
  

 

  

DEPARTMENT OF COMPUTER SCIENCE 
MAY 2020 

 

 

 

Bsc in Computer Science 

HashMon - Hashrate Monitor Tool 

Monitoring tool for Bitcoin mining farms 

 
 

 

 

 

 

 

 

 

Authors                Instructor 

Birkir Kárason          Birgir Kristmannsson 

Grétar Örn Hjartarson 

Helgi Rúnar Jóhannesson               Examiner 

Kristmann Ingi Kristjánsson          Björgvin Sigurðsson 



 

  

 

 

1 
 

 
 

 

Contents 
Introduction ............................................................................................................................................ 4 

Project Description.................................................................................................................................. 5 

System Overview ................................................................................................................................ 5 

Scanner ............................................................................................................................................... 6 

Command server ................................................................................................................................. 6 

Website ............................................................................................................................................... 6 

API ....................................................................................................................................................... 6 

Database ............................................................................................................................................. 6 

Project Management .............................................................................................................................. 7 

Development........................................................................................................................................... 8 

Scanner ............................................................................................................................................... 8 

API ....................................................................................................................................................... 8 

Architecture .................................................................................................................................... 8 

Flow of the API ................................................................................................................................ 9 

Website ............................................................................................................................................. 11 

Command Server .............................................................................................................................. 11 

Database ........................................................................................................................................... 12 

Customers ..................................................................................................................................... 12 

Clients / Customer / Authentication ............................................................................................. 13 

Testing ................................................................................................................................................... 13 

Scanner ............................................................................................................................................. 13 

API ..................................................................................................................................................... 13 

Website ............................................................................................................................................. 13 

Progress................................................................................................................................................. 14 

Sprint 0 .............................................................................................................................................. 14 

Sprint 1 .............................................................................................................................................. 15 

Sprint 2 .............................................................................................................................................. 16 

Sprint 3 .............................................................................................................................................. 18 



 

  

 

 

2 
 

Sprint 4 .............................................................................................................................................. 19 

Sprint 5 .............................................................................................................................................. 21 

Sprint 6 .............................................................................................................................................. 23 

Sprint 7 .............................................................................................................................................. 25 

Sprint 8 .............................................................................................................................................. 26 

Sprint 9 .............................................................................................................................................. 27 

Project Burndown ............................................................................................................................. 28 

Time Breakdown ................................................................................................................................... 29 

Summary ............................................................................................................................................... 29 

What went well? ........................................................................................................................... 29 

What could have gone better? ..................................................................................................... 29 

What did we learn? ....................................................................................................................... 29 

What's next? ................................................................................................................................. 30 

Appendix ............................................................................................................................................... 31 

Backlog .............................................................................................................................................. 31 

Risk assessment ................................................................................................................................ 39 

Terms ................................................................................................................................................ 41 

 



 

  

 

 

3 
 

 

 

 

 

 

 

 

 

 
  



 

  

 

 

4 
 

Introduction 
HashMon is a Bitcoin hashrate monitoring tool created in collaboration with Advania Datacenters. Its 
purpose is to offer customers and employees of Advania Datacenters detailed information about 
their whole bitcoin farm, all on one website.   

Advania Datacenters focuses on 3 different kinds of solutions. One solution is the Bitcoin farm, 
where they sell customers cheap power, and a place to host their machines. Another one is High-
Performance Computing (HPC), where they sell customers compute power to have the ability to 
process data and perform complex calculations at high speeds. The last one is a Tier 3 data center 
solution, which is normal data storage with redundant and dual-powered servers. 
 

What is Bitcoin? Bitcoin is a cryptocurrency that is rewarded every 10 minutes or so to workers or 
miners that work together in a pool on validating transactions that reside within the Bitcoin block. 
So, every 10 minutes or so we have X many workers(miners) validating all the transactions that 
occurred while the previous block was being validated.  

The problem today is that customers can only see their miners via their pool, and the pool only 
displays limited data, like the last time the miner was online, and its hashrate. The only way to get 
detailed information about the miner is to connect to the same network as him and receive the 
information from him directly by using TCP connections. That’s where we come in. Our solution is to 
setup a scanner on the networks where the miners reside, and have it scan the network, receive 
detailed information about all miners on the network and send that data to an API, which will log the 
data into a Database. We can then use this information to give customers a better overview of what 
is going on in their farm. 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

5 
 

 

Project Description 
For customers to be able to access detailed information about all their workers we needed to place a 
device on the networks hosting their miners. This device will pull information from each worker, 
then we needed to store this information in a database to be able to display it later for the 
customer. To do this we ended up creating a scanner, API, database and website. As we also need to 
be able to communicate with each miner to send them commands, we created another application 
called a command server, which resides on the same device as the scanner.  

System Overview 
Below is a diagram explaining the overview of these 5 applications:  

1. API which sends and receives information from other applications 

2. Scanner that resides within the mining network and receives data from the miners 

3. Command server that is hosted on the same machine as the scanner, and listens for requests 
from the API and sends them to the miners 

4. Website that uses the API to get/send information from/to the DB 

5. Then we have the Database that stores all our information 

 



 

  

 

 

6 
 

Scanner  
The Scanner is an application that resides on a Raspberry Pi within each customer assigned 

subnet of miners. From within the subnet the scanner locates all the miners on the subnet, and then 
asks them for information about their current status, such as power consumption, total hashrate 
and temperature. The scanner then sends the information for each individual miner to the API as 
well as information for the subnet as a whole (total hash and total power consumption). 

Command server 
The command server is an application that resides alongside the scanner on a Raspberry Pi 

machine. It listens for user commands such as “Restart” and “Configure” for one or more miners and 
executes them by connecting to each affected miner’s internal API and sends the commands as HTTP 
requests. The “Restart” command quickly reboots the affected miner while the “Configure” 
command modifies the miner’s pool settings. 

Website 
The website is designed to display the detailed information that the scanner/API have 

collected for each customer. Along with displaying information gathered from the miners, the 
website also allows us to manage their locations, and configuration.  Each customer has his own 
space within the website where he can manage his farm, he can also view all actions that are 
performed on the miners in his farm, such as restart miner or configure miner(s). 

As we mentioned previously the monitoring tool is not only designed so that each customer 
can view his farm, but also so that employees of Advania datacenters can view the farms of other 
customers. To do this we setup the website so that on login you get a list of customers that you have 
view/write privilege to. Employees could have 1 – n many entries, while customers can only see their 
own space. 

API 
The job of the API is to act as a middleware between applications and the database. Its 

purpose is to filter out/validate the data of every request before letting it proceed to the database.  

Database 
Stores data for all customers, and the admin. It will need to hold data from multiple 

customers over a long period of time, and the data from multiple customers will be inserted into the 
database every 5 minutes or so (each scan cycle).  

 

 

 
  



 

  

 

 

7 
 

Project Management 
In this project we decided to use the scrum methodology for project management, and at 

the start of the project we decided to split the team into pairs of two when it came down to design 
and preparation. 

The project was split down into six 2-week sprints, one 4-week sprint, and three 1-week sprints. 
With one extra 0 sprint in the first week for preparation.  

The team was constructed of: 

 Product owner: Halldór Þór Helgasson 

 Scrum master: Kristmann Ingi Kristjánsson 

 Team members: Helgi Rúnar Jóhannesson, Birkir Kárasson and Grétar Örn Hjartarsson 

For the first sprint we decided to try out Jira a project tracking software from Atlassian for managing 
our backlog and excel for our timesheet. But after the sprint we saw that using Jira for the backlog, 
and excel for timesheet was rather troublesome, since we needed to find a way to export the 
backlog into excel for our status meeting. So, we ended up using an excel sheet by Birgir 
Kristmannsson for our project/sprint management, and timesheet.  

Since we knew that this project was constructed of 4 core applications, we decided to split the 
applications between all members so that every application was under development the whole time: 

 Kristmann was assigned to the API and the Database 

 Birkir and Grétar to the scanner 

 Helgi to the website 

 Then later Kristmann and Birkir to the command server 

Splitting the team like this was a great success, and when the development sprints started things got 
rolling very fast. Then in the latter part of the project we came together in developing the website. 

Kristmann Ingi was the scrum master since this project was his idea after working for Advania 
Datacenters for about 3 years and seeing a desperate need for these applications in everyday work. 
His job was mainly to lay out the idea to the whole team and guide them along the way if needed. 
Also, he made sure that everything that was needed from Advania datacenter was delivered so that 
we could finish the project on time. 

We tried to have weekly status meeting with the product owner, but some weeks that was not 
possible due to the Covid-19 pandemic. 

 

 



 

  

 

 

8 
 

Development 
 

In this section we will go over the development phase for each application. This might 
include design ideas, flow of each request/cycle, frameworks used, or the architecture used for an 
application. 

Scanner 
The scanner was developed using Python 3.7. The scanner uses nmap to scan the subnet, 

and then stores the IP's and MAC's it finds in an array. The scanner then loops through the list of IPs 
and using a TCP socket, asks for the version of the miner. Depending on the software version of the 
miner, a sequence of commands is sent to the miner, requesting information. When all commands 
have been sent, the relevant data is extracted from the responses. After data has been gathered for 
each miner in the subnet, the data for each miner and the subnet as a whole is sent through HTTP 
requests to the API. The miner then sleeps for 5 minutes and repeats the process. 

API 
The API was developed using Nodejs version 13.14.0, we used the module express to setup 

middleware to respond to the HTTP requests.  

Architecture 
We decided to structure the API as a 3 layered architecture where the incoming requests will 

be routed to its respective controller, that will validate the data, and send the request forward to the 
service, then the service will handle the connection to the database. Below is a diagram of the 
architecture  

                                                             

 

  



 

  

 

 

9 
 

Flow of the API 
Upon receiving a request, the API will go through this sequence of actions/checks: 

1. An authorization check is performed 

a. If the route requested is an authorization route the session token is validated. Else 
the route can skip b-e and go straight to (2). 

b. If the token is missing or invalid the request will be logged to the admin database 
and canceled. 

c. If the token passes the validation it will go through the authorization service where 
the user is authenticated. 

d. If he doesn't pass the authentication, we send back a 401 (unauthorized) response 

e. If he passes the authentication, the request will proceed to the route requested. 
 

2. The route will then communicate to its respective controller (customer, miner, user, ….) 

a. From the controller the data is validated, for example in a post request expecting a 
body with property {MAC_Address:””, IP_Address:””} the body will be checked for 
these 2 properties. 

b. If the body is of the correct format, the controller will call its respective service, if 
not we will send back a 406 (not acceptable) error to the requestor. 
 

3. In the service each function will expect a user and a customer 

a. The functions will then create a MySQL connection with the given user and customer 

i. User is the requestor and the customer is the database that the user is 
trying to connect to. 

ii. If the user gets Access Denied to a given database an Access_Denied 
exception will be thrown. 

b. Then the service will execute the requested query using the connection created in 
(a) and return the result to the requestor. 
 

4. On exception thrown the API will communicate with the Log_Service which logs the 
exception into the appropriate Log table. 

  



 

  

 

 

10 
 

Below is a flow diagram for the API 

 

  

 
  



 

  

 

 

11 
 

Website  
The website was developed using JavaScript and both React (16.12.0) JavaScript library and 

the Redux  JavaScript library. All the code was written by our team and we also used smaller 
libraries to help with the development which were installed and handled with Node package 
manager.  

We used Camel Casings for all names excluding the names for the components which used 
 Pascal Casing. 

The style/theme of the website, which was designed with CSS, was made to look like the 
main website of Advania data centers, so we picked the same color pattern as the Advania Icon and 
used that. 

We decided that instead of making our own authentication for the login, we would use the 
MySQL server authentication instead. So, each account information (Name and password) are equal 
to their login to the MySQL server. We also added an option to login with your Microsoft account, 
for that we have a database which holds on-to all emails of our users and their login information. To 
allow users to log in using their Microsoft accounts we added a button which when pressed, opens a 
pop-up window with a secure Microsoft Login authenticator. We then receive an authenticated 
object with account information from Microsoft and check it with our database and if the user has 
an account with us, we log him in. 

Icons used on the website are from Font Awesome, the Pie charts are from the react-
chartkick library, the line-chart was created using the D3 library. 

 

Command Server 
Like the scanner, the command server was developed using Python 3.7. For incoming 

connections, we chose Websockets but two methods were used for outgoing connections to miners: 
a TCP socket and HTTP requests. The command server had to support sending commands to miners 
manufactured by three different companies: AntMiner, Innosilicon and Whatsminer. When a user 
command is received the server first has to determine each miner’s manufacturer, which is done by 
sending a TCP packet with the message “Version” to the miner’s IP address. The miner answers with 
an object containing its API version, which determines the manufacturer since they all use different 
API versions. 

If the miner is manufactured by Innosilicon then a simple HTTP request is constructed using 
Basic HTTP authentication and sent to the miners' API. For AntMiner and Whatsminer things got a 
bit tricky. AntMiner is more secure than the other manufacturers so they use HTTP Digest 
Authentication for incoming API requests. To be able to construct a Digest authentication header, 
first we must send a GET request to a specific endpoint and the API responds by sending back a GET 
request with a Digest header containing the fields Realm (usually host or URI) , Nonce (uniquely 
generated string) and QOP (quality of protection; authentication mode). These fields along with 
other values generated by the command server are used to generate a Response field through a 
series of MD5 hashing that hides the password sent over for authentication. These fields are used to 



 

  

 

 

12 
 

construct a Digest authentication header and a GET request including the header is then sent, which 
executes the command. 

If the miner is manufactured by Whatsminer, we had to keep a HTTP Requests session alive 
throughout the transaction to store authentication cookies received by logging into the API using a 
HTTP POST request sent with a body containing the username and password for the miner. 
Restarting is no problem at this point using a simple GET request since no body is required, but 
configuring the miner required a lot more thought. To configure a Whatsminer machine we used a 
POST request containing the configuration for the miner and then we had to search through website 
metadata, returned by the API after logging in for a security token uniquely generated for each 
connection and then send another POST request to restart the pool module for the miner so that the 
changes went through. 

 
Database 

The database was written using MySQL MariaDB version 10.4.12, which Is a community-
developed MySQL client. This was decided by the developers at Advania Datacenters. 

Customers 
When it came down to how we wanted to manage all of the data that would be stored in 

our system, we decided that each customer should have his own database instance. This instance 
was broken down into 10 tables. Miner, Miner_Info, Subnet, Subnet_info, Pool, User_Log, 
Miner_Log, House, Pod and Subet_House_Connection: 

 



 

  

 

 

13 
 

Our opinion was that storing the data like this was a much better solution then just using 
one big database instance for all clients and having a foreign key reference to which client each data 
entry belongs to. 

 

Clients / Customer / Authentication  
When it came down to how we wanted to manage the users in our system we decided that 

all our users will be MySQL users.  

 Clients (technicians, admin users) will be users that have read/write privileges on X number 
of customers.  

 Customers (Machine Owners) are basically clients that are the owners of a database and will 
have full privilege only on their own database. They do not have any privileges on other 
databases. 

 When it comes to authentication we will try to establish a connection to the mysql client and 
if it’s a success we will send back a JSON session token that we will decode/encode each 
time the client sends a request for a resource. This way the clients can only access resources 
according to their privileges, rather than having a user/privileges table in an admin database. 

Testing 
Scanner 

We unit-tested the scanner with the Unittest Python library with mocked functions and test 
data, but the main scanner tests were done by setting up the scanner application on a Raspberry Pi 
machine and connecting it to a subnet of over 700 miners at Mjölnir in Reykjanesbær where the 
scanner succeeded effortlessly and sent all the data to our server hosting the API. 

API 
To test our API, we decided to use Postman. First, we created a collection of routes where 

we test various things.  For each route in the collection we then made a test suite that compares the 
results to expected values. Then we exported this collection as JSON and used it to test our API. We 
created an external test application in NodeJS that uses the Newman module to read the JSON file 
exported from postman and runs the tests. We did this about 1000 times with 5 min delay between 
each cycle, and for each cycle we exported the result to a CSV file. 

We then created an external script to read the CSV flies, written in python 3.7.  The script 
expected a user input for the date to be tested, then it used a directory walk to walk the folder 
‘./newman’, and for each file that matched the date given, the script checks for errors within the file, 
if errors are found we log that into a file, else we delete the file.  

Website 
The plan was to have the employees at the Mjölnir data center try the website and test it for 

us however due to Covid-19 we were not authorized to interact directly with the employees at the 
Mjölnir data center and could therefore not user test the UI. 



 

  

 

 

14 
 

Progress  
 

Sprint 0 
Date: 9. Jan. - 17. Jan. 

Sprint 0 was an extra sprint in the beginning because there were only two of us working on 
the project (Kristmann and Helgi) and then Birkir and Grétar joined the group on 13. Jan. After 
forming the full team, Kristmann made a demonstration of the project for the new members. 

After the demonstration we made our first draft of the product backlog before consulting with the 
product owner, and a work agreement (procedural agreement) for the rest of the sprints. 

 

Above is a burndown demonstrating the hours we put into sprint 0. We didn’t include a task 
burndown since there were only 3 tasks, setting up the backlog, creating a procedural agreement 
and preparation for the project. 

We estimated 24 hours of work for the sprint mainly for preparing the project and getting 
new team members caught up and we ended up with a total of 33 hours of work in this sprint. 

 

  



 

  

 

 

15 
 

Sprint 1 
Date: 20. Jan. - 31. Jan. 

In this sprint our plan was to prioritize our product backlog and make an estimate of the 
time spent per issue. Then after prioritizing the backlog we picked issues that we found most 
important to start on, like the design of the whole system. 

 



 

  

 

 

16 
 

 

Above we included two burndown charts, one demonstrating tasks and the other 
demonstrating time spent during the sprint. In this sprint we fell a bit behind for a couple of reasons: 

1. We over-estimated the time some of our issues would take. 

2. Birkir was sick most of the sprint. 

3. We could not work on an issue for website mock-up designs since the product owner was 
not available for a meeting to discuss the design so we moved the issue to the next sprint. 

Even though we fell behind we still finished all tasks except for the mock-up task. Out of our 
estimation of 96 hours we yielded 48 hours of work because of the problems previously stated. 

Sprint 2 
Date: 3. Feb. - 14. Feb. 

In this sprint our plan was to finish the rest of the design that we could not finish in sprint 1, 
create the reports for the status meeting on 14. Feb. and prepare for both the status meeting 
presentation and the peer presentation. 

Then in the latter half of the sprint we planned on implementing part of the basic functionality of the 
scanner, setting up a test API and creating a template for the website. 



 

  

 

 

17 
 

 

 

 As can be seen in the two burndown charts above, we finished all our tasks for this sprint 
and ended up spending 5 more hours than we originally estimated. 

  



 

  

 

 

18 
 

Sprint 3 
Date: 17. Feb. - 02. March 

In this sprint we planned on finishing the higest priority issues for the API, most of the 
scanner’s base functionality and started doing more regarding the website. We also wanted to finish 
a sprint and start a new one on Mondays so that we could work on the sprint during the sprints last 
weekend. 

 



 

  

 

 

19 
 

 

As can be seen in the two burndown charts above, we finished all our tasks for this sprint 
and ended up spending 18 hours less than we originally estimated. 

 

Sprint 4 
Date: 2. March - 16. March 

In this sprint we focused on finishing all the A and B tasks in the scanner, setup the 
connectivity between the server and our workspace, have a running Raspberry Pi in our 
workspace that is constantly running the scanner and the functionality on the website. We 
also started work on the Command server for the scanner (C tasks). 



 

  

 

 

20 
 

 

As can be seen in the two burndown charts above, we ended up finishing all our tasks except 
for one that we couldn’t even start which was usability testing on our website. The reason for that 
was that the workplace of Advania DataCenters is located both in Hafnarfjörður and in Reykjanesbær 
and because of Covid-19 these 2 workplaces were not allowed to meet each other. The technicians 



 

  

 

 

21 
 

that we planned to interview for the tests are located in Reykjanesbær and our workspace is in 
Hafnarfjörður. 

 

Sprint 5 
Date: 16. March - 30. March 

In this sprint we focused mainly on completing B and C tasks in the API and Website. We also 
did a little work on the command server and got parts of it working.



 

  

 

 

22 
 

 

As can be seen in the two burndown charts above, we completed all our tasks, but we 
overestimated some of them and finished them in shorter timeframe than expected. 



 

  

 

 

23 
 

Sprint 6 
Date: 30. March -27. April 

This sprint was kind of an extra sprint during the exam time. In this sprint all of us were 
working from home due to covid-19 so the team that was working on the scanner had to join the 
development of the website since development of the scanner was not possible from home at this 
point. We mainly focused on styling all the views on the website according to mockup of the site, or 
just the positioning of the components. 



 

  

 

 

24 
 

 

As can be seen in the two burndown charts above, we had an extra number of tasks for this 
sprint, or 38 and we managed to finish everything in the final day by going over the time estimation 
by 8 hours. 



 

  

 

 

25 
 

Sprint 7 
Date: 27. April - 4. May 

This sprint was the first sprint of the 3-week period. The main focus in this sprint was to 
finish the implementation of the functionality. We decided that after this sprint no extra 
functionality on the website would be added.  

 

As can be seen in the two burndown charts above, we had set 25 tasks for this sprint, but 
only managed to finish 23 tasks. The reason for this was that on both Monday and Tuesday one 



 

  

 

 

26 
 

person could not show up with the team, and if we look at the hourly graph, we can see that we 
were 16 hours behind our estimation. 

Sprint 8 
Date: 4. May - 11. May 

This sprint was the second sprint of the 3-week period. The main focus in this sprint was to 
have most of the Final Report finished and try to have no bugs remaining in the website. 
 

 

 

As can be seen in the two burndown charts above, we had set 25 tasks for this sprint and 
managed to finish 25 tasks with 2 canceled tasks.  The reason we had so many hours assigned to us 
this week was mostly the minor bugs, we both had to find the bugs and fix them, along with 
preparing for the third status meeting.  



 

  

 

 

27 
 

Sprint 9 
Date: 11. May - 15. May 

This sprint was the third sprint of the 3-week period. The main focus in this sprint was to 
have the entire project ready for the final delivery, commenting our code, finishing to style the 
website and finalizing the Final Report. 

 

 



 

  

 

 

28 
 

 

As can be seen in the two burndown charts above, we finished all of our tasks and went over 
our time estimation by 6 hours. 

Project Burndown 
  The below graph shows the burndown of the whole project. As can be seen, we did not 
complete all estimated hours but despite that we finished all high priority issues quickly and started 
adding on lower priority smaller features. 

 



 

  

 

 

29 
 

 

Time Breakdown 
 

 

 Website Scanner API Database Reports Design Other Total 
Kristmann 194 34.5 119.45 9 38 10 86.5 491.45 
Birkir 65.5 109.45 3.5 3.5 31.33 6 65.17 284.45 
Helgi 170.5 0 0.5 0 19.5 6 58.5 255 
Grétar 115 40.5 0 0 39.5 9 72.5 276.5 
Total 545 123.45 151.92 12.5 184.45 31 282.67 1307.4 

 

 

 

 

Summary 
What went well? 

In the beginning of the development we split the group down to cover different parts of the 
system. Kristmann took on the API and database, Helgi the website and Birkir and Grétar focused on 
the scanner. This resulted in the development going smoothly and evenly throughout the project 
and in the end, we joined forces on the website. Overall, communication and teamwork between 
the team members went very well.  

 

What could have gone better? 
Not a lot of things went wrong with the project itself, but the preparation could have been 

better. We also could have communicated better during the Covid-19 restrictions especially during 
the 5th and 6th sprints, where productivity was a bit low. We could have had better attendance during 
the entire project as well.  

 
What did we learn? 

We learned a lot about the programming languages and frameworks that we used to 
develop the system, but the biggest lesson was how a system like this is set up, and the connection 
between its components. It was good to finally use all the knowledge that we have learned 
during our time at the university to make a whole system that touched on most parts of 
computer science, and to learn what struggles we might face in the near future.   



 

  

 

 

30 
 

 

What's next? 
Even though we managed to get most of the system ready in the 15 weeks we were working 

on it, it’s safe to say that it won’t be ready for publication.   

The first thing on the agenda would be to start the usability testing that we couldn’t perform 
because of the covid-19 pandemic. After altering the user interface accordingly after inputs from 
technicians we think that the product should be ready for publication, with few bugs fixed that might 
come to life.  

After getting the product ready for publication our team member Kristmann Ingi will 
help the deveoplers at Advania Data Centers to setup everything needed to be able to monitor their 
own machines so they can learn the process of setting up a new customer within the system.  

 

  



 

  

 

 

31 
 

Appendix 
Backlog 

Priority Issue Done Issue Type 

A As a API i must have the route 
/api/subnets/:customer/:subnet[POST] that will insert given 
information into a given subnet 

Done API 

A As a API i must have a route 
/api/subnets/:customer/:subnet[GET] , that returns all entries for 
a given subnet 

Done API 

A As a Test_API i want to have routes so that website can test login 
locally 

Done API 

A Change the test API into a more structured project Done API 

A Create a MYSQL Database connection middleware Done API 

A As a API i must have the route 
/api/miners/:subnet/:customer[GET], that returns all miners 
within a given subnet 

Done API 

A As a Test_API i want to have routes so that scanner can test 
/Miners/:customer POST route locally 

Done API 

A Make a test suite in postman for the route 
'api/logs/miner/:customer' 

Done API 

A Update the Miner_Info table so it has a timestamp property Done API 

A Make a test suite in postman for the route 
'/api/hash/:customer' 

Done API 

A Make a test suite in postman for the route 
'/api/subnets/:customer/:subnet'[get] 

Done API 

A Make a test suite in postman for the route 
'/api/miners/:customer' 

Done API 

A Make a test suite in postman for the route '/api/login' Done API 

A Make a test suite in postman for the route 
'/api/subnets/:customer' 

Done API 

A Make a test suite in postman for the route 
'/api/passwords/change' 

Done API 

A As a API i must have a route 
/api/miner/:MAC_Address/:customer[GET], that returns detailed 
information about a given miner 

Done API 

A As a API i must have the route /api/map/:customer[POST] that 
will insert location into Miner table 

Done API 

A As a API i must have the route /api/subnets/:customer[GET], that 
returns the latest information about all subnets for a given 
customer 

Done API 

A Add User_logs and Miner_Logs tables to the loadTables.sql 
script 

Done API 

A Make a test suite in postman for the route '/api/databases Done API 

A Make a test suite in postman for the route 
'/api/subnets/:customer/:subnet/'[post] 

Done API 

A Log all Authentication errors that occur into a Log table Done API 

A As a API i must have the route 'api/log/miner/:customer'[GET], 
that returns the miner logs for a given customer 

Done API 



 

  

 

 

32 
 

A On insertion log into the Miner_Logs if the miner has a 
critical value 

Done API 

A Create a HIgh level component diagram for the API Done API 

A Change the data that each route returns, use the model that we 
discussed as a group 

Done API 

A Make a test suite in postman for the route 
'/api/miners/:subnet/:customer' 

Done API 

A Model the return data from each route in the API Done API 

A Add an authentication to all routes Done API 

A As a API i must have a route /api/miners/:customer[POST] that 
inserts given data into the miners tables 

Done API 

A Log all error that occur in the API in the error table Done API 

A Implement a data validation for all routes in the api Done API 

A Route '/api/miners/pod/:id/:customer', that returns all miners 
wihtin a given pod  

Done API 

A as a api i must have a route 'api/houses/:customer[GET], that 
gets all houses for the given customer 

Done API 

A as a api i must have a route 'api/pods:/houseID/:customer'[GET], 
that get all pods for a given house 

Done API 

A as a api i must have a route 'api/house/:customer'[POST], that 
adds a house entry to a given customer 

Done API 

A as a api i must have a route 'api/pod/:customer'[POST], that adds 
a pod entry to a given customer 

Done API 

A Create a test suite for, getPods, getHouses, insertPod, 
insertHouse, getMinersByPod 

Done API 

A Change the API so all routes work remotely Done API 

A as a API i must have a route /api/pool/:id/:customer[DELETE], 
that deletes the pool with the given id 

Done API 

A as a API i must have a route /api/house/:id/:customer[DELETE], 
that deletes the house with the given id 

Done API 

A as a API i must have a route /api/pod/:id/:customer[DELETE], 
that deletes the pod with the given id 

Done API 

A Add online/offline miners to the return body for all customers Done API 

A Add privilege information in either the database route or the get 
subnets route 

Done API 

A Add hashrate and online/offline information to all pods in the get 
pods route 

Done API 

A Add a get Miner_Log by mac route to the API Done API 

A Add 0 hashrate if mintue interval is not availabe in the get 
hashrate route for all subnets  

Done API 

A when user changes password update the password in the 
User_Table in the Admin database 

Done API 

A Go over AP automated tests on server for the past few days 
and debugg if en error occured 

Done API 

A Fix the data we get from the getHash by min/hour/day route Done API 

A Setup the newest version of API, DB on the mariaDB at M15 Done API 

A As a administrator i need to create a script that fills the database 
with fake data 

Done Database 



 

  

 

 

33 
 

A As a administrator i need to create a script that populates the 
database 

Done Database 

A Create a error log tables that resides within the a admin 
database that logs all errors that occur, (Auth_Log, 
AccessDenied_Log, API_Log) 

Done Database 

A Add changes made to the database to an ER diagram Done Database 

A Setup API / db / scanner up at Mjölnir  Done Database 

A Sequence diagram for scanner Done Design 

A Create a high level component diagram Done Design 

A Create an ER diagram Done Design 

A Sequence diagram for API for get routes Done Design 

A Wireframe mockup for website(aka design the UI) Done Design 

A Discuss how we want to test Done Design 

A Do a mockup for the change password view and the User_Log 
view 

Done Design 

A Prepare for our first status meeting Done Meetings 

A Project Preperation Done Preparation 

A Create a peer presentation of the project Done Preparation 

A Decide story points Done Preparation 

A Set up a GIT Repo Done Preparation 

A Set up Time overview Done Preparation 

A Open connection between the server and the network in our 
workspace 

Done Preparation 

A Setup the server running the DB and the API Done Preparation 

A Dev environment and database set up troubleshooting Done Preparation 

A Prepare for first peer presentation Done Presentation
s 

A Presentation for third status meeting Done Presentation
s 

A Create an procedural agreement Done Report 

A Create a risk assessment Done Report 

A Create an progress report Done Report 

A Create an design report Done Report 

A Final Report Done Report 

A As a scanner i have to be able to scan the subnet for Ip/Mac Done Scanner 

A As a scanner i have to be able to calculate total hash/power for 
the whole subnet. 

Done Scanner 

A Establish a TCP connection to the miners from our workspace Done Scanner 

A As a scanner I have to be able to look up cg miner version in a 
lookup table. 

Done Scanner 

A As a scanner I have to be able to send version command to each 
ID/Miner and use the response to get the next command and the 
fetch state. 

Done Scanner 



 

  

 

 

34 
 

A As a scanner I have to be able to iterate through the IP list and 
establish a TCP connection. 

Done Scanner 

A Unit test the scanner Done Scanner 

A As a scanner i have to be able to execute a command and fetch 
the information. 

Done Scanner 

A Disscuss how we want to implement the application that will 
send commands to miners 

Done Scanner 

A Set up raspberry pi and test scanner on the pi connected to 
subnet 

Done Scanner 

A Research the way manufacturers are sending commands to 
miners by sniffing traffic 

Done Scanner 

A As a scanner i have to be able to send the info/mac/ip to the API, 
sleep for 5min. Repeat the process 

Done Scanner 

A Figure out how to pull only the scanner into raspberry Pi Done Scanner 

A Optimize and polish out redundant code in scanner/command 
server 

Done Scanner 

A Fix heat values in scanner where they are too long and take max 
value 

Done Scanner 

A Split up scanner return data efficiently so API can handle it Done Scanner 

A Scanner debugging Done Scanner 

A Fix the data units for the speed properties, and remotely 
connection to the command server from the API 

Done Scanner 

A Create template for the website. Done Website 

A Connect Website to API Done Website 

A Make a route between all the subsites Done Website 

A Fully implement Redux into React. Done Website 

A As a user i want to see all subnets/pods a client owns(client site). Done Website 

A Update the database, add House and pod tables, update fields in 
Miner and Miner_Info 

Done Website 

A As a user i want to be able to see a list of clients i service. Done Website 

A As a user i want to be able to see a list of miners within a certain 
subnet 

Done Website 

A Setup the navigation bars Done Website 

A as a user i want to be able to change my password Done Website 

A Create Miner_Log view for the website Done Website 

A As a user I have to be able to log into the website. Done Website 

A As a user i want to be able to select a single miner and get all the 
information about that miner. 

Done Website 

A As a user i want to be able to map the location of miner/miners 
under the map sub route 

Done Website 

A In the map configuration change the house input to a dropdown 
where we pick from the house table 

Done Website 

A In the map configuration change the pod input to a dropdown 
where we pick pods from the house that is picked 

Done Website 

A in client view a list of houses that reside within each subnet Done Website 

A Change the store each reducer has error ok, msg, data properties Done Website 



 

  

 

 

35 
 

A Add a House view that displays all the pods that reside within the 
house 

Done Website 

A Clean code and Add proptypes to all functional components Done Website 

A Add a Pod view that displays a heatmap/list of all miners within 
the pod 

Done Website 

A Add a configuration view where customers can add a house and 
add pod to each house  

Done Website 

A as a user i must be able to delete a entry of a pool Done Website 

A as a user i must be able to delete a entry of a pod Done Website 

A as a user i must be able to delete a entry of a house Done Website 

A Add a privilege check in the configure route Done Website 

A Add measurment units to all numbers on the website Done Website 

A Display a Miner_Log for a particular miner in the miner details 
view 

Done Website 

A Research login forms, sidebars, custom tables for hangout 
meetings 

Done Website 

A Add WorkerName, IP_Address, time elapsed and offline/online 
to the miner list table 

Done Website 

A Add a sort by proerty functionality to the Tables Done Website 

A add a slider to the MinerList that will utilize the paging 
functionality 

Done Website 

A Create a hashrate graph our of the Subnet_Info data Done Website 

A Get scanner to run on raspberry pi again Done Website 

A add sprint burndown chart to sprint 1 and 2, and fix the 
burndown for sprint 6 

Done Website 

A Re-style miner details view Done Website 

A Fix the subnet/house/ connection after what was discussed with 
Product Owner 

Done Website 

A Implement some kind of a refresh mechanishm on current page, 
and fix the redirect to the dashboard on page refresh 

Done Website 

A Implement client view hashrate graph using D3 Done Website 

A update the ER diagram Done Website 

A Finish design report Done Website 

A Finish progress report for sprint 1-7 Done Website 

A style the heatmap Done Website 

A Style the table in minerList Done Website 

A add extra authentication to the LDAP Done Website 

A Rewrite code for the heatmap and comment it. Done Website 

A fixing minor bugs In progress Website 

B as a API i must have a route to 
/api/passwords/change/[POST], that changes the password 
of the current user 

Done API 

B As a API i must have the route /api/hash/:customer[GET], 
that returns the total hash since the user started using the 
system 

Done API 



 

  

 

 

36 
 

B Make a test suite in postman for the route '/api/map/:customer' Done API 

B Automate Postman tests Done API 

B Add a get Page/index, to get Miners in the API  Done API 

B Add a get page/index, to get User_Logs in the API  Done API 

B Add a get page/index, to get Miner_Logs in the API  Done API 

B order paging Done API 

B Add a check on map if the house is connected to the subnet that 
the miner is being mapped to 

Done API 

B New more detailed mockup of the website. Done Design 

B Discuss as a team the theme/images we want to use for styling 
the website 

Done Design 

B Prepare for second status meeting Done Meetings 

B Prepare for third status meeting Done Meetings 

B Add error logging to scanner Done Scanner 

B Automate scanner tests Done Scanner 

B error checka command server (þegar version er náð og þegar 
commands eru sent) 

Done Scanner 

B Research work for disable hashing on s9 Done Scanner 

B Setup addtional scanner Done Scanner 

B Finish commenting both scanner and command server  Done Scanner 

B skoða nonce og aðra fields í digest header og gera það dynamic Done Scanner 

B Create a messagepanel that handles all success and error 
messages 

Done Website 

B Implement the message panel in all views Done Website 

B As a user i want to be able to see a heatmap of each 
subnet/pod(subnet/pod site). 

Done Website 

B style subnet view Done Website 

B style change password view Done Website 

B Create a paging functionality from template Done Website 

B style house view Done Website 

B style map miners view Done Website 

B style pod view Done Website 

B implement a mapping functionality in the minerView (as the last 
slide in the carousel) 

Done Website 

B Create a sidebar from the first template Done Website 

B style configure view Done Website 

B style dashboard view Done Website 

B implement the miner view as a carousel Done Website 

B style user log view Done Website 

B style client view Done Website 

B Style the minerLog view Done Website 

B style log in view Done Website 



 

  

 

 

37 
 

B style miner details view Done Website 

B implement sort for miner/user logs tables Done Website 

B Implement some kind of navigation tree to navigate back to 
visited sites 

Done Website 

B Change how we display the subnets and houses in client 
view 

Done Website 

B Add online/offline pie chart in the dashboard Done Website 

B Change the theme of the topbar/sidebar, follow the theme at 
https://advaniadc.com/data-center-solutions 

Done Website 

B Style the website Done Website 

B Add online/offline pie chart in the house View Done Website 

B seperate the miners in minerStore for pod, one for the table and 
another one for the heatmap 

Done Website 

B Clean out all console logs Done Website 

C As a API i must have a route /api/pools/:customer[GET], that 
returns all pools for a given customer 

Done API 

C As a API i must have a route /api/pool/:id:customer[PUT], that 
edits the pools info for the given pool ID 

Done API 

C As a API i must have a route /api/pools/:customer[POST] that 
inserts given information into the customers pool table 

Done API 

C As a API i must have the route 'api/logs/user/:customer'[GET], 
that returns the user logs for a given customer 

Done API 

C As i API i must have a route '/api/logs/user/:time/:customer', 
that returns a list for MAC addresses that are linked to given 
time 

Done API 

C Make a test suite in postman for the route 
'api/logs/user/:customer' 

Done API 

C when user executes a command log it into the User_Log table Done API 

C Create a documentation/readme for the API Done API 

C As a API i must have a route 
/api/commands/:command/:customer[POST], that will send a 
command to a miner 

Done API 

C Add measument units to getHash route Done API 

C change the getHash route in the api to getHashByDay, 
getHashByHour, getHashBy5min 

Done API 

C Add a delete favorite miner(s) route to the API Done API 

C Remove favourite pod/house feature to API Done API 

C Add getFavorite items route to the API Done API 

C Add get favorite miners route to the API Done API 

C Add a insert favorite miner(s) route to the API Done API 

C Add microsoft auth to the API/DB Done API 

C Add favourite pod(s)/house(s) feature to API Done API 

C Add a paging option for the user in slider Done API 

C change login and change password to get routes, using auth 
header instead of body/POST route 

Done API 

C Split the API into more controllers/services Done API 



 

  

 

 

38 
 

C add a prefix House / Pod / to all miner locations on the website Done API 

C make the time interval between data points in getTotalHash 
dynamic 

Done API 

C group the send command miners by subnet id and send to each 
subnet the command 

Done API 

C NPM vesen og setup á local database Done Preparation 

C As a server i must send back a result message to the client Done Scanner 

C As a client i must be able to send a list of ips, command pair to 
the server 

Done Scanner 

C create a template for the server and client, that will be used to 
send commands to miners 

Done Scanner 

C as a server i must iterate though a given list of ips and send to 
them requested command 

Done Scanner 

C Figure out how to work with antminer restart response in 
command server to update success/failure 

Done Scanner 

C As a server i must read from a configuration file to get auth 
information for the miners 

Done Scanner 

C As a scanner i want to be able to run on startup, using a 
configuration file for subnet size, subnet_id, and all related 
variables 

Done Scanner 

C modify command server for whatsminer Done Scanner 

C As a user i want to be able to see list of configs that a 
customer has under the pools sub route 

Done Website 

C As a user with add privileges i want to be able to add config 
information to a list of configs 

Done Website 

C As a user i want to be able to send commands to a specific miner 
(f.e. restart) 

Done Website 

C As a user i want to be able to config/restart a range of 
miners 

Done Website 

C In UserLog display all miners onclick, that are assosiated with a 
timestamp  

Done Website 

C Add extra subroute in the side navigation bar for the 
user_log that only admins see 

Done Website 

C implement a redux store for the pagingSize  Done Website 

C Add a ldap office 365 to the website Done Website 

C Fix how different viewers see configure view Done Website 

C Style the navigation tree Done Website 

C Add a redirection if there is only one client available for the user Done Website 

C Add sidebar to dashboard view only with favorite items Done Website 

C implement the configure view as a tab view Done Website 

C Add favourite pod/house feature Done Website 

C research tab view for miner details view Done Website 

C Add a functionality to order by favorites Done Website 

C add extra information in the getPods route, like zero hash and 
overheat 

Done Website 

C Add some styles to the pool information table Done Website 



 

  

 

 

39 
 

C Reorder the house and subnets side by side with row wrap in 
client view 

Done Website 

C Add a favorite item in the sidebar that's a parent element of 
house and pod 

Done Website 

C Add missing Asiic and type field to miner table Done Website 

C fix the logout on change password, and set a error message if the 
passoword dose not meet requirements 

Done Website 

C add maximize and minimize functionality to the podListLitems in 
houseView 

Done Website 

C Style dashboard components with a graph and list of 
houses/pods 

Done Website 

C Take out borders from all buttons when they are selected Done Website 

C Have the inputs in map view scrollable like the Heatmap Done Website 

C Change the get Hash by min, hour, day from button to tabs Done Website 

c Add the pie chart from house view to subnets and houses in the 
client view 

Done Website 

c Setup subnets, houses, and map single miner as a panel similar 
to the panel in the dashboard view 

Done Website 

c fix errors and warnings Done Website 

C change the clientStore so it stores houses/pods for the tables in 
the dashview 

Done Website 

C implement a minimize/maxize for clients in dashboard view Done Website 

C setup singlemapView, houseConfigure, podConfigure, 
connectionConfigure, poolConfigure to the card theme like the 
rest of the side 

Done Website 

 
Code commenting Done Website 

 

Risk assessment 
Below is a list of all Risks from our risk assessment that affected the team during the project's 
duration, how we defined them and how they were dealt with. 

Ris
k 

Description Ratin
g 

Odd
s 

Effect Risk 
Value 

Accountabl
e 

3 Sickness/Personal 
Problems 

1 3 More workload on rest of the 
team 

3 Rest of the 
team 

 
24.1.2020 - Birkir was sick when we met with our instructor – this had little effect since it was only 
one meeting. 
 

5 Missing hardware 
or software 

4 1 Unable to run affected parts of 
the system 

4 Kristmann 

 
6.3.2020 - Got a server running the API and MariaDB, odds down to 1 from 2 
 

6 Hardware failure of 
work computers 

3 1 Team member is without a 
computer and needs to work 
from his 

3 Computer 
owner 



 

  

 

 

40 
 

home computer or borrow a 
computer 

 
26.3.2020 - The fan on Birkir's laptop malfunctioned and had to be in the shop for maintenance for 
2-4 weeks, but he borrowed a computer from a friend as a substitute in the meanwhile. 
 

7 Insufficient data 
from ping 

3 1 Wrong/non data will be pulled 
from the miners 

3 Kristmann 

 
13.1.2020 - we have data from December preparation that does ping on most types of miners. 
Therefore, the odds were changed to 1 from 3 
18.2.2020 - we were supposed to get an ethernet connection to our workspace to a miner subnet, 
but it was not ready, so we weren't able to fetch data. Odds went up to 2 
25.2.2020 - we got the ethernet connection but were refused by the hosts for connection. Odds 
went up to 3 
27.2.2020 - At least 3 miners vary in returning hash from all asic's, might have to find out later how 
to get that information and set up edge cases. Odds don't go up since it is such a small number of 
miners having trouble. 
2.2.2020 - we solved our issues for now, set up edge cases so the scanner can run uninterrupted 
and returns all available results for miners. Odds went down to 1. 
 

10 Remote connection 
to DB issues 

3 1 Halted development due to 
inability to fetch data. 

3 Birkir 

 
17.2.2020 - managed to connect remotely to mysql server that was on local network. Odds down to 
1 from 2 
6.3.2020 - managed to connect to the centos server that running the API and MariaDB. 
 

14 Issues hosting the 
API 

4 0 No communication between DB, 
scanner and website 

0 Birkir 

 
6.3.2020 - finished setting up the centos server that is hosting the api, odds down to 0 from 1 
 

19 Problems with 
authentication for 
sending 
commands to 
miners 

2 1 Hinders or delays us from 
completing all tasks associated 
with 
commands 

2 Kristmann 

 
10.3.2020 - authentication problem came up and we're looking for solutions. Odds changed from 2 
to 5 
12.3.2020 - we found an external API on the miners to send commands to. Odds changed from 5 to 
1 
 

 

  



 

  

 

 

41 
 

Terms 
Term Description 
Client A Client is a user on the website that has access 

to one or more customers. Employees of 
Advania datacenters are thought of as clients 

Customer A customer is a user that has his own database, 
a customer only has access to his own 
database. 

Miner(s)/worker(s) Machine(s) that calculates transactions that 
occur on the bitcoin network at high speed. 

Pod A pod is a collection of miners. Usually one 
house is divided into 4 pods. 

Hashrate Hash rate is the measurement of a miner's 
performance. In other words, it is the hash 
function's output, or it is the speed at which a 
miner solves the Bitcoin code. ... Hash/s is also 
measured in J/Ghash (Joules per 1 Billion 
hashes). Hash per second represents SHA-256 
algorithms that are used per second, known as 
hash rate 

Farm Farm is the collection of all miners that a 
customer has.  

Block A block is a collection of all bitcoin transactions 
that have been performed in the last 10 
minutes. 

Pool Bitcoin mining pools are a way for Bitcoin 
miners to pool their resources together and 
share their hashing power while splitting the 
reward equally according to the number of 
shares they contributed to solving a block. 

 
  
 

 

 

 

 


