable
of recreating the behaviour of a game, and that is able to choose a set of actions (which
for now are randomly chosen) to be performed. Moreover, this system has the ability
to cut off the useless information, depending on the current LOD, which is something
that has not been investigated.
Then I focused on the definition of a complete and efficient visualization of actions.

This part is strictly dependent on how the actions are meant to be displayed, so it can
not be generally valid for each game scene and the respective source code needs to be
rewritten according to the needs.
Finally, I figured out a way to handle the possible failures of the visualization, and I

proposed future developments.

Bibliography

[1] Larry Bergman, Henry Fuchs, Eric Grant, and Susan Spach. Image rendering by
adaptive refinement. David C. Evans and Russell J. Athay (eds.), pages 29–37,
1986.

[2] Alex J. Champandard. Planning in games: An overview and lessons learned, 2013.
URL http://aigamedev.com/open/review/planning-in-games/.

[3] D. Cline, H.W. Hofstetter, and J.R. Griffin. Dictionary of Visual Science, 4th
edition. Butterworth-Heinemann, Boston, 1996.

[4] David Dabner, Sandra Stewart, and Eric Zempol. Graphic design school: The
principles and practice of graphic design, 5a edition. John Wiley & Sons Inc,
August 2013.

[5] Andrew Glassner. Interactive Storytelling Techniques for 21st Century Fiction.
Imprint A K Peters/CRC Press, New York, 2004.

[6] Gunnar Gylfason, Davíð Guðni Halldórsson, and Hafþór Gunnlaugsson. Narrative
mediation in practice. Technical report, School of Computer Science, Reykjavik
University, 2016.

[7] Damian Isla. Handling complexity in the halo 2 ai. In Proceedings of GDC-05,
2005.

[8] Bernard J. Jansen. The graphical user interface: An introduction. SIGCHI Bul-
letin, 30(2):22–26, 1998.

[9] John Paul Kelly, Adi Botea, and Sven Koenig. Offline planning with hierarchical
task networks in video games. In AIIDE, 2008.

[10] George A. Miller. The magical number seven, plus or minus two: Some limits on
our capacity for processing information. Psychological Review, 63(2):81–97, 1956.

[11] Jeff Orkin. Constraining autonomous character behavior with human concepts. AI
Game Programming Wisdom 2, pages 189–198, 2003.

[12] Renato Pajarola. Efficient level-of-details for point based rendering. In Computer
Graphics and Imaging, pages 141–146, 2003.

[13] Philip T. Quinlan and Richard N. Wilton. Grouping by proximity or similarity?
competition between the gestalt principles in vision. Perception, 27(4):417–430,
1998.

http://aigamedev.com/open/review/planning-in-games/

Bibliography

[14] Mark Riedl, C. J. Saretto, and R. Michael Young. Managing interaction between
users and agents in a multi-agent storytelling environment. AAMAS ’03, pages
741–748, New York, NY, USA, 2003. Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems.

[15] Ariel Shamir and Valerio Pascucci. Temporal and spatial level of details for dynamic
meshes. C. Shaw & W. Wang (eds.), pages 77–84, 2001.

[16] Pushpa Suri and Meenakshi Sharma. A comparative study between the perfor-
mance of relational and object oriented database in data warehousing. International
Journal of Database Management Systems (IJDMS), 3(2):116–127, May 2011.

[17] Wikipedia. Behavior tree, . URL https://en.wikipedia.org/wiki/
Behavior_tree_(artificial_intelligence,_robotics_and_
control).

[18] Wikipedia. Magic number (programming), . URL https://en.wikipedia.
org/wiki/Magic_number_(programming).

[19] Wikipedia. Hierarchical database model, . URL https://en.wikipedia.org/
wiki/Hierarchical_database_model.

[20] Terry Winograd. From programming environments to environments for designing.
Commun. ACM, 38(6):65–74, Jun 1995.

40

https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)
https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)
https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)
https://en.wikipedia.org/wiki/Magic_number_(programming)
https://en.wikipedia.org/wiki/Magic_number_(programming)
https://en.wikipedia.org/wiki/Hierarchical_database_model
https://en.wikipedia.org/wiki/Hierarchical_database_model

Acknowledgements

I would like to thank all the people who helped me during this period.

	Abstract
	Introduction
	Background Notions
	Problem Formulation
	Criteria for Success

	Related Work
	Proposed Approach
	Planning Framework
	Simulation
	Visualization
	The GUI
	The "Gameplay"
	Errors Detection and Handling

	Summary of the Chapter

	Discussion
	Future Work

	Conclusion

