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Abstract

The Icelandic government adopted the Paris Agreement pledge to undertake aggressive efforts
to combat climate change and reduce greenhouse gas emissions. The energy transition of
the transportation system has been identified as one of the primary methods to achieve the
targets of the Paris Agreement. The transition from internal combustion engine vehicles to
electric vehicles (EV) or plug-in hybrid vehicles has already started. The increase of EV
sales in Iceland is expanding rapidly as the Icelandic government is incentivizing consumers
to choose clean energy vehicles by offering subsidies. The impact of EV charging loads
on electric distribution systems will escalate as the amount of EVs increases. In 2018,
Samorka, the association of energy and utility companies, launched a research study to
collect data and analyze the driving- and charging behavior of EVs in Iceland. One of the
key purposes of the study for distribution utility companies was to determine whether the
system in its current state could withstand increased stresses brought on by EV charging
within the system. In this thesis, the impact of an added EV charging load on one specific
distribution substation system within the greater capital area was simulated and analyzed.
The objective was to pinpoint any weaknesses in the system and determine at which point
the system became overloaded with respect to the line thermal limitations and the voltage
regulation limits. This was achieved by analyzing data from the Samorka electric vehicle
research study and subsequently modeling an EV charging load profile. A load profile for the
residential households within the distribution substation system was also generated. The EV
charging load profile was generated for each EV type and five specifically defined seasonal
categories. Pandapower data analysis software and power flow solver was used to compute
the power flow of the distribution substation system. The Monte Carlo simulation method
was then used to predict the probability for variation of outcomes. The study concludes that
this particular distribution substation system is sufficiently robust to handle the added EV
load, performing above initial expectations. As increasing amounts of EVs were added to
the system, critical limits of the system were breached and the most vulnerable branch of
the system was identified. The voltage drop limit was breached most frequently and was
therefore concluded to be the most likely limit to breached with increasing EV charging loads
on the system.



Alag vegna Rafbila 4 400 V Dreifikerfi

Rébert Bjarnar Olafsson

desember 2021

Utdrattur

Island er hluti af Parisar samkomulaginu og hefur verid eitt af sherslumalum rikisstjérnarinn-
ar. Arid 2018 skipadi umhverfis og audlindarddherra verkefnisstjorn til ad titbtia adgerdadzetl-
un {1 loftslagsmdlum til ad tryggja dkvadin { Parisar sattmalanum. Verkefnisstjérnin skiladi
af sér adgerdadztlun sem innihélt tillogur um 34 adgerdir til ad studla ad minnkun 4 losun
grodurhisalofttegunda. Ein af helstu dhersluatridum i adgerdadatluninni eru orkuskipti {
samgongum. Rikistjornin og alpingi sampykktu nidurfellingu 4 virdisaukaskatti til ad lidka
fyrir s6lu 4 rafbilum og 6drum bilum sem nota endurnyjanlega orkugjafa. Skradir rafbilar
4 Islandi hefur fjolgad mikid sidustu ar. Orkuskiptin 4 samgongum gera pad ad verkum ad
meira dlag verdur 4 rafmagnsdreifikerfid. Samorka, sem eru samtok orku og veitufyrirtekja
4 Islandi st6d fyrir rannsékn um raf- og tengiltvinnbila hledslu til ad sja hvernig Islenska
raforkukerfid er { stakk buid fyrir aukid dlag sem fylgir auknu rafbilahledsludlagi. Til ad
herma bpetta aukna hledsludlag 4 400 V dreifikerfi 1 Reykjavik, var sérstok dreifist6d sem
pjonar ibuidarhverfi { Reykjavik notud og bunir voru til dlagspréfilar fyrir hverja {bid. Raf-
bila hledsludlags profilar voru bunir til dr gognum frd Samorku. Badir hledsluproéfilarnir
voru flokkadir { 5 flokka. Likanagerd og hermun var gerd i Pandapower og Monte Carlo
hermunaradferd var notud til ad spa fyrir um likurnar 4 dtkomu nidurstadanna. Dreifikerfid
sem um radir, réd almennt vel vid aukid rafbiladlag. Pegar batt var vid ratbilum { hermunina
pa var veikleiki 400 V dreifikerfisins fundinn, 4samt yfirlestun strengs og brot 4 vikmoérkum
4 afhendingarspennu. Brot 4 vikmorkum 4 afthendingarspennu kom upp vid minni hermadan
rafbilaflota en yfirlestun 4 streng.
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Chapter 1

Introduction

The impact of electric vehicle charging loads on power distribution systems is of interest for
distribution companies in Iceland such as Veitur ohf. In 2020, Veitur launched a summer
project to analyze data, develop a model and simulate the behavior of the power distribution
system with an electric vehicle load added to the existing residential load. The purpose of this
project was to determine if the system could withstand increased stresses brought on by elec-
tric vehicle charging within the network. This was in response to the Icelandic governments
ambitious goal to prohibit Internal Combustion Engine (ICE) vehicles by 2030[1].

This summer project was informed largely by data collected from a project launched in
2018 by Samorka, an association of energy and utility companies in Iceland. This study
analyzed the driving and charging behaviour of electric vehicles (EV) in Iceland. The main
goal of the project was to predict the impact of EVs on Iceland's power distribution system
in order to prepare and build the infrastructure for the future of electric vehicles. The study
was made up of volunteer EV owners whose approved vehicles were tted with a chip that
monitored and recorded the battery data. The study lasted for one year and included battery
electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV).

This research project further builds upon these projects by using data which has kindly
been provided by Veitur, pertaining both to the Samorka EV study in 2018 and residential
network load data used for this analysis. This data was used to model and simulate the
distribution power system's behavior with the added EV load. The summer project launched
in 2020 has kindly received approval from Veitur to be expanded into this thesis project.

This research project focuses on one neighborhood within the capital area of Iceland.
Included in this report are details pertaining to the structure of Veitur's infrastructure, which
encompasses the capital area.

1.1 Research Goals

This research project aims to model and simulate the EV load impact on the low voltage
(400V) section of the power distribution system that Veitur operates in the greater capital
area, using data from distribution substation 670 located in Grafarvogur. Substation 670 was
chosen as it is one of only two substations that collect and log real-time data, enabling more
representative modeling. This research aims to answer the following question:

What is the electrical impact of added electric vehicle load on a 400 voltage distribution
system in a speci c district in Reykjavik, given a predetermined ratio of BEVs and PHEVs.
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Expecting to identify the locations of the vulnerabilities within the 400 voltage system
by simulating line loads and nding breaches of the line current capacity (line loading limit).
The voltage for any customer connected to the network has to be within the regulation lim-
its of 10%, and the voltage drop may not exceed more than 10% or the Veiturs' working
procedure limits of 5% voltage drop.

1.2 Research Approach

The methodology used to answer the research question can be broken down into the following
macro components:

" Read and analyze data from various sources.
" Build a statistical EV model from empirical data from the Samorka study.
~ Estimate the yearly electric residential load.

~ Build an algorithm that randomly draws a sample from EV models and residential load
pro les.

" Construct a network in Pandapower and run a power ow analysis.

A

Use the Monte Carlo simulation method to obtain the results for the research question.

1.3 Research Tools

The residential load data was collected using Luksja and accessed from an SQL database
owned and operated by Veitur. Microsoft Excel was used to pre-process the residential load
data which was subsequently uploaded in Pandas analysis library for the Python programming
language. Pandas data frame was used to analyze and generate empirical EV charging load
pro les from the Samorka data. The model and relevant parameters were generated by Veitur
using Siemens Sincal software from the Distribution Substation 670 in Grafarvogur.

Pandapower[2] is a powerful open-source tool for power system modeling. It combines
Pandas data analysis library with PYPOWER for power ow analysis. Python is used to
read the Sincal model and Pandapower is subsequently used to build the model and create
the supply lines and connections along with parameters of low voltage lines (provided by
Veitur).



Chapter 2

The Icelandic Power System

2.1 Overview of the Icelandic Power System

Iceland has nearly all of its electric power production generated from renewable energy
sources, around 82% comes from hydro plants and 18% geothermal[3] and two 900 kW
wind turbines in Iceland that Landsvirkjun operates[4]. Most electric power production
companies are in public ownership, with HS Orka (7% of the power generation) the main
exception. Landsvirkjun National Power Company, in-state ownership, generates 71% of
the electric power, and ON generates 19% of the electric power. The other smaller electric
production companies generate 3% electric power|[3].

Landsnet operates the Icelandic transmission power system. The transmission system
carries electricity from producers to consumers, including Distribution system operators and
intensive industries[5]. The Figure 2.1 depicts the Landsnet transmission system operation.

Figure 2.1: Icelandic transmission system [5].

The power-intensive industries consume the majority of electricity[6] as shown in Figure
2.2. The intensive industry has a 77% portion, normal usage ( homes and small companies)
is 17,9% and losses are 5,1%.

Landsnet connects ve power producers to ve distribution network that then goes to the
electric market for retail as depicted Figure 2.3.
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Figure 2.2: Electric usage for Iceland for 2018][6].

Figure 2.3: Icelandic electricity sector and overview([3].

2.2 Overview of OR and Veitur's Utility

Orkuveita Reykjavikur (OR) is a power and utility company owned by municipalities, Reyk-
javik (93.5%), Akraneskaupstadar (5.5%), Borgarbyggdar (0.8%) and Borgarfjardarsveit
(0,2%) citeidnararraduneyti. Orkuveita Reykjavikur is a parent company of four daughter
companies as depicted in Figure 2.4.
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Figure 2.4: OR daughter companies [7].

The Gagnaveita Reykjavikur is a Telecommunications company, Carb x is an energy
technology company, ON is an energy producer and retailer, and Veitur is a utility company
that operates four utilities:

" District heating.
" Water distribution.

~ Wastewater.

" Electricity supply.
The Electricity supply utility of Veitur will be the only part of Veitur company that will be
discussed further and the distribution system that Veitur operates.

2.3 The Capital Area Distribution System

The electricity is delivered from power plants via 132 kV transmission lines of Landsnet and
connects to three primary substations in the greater capital area: Hnodraholt, Korpa, and
Raudavatn. Veitur distribution system has 13 primary substations or transmission substations.
These will henceforward be referred to as transmission substations (TRST). One of these 13
TRSTs is in Akranes, and one TRST, Al1, is not considered to be a transmission substation
in the general sense. These two TRSTs will not be discussed further.

There are additionally secondary stations or distribution substations and will hencefor-
ward be called distribution substations (DRST). Veitur distributes the majority of electricity
in the greater capital area of Iceland, as it is illustrated in Figure 2.5. However, HS Veitur
distributes the electricity in Hafnafjoréur, Alftanes and south sector of Gardabaer[8].

The Figure 2.6 shows the general distribution topology. The three TRSTs gets delivered
electricity and continues to distribute the electricity to more TRSTs and DRSTs that connects
to cabinets within their sector. Finally, the electricity is delivered to the end consumer.
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Figure 2.5: Transmission stations, divided up into sectors in the greater capital area.

Figure 2.6: Veitur's general hierarchy of the branched distribution system.
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2.3.1 High Voltage Distribution System

As mention earlier, Landsnet delivers the electricity to the transmission substations in
Hnodraholt (A7), Korpa (A8), and Raudavatn (A12), from there TRST A7, A8, and Al12
connects to the remaining TRST as depicted on Figure 2.7 along with branching further to
its distribution substation as depicts on Figure 2.5, there it can be seen how the sector of the
transmission substation system service is divided up in the greater capital area of Iceland.

The transmission system received an upgrade in 2005[9] as depicted in Figure 2.7. The
transmission system was radial prior to the upgrade.

The larger utility of Veitur receive the electricity directly from the TRST, and the smaller
companies and the residential gets their electricity in a more complex topology that will be
discussed later in Sections 2.3.2

The transmission substations are not identical, and some of them have transformers of
di erent rating sizes. There are also switch stations that are de ned as transmission stations
and have no transformers.

Figure 2.7: Schematic of Veitur's transmission substation and connections in the greater
capital area.
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