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Abstract

Patents are intangible assets that provide an exclusive right to invest in the underlying
invention. They protect the innovator from others duplicating that same invention over
the life of the patent. Patents can be very valuable, but in the attempt to assign a monetary
value to a granted patent, there is no common methodology of valuation. The biggest
challenge is the uncertainty concerning the future value of the underlying invention.
Standard valuation approaches tend to underestimate uncertain investment opportunities
by ignoring the value of managerial flexibility. This flexibility contains the option to
respond to different events and observe new possibilities as time goes by. An advanced way
to capture the value of flexibility is the option pricing framework. Under this approach
investment opportunities are valued as options on real assets, known as real options.
This approach has increasingly been gaining acceptance in the valuation of uncertain
investment opportunities such as patents. There are various real options that may be
appropriate in the valuation of a patent. The options that have mostly been applied in the
literature are the option to abandon and the option to invest or wait for more information
to be obtained. Our concentration will be on the solution methods that can be applied in
real options problems, along with their features. The aim is to find an applicable approach
that can assign a reasonable value to a patent.
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Útdráttur

Einkaleyfi eru óefnislegar eignir (e. intangible assets) sem veita handhafa sínum einkarét-
tinn til þess að fjárfesta í undirliggjandi uppfinningu. Eigandi einkaleyfis er varinn fyrir
því að aðrir framleiði eftirmynd af sömu vöru yfir líftíma einkaleyfisins. Einkaleyfi sem
slík geta verið mikils virði en erfitt hefur reynst að verðmeta þau. Engin sameiginleg
skoðun er á því hvaða aðferðafræði skal beita. Stærsta áskorunin er hin mikla óvissa
sem bundin er við framtíðarvirði undirliggjandi uppfinningar. Hefðbundnum verðmats
aðferðum hættir til að vanmeta virði áhættusamra fjárfestingartækifæra með því að líta
framhjá virði sveigjanleika. Þessi sveigjanleiki felst í því að geta brugðist við mismunandi
uppákomum og uppgvötað ný tækifæri eftir því sem tímanum líður. Ein leið til þess
að meta virði þessa sveigjanleika er að nota sömu aðferðafræði og notuð er til þess að
verðleggja afleiður. Með þessari nálgun eru fjárfestingartækifæri verðmetin sem valkostur
til að fjárfesta í efnislegri eign, betur þekkt sem raunvilnanir (e. real options). Þessi
aðferðafræði er öflugt tól til þess að verðmeta áhættumikil fjárfestingartækifæri líkt og
einkaleyfi. Ýmsar raunvilnanir geta átt við þegar kemur að verðmati á einkaleyfi. Þær
raunvilnanir sem helst hafa verið skoðaðir í þessum tilgangi er valkosturinn til þess að
stöðva fjárfestingarverkefnið og valkosturinn til þess að bíða þar til frekari upplýsinga
hefur verið aflað. Þessi greinargerð mun leggja áherslu á þær aðferðir sem notaðar eru
við verðlagningu raunvilnana og eiginleika þeirra, með raunhæft verðmat á einkaleyfi að
leiðarljósi.
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1 Introduction

Innovation plays a big role for businesses in today’s competitive market place. To keep this
competitive advantage, enterprises or individuals need to protect their innovative ideas
with intellectual property rights (IPRs) e.g. copyrights, brands, trademarks, and patents.
The importance of IPRs has been continuously increasing in many fields of business
in recent years. Their value is essential if one is to make well founded management
decisions [1] [2].

In this thesis the focus will be on the valuation of patent rights. Patents are intangible
assets which can be extremely valuable but often it can be difficult to assign a monetary
value to them. A patent provides the exclusive right of limited duration (most often 20
years) to produce a new, useful and non-obvious invention (product or service). It protects
the innovator from competitors using that same invention with the right to sue others
for infringement. There is a need to distinguish between the underlying invention which
is often called the underlying asset and the patent itself. Patents can be valued in their
application process where the aim is to decide if it is worth continuing with the application
to the next stage. On the other hand, if a patent has been granted, the valuation process
focuses on decisions regarding whether to pay the renewal fees to keep the patent alive, if
the patented product should be commercialized, or what it’s monetary value should be
when it comes to licensing, financing, litigation, and sale. The uncertainty concerned with
the future value of the underlying asset is a big challenge in the attempt to value a patent.
Technical and commercial challenges can arise such as uncertainties regarding the future
expected cash flow, market conditions, the effect of competition, and the volatility of the
patented project. Because of these and other uncertainties there is a need to engage in
research to find objective and realistic methods for patent valuation [3] [4].

Some methods are available in order to value patents but there is no common standard or
methodology of valuation. The methods that have been used in practice can be divided
into two groups, qualitative and quantitative valuation methods. The qualitative methods
provide a value reference mainly through rating and scoring based methods and are
generally not expressed in monetary terms. This valuation approach is often considered
to be interpretative and subjective [5] [6]. The quantitative methods differentiate from
the qualitative methods as they are objective and assign a monetary value to the patent.
The most common method is the economic analysis method which has three different
approaches cost, market, and income. It has been argued that the cost and market based
methods are not satisfactory when it comes to patent valuation. The cost based method
measures the value of the patent by looking at the development costs behind the patented
product. Since it is based on historic costs it fails to take into account the future benefits
that might arise from the patent, and therefore should not be used in making rational
decisions. The aim of the market based method is to value a patent by comparing the
underlying asset to a similar patented asset that has been traded recently in the active
market. The problem with this method is that it can be quite a challenge to find a
comparable asset where other assets often differentiate from the patented product in one
way or another [3] [7] [8] [9].

The income based method attempts to value patents by calculating the present value
(PV ) of future expected cash flow from the patented product or project. The main method
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used in practice is the standard Discounted Cash Flow (DCF) approach including the
Net Present Value (NPV ) valuation. The difficulty of this approach is related to the
forecasting of future cash flow and the estimation of the discount factor that reflects the
risk concerned with the cash flow. The main drawback of this approach is that it fails
to take into account the various decisions that are open to managers over the lifetime
of the patent. It has been shown that this managerial flexibility to respond to different
events and observe new possibilities as time goes by, can be of great value. A patent is an
example of an asset that derives it’s value from its potential to become valuable in the
future, contingent on the occurrence of events. These assets will exceed their DCF value
with the difference coming from the option component. In order to capture the value of
flexibility contingent valuation approaches have been applied. In Decision Tree Analysis
(DT A), each decision node allows for managerial decisions after some uncertainty has
been resolved, and more information has been obtained. Another more advanced way to
capture the value of flexibility is the option pricing model e.g. the discrete time binomial
tree approach and the continuous time Black-Scholes-Merton (BSM) model [3] [8] [10] [11].

In theory, the option pricing approach is more accurate than the DT A approach. The
option pricing model was introduced in 1973 by three economists Fischer Black, Myron
Scholes, and Robert Merton [12]. The aim of the model was to value options on financial
assets such as stocks. It was a major breakthrough in finance and economics at the time.
In 1977, Myers [13] found that this approach could be extended to non-financial assets. He
proposed the term "Real Options", where investment opportunities are valued as options
on real assets. The research literature on real options has gradually been increasing
since the 1980s [14]. The motivation for using option pricing analysis in capital budgeting
arises from its potential to capture the value of flexibility, which is nothing more than
a collection of options associated with an investment opportunity. Both the DCF and
the DT A approaches have their limitations when the expected costs and cash flow are
uncertain. In this case the real option approach has helped academics in assessing the
probability of financial success of an uncertain project [10] [11] [15].

An option is the right but not the obligation to buy (call) or sell (put) an underlying asset
at a predetermined future price. Patents are similar to options since they provide the
owner of the patent with an exclusive right but not the obligation to produce or invest
in the patented product. Therefore, it has been argued that patents should be valued
as options. This approach has increasingly been gaining acceptance in the valuation
of patents [3]. Some scholars have considered the value of a patent as an option to
delay the commercialization of the patented project, similar to a call option on the PV
of future cash flow [8]. Others have emphasized the option to abandon the patented
project [15] [16]. Valuing a patent as the option to abandon has been found valuable
in the pharmaceutical industry where drugs usually need to go through many phases
in research and development (R&D) before a product is accepted by the Food and Drug
Administration (FDA). This process is expensive as well as uncertain and therefore the
probability of an abandonment is large [17]. Another approach has been emphasized in
patent valuation where the value of the patent is obtained as the difference between a
patent protected project and the same project without patent protection [9].

The valuation of patents can be approached from different perspectives as in whether

2



to value a single patent or a portfolio of patents. As well there is a distinction between
a patent that is in it’s application process or one that has already been granted. The
aim of this thesis is to develop a general model that can be used to assign a monetary
value to a single granted patent. The concentration will be on the quantitative valuation
methods available, focusing on the income based methods and real options [18] [19]. In
order to account for cost uncertainty as well as uncertainty over future expected cash flow,
a simulation approach using real options will be developed and implemented. The baseline
for the model presented is the model originally proposed by Schwartz (2004) [16], later
developed by Ernst, Legler, and Lichtenthaler (2010) [9], and simplified by Hernández,
Güemes, and Ponce (2018) [15]. These researchers concentrated on the option to abandon
the underlying project. As an extension of previous research we will also include the
option to expand. The value of a patent will be examined as a sequential option to invest
in development and commercialization where the expected cash flow and investment costs
follow a stochastic process. If the value of the project is marginal, we will have the option
to expand. However, if conditions are unfavorable we will default.

This thesis is organized as follows. Section 2 will outline the traditional DCF valuation
approach including NPV . Under this approach we will briefly describe how risk can be
measured as well as implementing the Capital Asset Pricing Model (CAPM) which is
widely used to estimate the risk adjusted discount rate. In Section 3 we will introduce the
importance of flexibility in investment analysis and explain the DT A approach that can
capture the value of flexibility. In Section 4 we will proceed to the option pricing framework
discussing the main properties of both European and American options. The assumptions
underlying option pricing and the discrete time binomial model will be explained. We
will compare the application of DT A to Real Option Valuation (ROV ) and introduce
the different types of real options that can be applicable in the valuation of a patent.
Section 5 will cover the option to invest and it’s characteristics. In Section 6 we will move
from discrete time analysis to continuous time valuation and introduce the underlying
mathematics. We will discuss the BSM model that can be used to value a patent as a
call option on the commercialization of the underlying asset. The mathematical theory
underlying real option models will be examined in Section 7, comparing the two analytical
solution methods, Dynamic Programming (DP) and Contingent Claim Analysis (CCA).
The proposed model of this study and the result from the simulations will be explained in
Section 8, along with sensitivity analysis. In Section 9 we will conclude our findings.

To increase the reader’s understanding of the different quantitative valuation approaches
and to make their comparison clearer, we will start by making some base assumptions
about a patent protected project in Section 2. We will proceed with those assumptions
through the thesis where additional factors will be added as the valuation methods get
more advanced. The goal is to shed a light on the improvement of the valuation as we
move from the traditional DCF valuation method to ROV . Results from the calculations
are presented in million dollar values and rounded to two decimal points.

3
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2 Discounted Cash Flow (DCF) Valuation

The starting point in our journey to calculate the value of a granted patent is to address
some important topics in corporate finance. These are DCF valuation methods, PV and
NPV , including CAPM used to determine the risk adjusted discount rate. It has been
argued that DCF valuation is fundamental to all other quantitative valuation methods.
For example, to use option pricing models for real assets we often need to begin with a
DCF valuation in order to measure the value of the underlying asset. There are many
different DCF methods available but the conventional method values an asset/project by
discounting its expected future cash flow. This is done after tax in the case of real assets
at a discount rate which is a measure of the risk included in the project. The equation for
calculating the PV of an asset is given by Eq.1 [8].

PV =
t=n∑
t=1

CFt

(1+ r)t (1)

where

n =The life of the project
CF t =The expected cash flow at time t
r =The discount rate

As illustrated in Section 1 we will begin with some base assumptions of a patent protected
project presented in the following example.

Example. Suppose you are a chief executive officer (CEO) in a company. Your man-
agement is faced with an internal opportunity to accept or reject a 5 year R&D project
aimed at discovering if a marketable product can be produced from a new innovation. This
innovation just got granted a patent with a lifetime of 20 years. It is estimated that the
patented product will generate an annual cash flow of $0.70million from the 6th year
when the R&D phase will be completed until the patent expires. Since this is a long term
investment (20 years) the risk free rate should be the rate on a risk free government bond
with maturity in 20 years. Because you are in the middle of the Covid-19 pandemic, risk
free rates on such bonds are extremely low. The long term average for a nominal risk free
rate will vary between markets but has averaged 4.5% in the United States [20]. Thus
it is suitable to estimate a risk free rate of 5% in this case. From Eq. 1 the PV can be
calculated as follows

PV =
t=20∑
t=6

$0.70
(1.05)t ≈ $5.69million

The requirements for this approach are the expected future annual cash flows (CF t =
$0.70million) and the discount rate which in this case is assumed to be the risk free rate
(r = 5%).

Whereas the PV only accounts for cash inflows, the NPV approach is a more compre-
hensive indicator of a project’s potential profitability, since it takes the initial investment
outlay (the cost of funding the project) into account.
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NPV =−I +
t=n∑
t=1

CFt

(1+ r)t (2)

where

n =The life of the project
CF t =The expected cash flow at time t
r =The discount rate
I = PVof investment costs

Example. We will proceed with our previous example. Now it is known to the man-
agement that the immediate investment needed to start the R&D process will be I0 =
$0.20million. After the first phase of the R&D program which is assumed to be completed
in two and a half years, an additional investment of I2.5 = $0.55million will be needed
to finish the product’s development. In the 5th year a cost of I5 = $0.85million is esti-
mated to produce and commercialize the product. Therefore, the NPV of this investment
opportunity becomes

NPV =−$0.20− $0.55
(1.05)2.5 − $0.85

(1.05)5 +
t=20∑
t=6

$0.70
(1.05)t ≈ $4.34million

In traditional investment analysis, a project should be undertaken if its NPV is positive
such that future cash flow exceed it’s investment costs discounted to the present. Thus,
this would be considered a profitable investment opportunity [8] [21].

2.1 Estimating the Discount Factor
In principle the discount factor (the opportunity cost of capital) is the expected return
investors demand from an investment. This rate reflects the investment’s level of risk
which increases when uncertainty is large. Investors therefore demand higher returns
from risky investments than from projects that are safer. It can be hard to capture all
risk factors of an investment in one discount rate. When there is no risk the expected
return should be the same as the risk free rate. In the examples above we assumed that
the expected return was the risk free rate but in reality it is unlikely that investment
opportunities are free from risk. In fact, they are risky, since they face uncertainty
regarding the future [21] [22] .

2.1.1 Measuring Risk

In finance, risk can be measured by using statistical measures of spread, variance (σ2)
and standard deviation (σ). The variance of returns tells us how far the expected return
(r̄) is from the actual return at time t (r t), where the expected return is the mean of all
the r t values. Each measurement is squared to eliminate negative numbers. The sum
of all the deviations is divided by the numbers of observed returns minus one (N −1) to
account for the loss of degree of freedom (which is the one parameter that accounts for the
intermediate step, the mean), see Eq.3.
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σ2 =
∑t=N

t=1 (r t − r̄)2

N −1
(3)

where

rt =Return in period t
r̄ =The mean return
N =Number of observed returns

The standard deviation is simply the square root of the variance as shown in Eq.4.

σ=
√
σ2 (4)

This variability is a measure of risk and an indicator of how far in either direction the
returns are moving [21]. It can be hard to measure the variance for a new invention that
has no history of returns. In this case, the variance can be estimated from other similar
investments or obtained from the average variance of a firm in the same industry. It is
also possible to assign different probabilities to different market scenarios and calculate
the PV of the expected cash flow for each scenario. The variance is then found across
those different PV s. Probability distributions can be estimated for the inputs in the PV
calculations (e.g. the market size). Then simulation can be used to estimate the variance
between the PV s that are obtained [8] [23].

In finance, uncertainty of future returns is called volatility. Thus, when volatility is
high the variance or the gap between investors expectations and their actual return is
large. Volatility is the standard deviation multiplied by the square root of time. The
average volatility of the market portfolio in the United States is approximately 20%. Most
individual securities have a higher standard deviation because of an extra variability in
their returns due to specific risk [21] [24].

2.1.2 Specific Risk and Market Risk

There are two types of risk, specific risk and market risk. Every firm or project has it’s own
specific risk related to it’s operation e.g. outcomes from R&D, employee competence or
consumer demand. When an investor holds a portfolio of many stocks he/she can diversify
away the specific risk by choosing stocks from many different sectors. The more assets one
has in a portfolio the better diversified he/she can be. The saying: "Don’t put all your eggs
in one basket" is convenient in this case. The market risk on the other hand is the type of
risk that can not be diversified away. It is the type of risk that faces the market as a whole
e.g. financial crisis or currency/interest rate shifts. Therefore, the dominant risk factor for
an investor with a well diversified portfolio is the rise/fall of the market [10] [11] [21] [25].

To compensate for this market risk investors require a risk premium. The market risk
premium can be estimated by subtracting the average historical return on risk free assets
(r) from the average historical return on common stocks (rm) as illustrated in Eq.5.

Market risk premium= rm − r (5)
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The market risk premium can not be measured with precision because we can never
be sure that the future will be like the past. Neither can we go inside the heads of
investors and find a probability distribution of their expectations. Therefore, we make
the assumption that the average historical risk premium is stable. The historical risk
premium over the last century between stocks and Treasury bonds has averaged 6.26% in
the United Sates. The estimation of the risk premium will always differ between markets
and depend on the approach used (possible range from 3% to 12%) [21] [26].

2.1.3 Capital Asset Pricing Model (CAPM)

The CAPM can be used to estimate the discount rate for an investment opportunity.
The model was proposed in 1964 by three economists William Sharpe, John Lintner, and
Jack Treynor [27]. It states that in a competitive market the expected risk premium of
an investment should vary in proportion to it’s beta (β) which measures how sensitive
an investment is to the rise/fall of the market. The higher the beta the more risky the
investment. The beta of a risk free asset is 0 since movements in the market do not affect
its return. The average beta of the market is 1. An asset that has a beta larger than 1
is more sensitive to market movements than one that has a beta lower than 1. A beta
value of 1.5 means that when the market rises/falls the change in the asset will exceed the
market movement by 50%, while an asset with a beta value of 0.5 will only change by half
of the movement in the market. To measure beta we begin by calculating the covariance
between the investment (r i) and the market returns as illustrated in Eq.6.

σim =
∑t=N

t=1 (r i t − r̄i)(rmt − r̄m)
N −1

(6)

where

r i t =Return from investment at time t
r̄i =Mean value of investment’s returns
rmt =Market return at time t
r̄m =Mean value of market returns
N =Total number of periods

By dividing the covariance by the variance of the market returns (σm
2) we obtain the

security’s beta as follows

βi = σim

σm2 (7)

The covariance can also be denoted as σim = ρ imσmσi where ρ im is the correlation coeffi-
cient between the security and the market. Hence, beta can also be written as βi = ρ im

σm
σi.

Estimates of β may be distorted if there are extreme returns in some periods but these
errors tend to cancel out when beta is estimated for a portfolio of assets. Thus, financial
managers often go to industry betas which is the mean beta value for all stocks in a
particular industry [21].

Since beta is a measure of an investment’s risk relative to the market, an investment with
a beta of 1.5 should have a 50% higher risk premium than the market. Similarly a beta of
0.5 should have a 50% lower risk premium [27].
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µi − r =βi(rm − r)

where

µi − r =Expected risk premium of investment i
βi =Beta value of investment i
rm − r =Expected market risk premium

Thus, the expected return on an investment (µi) should equal the risk free rate plus the
product of the investment’s beta and the expected market risk premium (see Eq.8).

µi = r+βi(rm − r) (8)

When risk increases, beta increases, and an investor will require a higher return from the
investment [21].

Example. When looking at the investment opportunity in more detail you realize that it
is not a risk free investment. You notice that there is an uncertainty regarding it’s future
and you need to measure a discount rate that reflects this risk. The market risk premium
can be calculated from historical data as mentioned in Section 2.1.2, assuming a market
risk premium of 6.26%. The risk free rate is 5% as discussed in Section 2. We will also
assume that you find a perfectly correlated security in the market, that has the same cash
flow and risk as your project with a beta of 1.60, 60% more volatile than the market. When
such security exists you can use its beta as an estimate for risk. After careful analysis you
can obtain the risk adjusted discount rate using the CAPM model from Eq.8.

µ= 0.05+ (1.60)(0.0626)= 0.15
⇒µ= 15%

Now we can recalculate the PV and NPV of the investment opportunity under uncertainty
as follows

PV =
t=20∑
t=6

$0.70
(1.15)t ≈ $2.04million

NPV =−$0.20− $0.55
(1.05)2.5 − $0.85

(1.05)5 +
t=20∑
t=6

$0.70
(1.15)t ≈ $0.68million

The investment outlays are discounted at the risk free rate because for now, we will assume
that those are known for certain. The cash flow is uncertain and therefore discounted at
the risk adjusted discount rate. It appears that the NPV of this investment opportunity
is positive and that the management should invest immediately [10] [21].
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3 Decision Tree Analysis (DTA)

The standard NPV approach is based on today’s expectation of future information and
demands that an immediate decision is made at the time the valuation takes place. This
approach can be convenient when the underlying asset to be valued is currently generating
positive cash flow and the future can be estimated with some reliability. In the case of
young patented assets this is usually not the case. These assets face large uncertainty
in the future that can not be predicted with certainty. More importantly, the underlying
asset may not be generating any positive cash flow at the time the valuation takes place
nor in the upcoming years thereafter. The cash flow is generally dominated by expenses
in the first years and the standard DCF valuation may result in a misleading negative
NPV [3] [8].

The standard NPV fails to take into account the future opportunities and the value
of the various decisions a management might want to take over the life of the project.
This managerial flexibility is an option to respond to future unexpected events. When
uncertainty is large such as in the case of new inventions, the probability of unforeseen
events is high and the option to respond to these events increases in value. On the other
hand, when there is little uncertainty, the probability of unexpected future events is low
and the option becomes less valuable [8] [10] [11] [28].

Flexibility can be valued by assigning probabilities to different future events such that
success has a probability of q while failure has a probability of (1− q). The two main
approaches used in practice to capture the value of flexibility are DT A and the more
accurate ROV approach. DT A captures the value of managerial flexibility by taking
various discrete decision points into account. It is useful in helping managers visualize the
possible risk events that might arise over the life of the project. In the following example
we will assume that the project is only affected by specific risk namely the outcomes from
the R&D program. To account for the market risk we will need to apply ROV discussed
under the option pricing framework in Section 4.2 [10].

Example. Lets proceed with our previous example from Section 2.1.3. The management
is aware of future events and wants to model the flexibility to make decisions as time
unfolds. They realize that there is a q1 = 0.5 probability that in two and a half years
the first phase of the R&D program will result in a favorable project. This gives the
management the option to invest I2.5 = $0.55million and start the next phase of R&D. If
the first phase fails which will happen with a probability of (1− q1) = 0.5, they will not
invest, and halt the project, resulting in a NPV of $0. If they proceed to the second R&D
phase there is a probability of q2 = 0.7 that they will end up with a marketable product.
In that case they have the option to invest I5 = $0.85 in the 5th year and start production
and marketing. There is a probability of (1− q2)= 0.3, that the second phase of the R&D
will fail and the management will cease the project, resulting in a NPV of $0. Now the
standard NPV of this project becomes
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Standard NPV =−$0.20− $0.55
(1.05)2.5 − $0.85

(1.05)5 + (0.5)(0.7)
t=20∑
t=6

$0.70
(1.15)t

≈−$0.64million

The NPV is negative, thus under traditional investment analysis this project would not
be considered profitable. By solving the decision tree presented in Figure 1 we are able
to value the managerial flexibility to respond to the different risk events. The squares
in the tree represent decision nodes where the management needs to make up its mind
whether to invest. The circles represent the R&D risk events and the probabilities of
them occurring. To calculate today’s NPV of the project, we work from the right (t5) to
the left (t0) in the tree.

Figure 1: DT A with Specific Risk Events ($ in millions).

When solving the DT A, we use today’s PV for both the expected cash flow and the
investment costs at each stage. In the 5th year the PV of the cash flow is $2.04million
as calculated in Section 2.1.3. If the second phase of the R&D program is successful we
have the option to invest $0.85million with a PV (I5)= $0.67million. If it fails we will
not invest. The value of the option to invest at t5 becomes

NPV = max
(
PV −PV (I5),0

)
= max

(
$2.04−$0.67,0

)
≈ $1.37million

The PV of cash flow in t2.5 equals the probability weighted payoffs in t5. Hence, the value
of the option to invest for $0.55million with a PV (I2.5)= $0.49million becomes
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NPV = max
((

0.7($1.37)+0.3($0)
)−PV (I2.5),0

)
= max

(
$0.96−$0.49,0

)
≈ $0.47million

The PV of cash flow in t0 equals the probability weighted payoffs from t2.5 where there is
an equal probability of success and failure. Therefore, the value of the option to invest
$0.20million today is

NPV = max
((

0.5($0.47)+0.5($0)
)− I0,0

)
= max

(
$0.24−$0.20,0

)
≈ $0.04million

We can see that the value of the investment opportunity is significantly higher than
the standard NPV of −$0.64million when the flexibility to default, if R&D outcomes
are unfavorable, is included in the valuation. Even though the cumulative probability of
success in the R&D phases is only 35%

(
(0.5)(0.7)= 0.35

)
, the project should be undertaken.

The value of the flexibility or the option to respond to different risk events is especially
important when investments demand some detailed decision making. This is essential
when there is uncertainty associated with R&D, production, or marketing [10].

DT A can help managers to analyze sequential investment decisions where uncertainty is
resolved at discrete points in time. It forces them to use strategic thinking, comparing
immediate decisions to subsequent ones. It is useful when the probabilities of expected
cash flow can be quantified at an initial decision node. On the other hand, it can be difficult
to estimate future cash flow from the underlying asset when the quality and validity of
the final product as well as its market demand is unknown. In practice, it is likely that
there are more then two possible outcomes from every decision node such that the decision
tree can quickly expand.

When estimating the correct risk adjusted discount rate it can be helpful if a proxy for
risk can be used in obtaining the appropriate rate. Assuming that a perfectly correlated
twin security exists - like we did in our previous example. Unfortunately it might be hard
or even impossible to find a comparable asset in the market in the case of a new invention.
In the presence of managerial flexibility the main drawback of the DCF valuation is the
use of a single constant discount rate over the life of the project. This assumes that the
risk increases at a constant rate through time or that the same uncertainty is resolved in
each period.

In realistic investment settings, variance is likely to change from time to time. A new
invention in its final state of R&D is probably less variable then one that is in its
first stages of research. In reality investments are made, implemented, and revised
continuously through time. Events may not occur at discrete points in time, but rather,
uncertainty resolves continuously. Therefore, it is a simplification of reality to assume a
constant discount rate of PV s. The real option approach changes the nature of risk and
invalidates the use of a single discount rate [3] [11] [28].
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4 Option Pricing Framework

An option is a claim that pays off only under a certain future event or circumstance
that is possible but cannot be predicted with certainty. An asset can be valued as an
option if it’s payoff is a function of the underlying asset. The option framework sets a
precedent for the valuation of a patent because the payoff from a patent is a function of the
underlying investment opportunity. A patent gives a firm/individual the right to develop
and commercialize a product. This right is analogous to an option where its holder has
the right but not the obligation to exercise the option. For this reason it has been argued
that patents should be valued as options.

Option pricing is widely used to value traded financial assets known as financial options.
Lately the option pricing model has been extended to the valuation of real assets such as
investment projects. Those types of options are known as real options and provide a way to
capture the value of managerial flexibility. The main difference between financial options
and real options is that most financial assets are traded in the market while very few real
assets are traded. Therefore, when valuing a financial option, the variables needed as an
input for the model can be obtained from the market. On the other hand, in the case of
most real options, the value of these variables needs to be estimated. Table 1 illustrates
the difference between the variables of financial and real options used in option valuation,
along with their symbols [3] [8].

Table 1: Comparison of the Variables used in Real vs. Financial Option Pricing.

Real Options Financial Options

V = PV of the Expected net Cash Flow S = Stock Price
I = PV of Investment Costs K = Strike Price
T = Time left to Invest T = Time to Maturity
r = Risk Free Rate r = Risk Free Rate
σ = Volatility of the Expected Cash Flow σ = Volatility of the Stock’s Returns
δ = Cost of Maintaining the Option δ = Dividend Payment

There are two types of options: a call option and a put option. The holder of a call has
the right but not the obligation to buy the underlying asset at a predetermined price at a
certain time in the future. The holder of a put option has the right but not the obligation
to sell the underlying asset at a predetermined price at a certain time in the future. The
predetermined price is called the strike price of the option contract. The date when the
contract expires, is called the expiration date or maturity. The payoff from a call option is
positive if the underlying asset exceeds the strike price when the option is exercised. If
this is not the case the option expires worthless with a payoff of zero. The holder of a call
option breaks even when the payoff from the option equals the price of the option (c), (see
Eq.9).

Net Payoff from a Call Option= max
(
S−K ,0

)− c (9)
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The payoff from a put option is positive if the strike price exceeds the underlying asset
when the option is exercised. Otherwise the option expires worthless with a payoff of zero.
Therefore, put options work as an insurance against the decline in the underlying asset’s
value. The holder of a put option breaks even when the payoff from the option equals the
price of the option (p), (see Eq.10).

Net Payoff from a Put Option= max
(
K −S,0

)− p (10)

The net payoff profiles for both a call and put option can be seen in Figure 2 [8] [24].

Figure 2: The Net Payoff Profiles for a Call and Put Option.

Options can be either European or American. European options can only be exercised at
maturity while American options can be exercised at any time prior to maturity. Table 2
summarizes the change in the price of financial options, when one variable changes and
others are held constant. The + sign indicates that an increase in a variable causes the
price of the option to increase. The − sign indicates that an increase in a variable causes
the price of the option to decrease [24].

Table 2: The Changes in Option Prices when a Variable’s Value Increases.

Variable
European

Call
European

Put
American

Call
American

Put
Current Stock Price + - + -
Strike Price - + - +
Time to Maturity Uncertain Uncertain + +
Risk Free Rate + - + -
Volatility + + + +
Dividend - + - +

It can be seen that American options become more valuable as the time to maturity is
extended. This is because the holder of a long life option has more exercising opportunities
than the holder of a short life option. European options usually become more valuable as
the time to maturity increases. However, this is not always the case. For example, when
there are dividends, the stock price will decline after a dividend has been paid, and a long
life call option might be less valuable than a short life one [24].

An option is said to be "in the money" if its payoff from today’s exercise is positive
(analogous to NPV > 0) and "out of the money" when its payoff from today’s exercise
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is negative (NPV < 0). When an option is "at the money" the value of the underlying
asset equals the cost of exercising the option and its payoff from today’s exercise is zero
(NPV = 0) [24] [28].

4.1 Option Valuation
When pricing derivatives a simple and widely used tool is the binomial tree approach
introduced by Cox, Ross, and Rubinstein in 1979 [29]. It values options in discrete time
manner and assumes that the underlying asset follows a random walk. In a random walk,
given the current position, we always have equal probabilities of going up or down. Hence,
if a random variable has the value x0 at time t0, it will either go up over a time period
∆t, to x0 +∆x with probability 1

2 , or down to x0 −∆x with probability 1
2 . The probability

that the random variable goes up/down j times over n periods is found from the binomial
distribution as follows

P
(
X

(
n∆t

)= j∆x
)
=

(1
2

)n
(
n
j

)

This process can be generalized by letting p be the probability of an up movement and
(1−p) be the probability of a down movement. As the time steps get smaller the probability
distribution of a random walk converges to the standard normal distribution. The process
which is obtained in the limit is the Wiener process discussed in Section 6.2 [28]. It is
the foundation to the BSM model, which assumes that the change in the price of the
underlying asset is lognormally distributed and continuous in time (see Section 6.5). The
BSM model was introduced and later the binomial model was presented in order to
simplify the continuous time approach to a discrete valuation process.

These two option pricing models build on the assumption that the market is complete.
This means that there are no transaction costs or taxes, no restrictions on short sales,
borrowing and lending at the same rate is allowed, and arbitrage opportunities do not
exist. As well it’s assumed that the risk free rate is constant over the life of the option.
When these assumptions hold we can construct a replicating portfolio composed of ∆ units
of the underlying asset (e.g. stock) and a dollar amount B in a risk free loan. This is done
in a way that it will not matter whether the price of the underlying asset goes up or down
in one period. To avoid arbitrage opportunities, the price of setting up the portfolio should
equal the current price of the option. The reason that a riskless portfolio can be set up
this way is that the option and its underlying asset are both affected by the same source
of uncertainty. That source of uncertainty is the price movements in the underlying asset.
In a short period of time the price of the option is perfectly correlated to the change in the
price of the underlying asset [11] [24] .

4.1.1 Replicating Portfolio

Assume we want to know the price of a call option that expires in 1 year. The current
price of the underlying non dividend paying stock is S = $100. In one period it is known
that the stock’s price will either move up to uS = Su = $150 or down to dS = Sd = $50.
The size of the up movement is u = Su

S = 1+ ru = 1.5, and the size of the down movement
is d = Sd

S = 1+ rd = 0.5 (where ru is the rate of an up movement and rd is the rate of a
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down movement). For there to be no arbitrage opportunities we need the inequality to
hold u > 1+ r > d (assuming a risk free rate of 5%, as before). With probability q the price
will rise over a given time period T, and with probability (1− q) it will fall. The price of
the call option is contingent on the price of the stock. With a strike of K = $110, the value
of the call option in the up state is fu = max

(
Su −K ,0

)= $40, and in the down state it is
fd = max

(
Sd −K ,0

)= 0 (see Figure 3).

Figure 3: A One Step Binomial Tree.

For the portfolio to have the same return as the option in time T (1 year), we let the value
of the portfolio in both the up and down states equal the value of the option in each state.

∆uS− (1+ r)TB = fu (11)

∆dS− (1+ r)TB = fd

By solving for the two unknowns we can find how many units of the underlying stock ∆
we need to hold, as well as the dollar amount of loan B we will need, to retain a perfectly
hedged portfolio.

∆= fu − fd

(u−d)S
and B = d fu −ufd

(u−d)(1+ r)

Now ∆ = $40−1.5
(1.5−0.5)($100) = 0.4 and B = 0.5($40)−1.5(0)

(1.5−0.5)(1+0.05) ≈ $19.05. Therefore, we need to hold
0.4 shares in the underlying stock and take a short position for approximately $19.05 to
replicate one call option over this particular period. Hence, the price of the call option
today, that gives it’s holder the right to buy the underlying stock at time T, is

f =∆S−B = 0.4($100)−$19.05= $20.95

The number of shares we need to hold (∆) is called the hedge ratio or the option’s delta.
The equation obtained above is the discrete value of delta. In reality there is a need to
adjust a portfolio from time to time in order to remain a perfectly hedged portfolio. This
is known as dynamic hedging. Of course it is not possible to buy 0.4 units of shares, but
usually investors do not construct a portfolio to hedge only one call option. It would be
more realistic to have 100 calls on a stock. In that case, one would need to buy 40 units of
the underlying stock [11] [24] [29].
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4.1.2 Risk Neutral Valuation

We can price an option by assuming a risk neutral world, although we know that the real
world is not risk free. This is an important assumption in option valuation where we
assume that investors are risk neutral and do not require higher expected rate of return
to compensate for an increased risk. When we move from a risk neutral world to reality
two things happen. The expected growth rate in the underlying asset changes and the
discount rate changes. These two changes always offset each other. Thus by assuming
risk neutrality we can obtain the right price of a derivative in the world we live in, not
only in the risk neutral world [24].

In risk neutral valuation we assume that the expected rate of return on the investment is
the risk free rate and that the present value of the expected cash flow can be discounted at
the risk free rate. Risk neutral valuation builds on the principles of a replicating portfolio
discussed in the previous section. Now we rearrange the terms in Eq.11, such that we can
construct a portfolio with a long position in an option and a short position in ∆ units of
the underlying asset (see Figure 4).

Figure 4: A Riskless Hedge.

Furthermore, to avoid arbitrage opportunities the portfolio must earn the risk free rate.
If the portfolio’s return were higher than the risk free rate one could borrow money at
the risk free rate and buy the portfolio earning a higher rate of return. If its return were
lower, one could short the portfolio and invest its money at the risk free rate. Thus, the
value of the portfolio today should equal it’s value at time T, discounted to the present at
the risk free rate. In the previous section, we found delta (∆) such that it does not matter
whether the price goes up or down in one period. Thus we can let the value of the portfolio
today equal the value of either of the two portfolios at time T.
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f −∆S = ( fu −∆uS)(1+ r)−T

f = fu(1+ r)−T +∆S
(
1−u(1+ r)−T)

f = fu(1+ r)−T +
( fu − fd

S(u−d)

)
S

(
1−u(1+ r)−T)

f = fu(1+ r)−T(u−d)
(u−d)

+ ( fu − fd)
(
1−u(1+ r)−T)

(u−d)

f = fuu(1+ r)−T − fud(1+ r)−T + fu − fuu(1+ r)−T − fd + fdu(1+ r)−T

(u−d)

f = fu
(
1−d(1+ r)−T)+ fd

(
u(1+ r)−T −1

)
(u−d)

f = fu
(
1−d(1+ r)−T)+ fd

(
u(1+ r)−T −1

)
(u−d)

By taking (1+ r)−T outside the parentheses we obtain

f = fu(1+ r)−T
( (1+ r)T −d

u−d

)
+ fd(1+ r)−T

(u− (1+ r)T

u−d

)

And by letting

p = (1+ r)T −d
u−d

and (1− p)= u− (1+ r)T

u−d
(12)

We get

f = [
pfu + (1− p) fd

](
1+ r

)−T (13)

This result of risk neutral valuation gives the correct value for the price of an option.
Hence, the price of an option is the PV of its expected payoff over some time period T,
where p is the riskless probability of an up movement, and (1−p) is the riskless probability
of a down movement. The reader can verify that the risk neutral valuation approach will
result in the same price of the option calculated under the replicating portfolio in Section
4.1.1.

In a risk neutral world, p is the riskless probability of an up movement and the growth
rate of the underlying asset (e.g. expected return from a stock) is the risk free rate. Solving
the equation for the expected value of a stock price at time T, we get

E[ST]= puS+ (1− p)dS
= puS+dS− pdS
= pS(u−d)+dS

20



By substituting p = (1+r)T−d
u−d , we obtain

=
( (1+ r)T −d

u−d

)
S(u−d)+dS

= S(1+ r)T

Thus we have shown that the expected value of the stock at some future time T is
E[ST] = S(1+ r)T with an expected growth rate of ST

S = (1+ r)T , in a risk neutral world
[24] [29] [30].

4.1.3 Extending the Number of Periods

The valuation approach in the previous section considers a one period binomial tree. This
can be extended to an increased number of periods. If we divide the option’s time to
maturity into n intervals of equal length, we have obtained a binomial tree with n periods.
A multiple period binomial tree is solved in the same way as the one step tree, starting
from the end date and working backwards towards the present. The general multiplicative
binomial formula for pricing options with n periods (here a call option), is given by

f =
∑ j=n

j=0
n!

j!(n− j)! p j(1− p)n− jmax
(
u jdn− jS−K ,0

)
(1+ r)n (14)

The first component of the equation n!
j!(n− j)! p j(1− p)n− j is simply the binomial distribution.

It calculates the probability that the stock’s price will move up j times over n periods,
where each up movement happens with probability p. The other component of the equation,
max

(
u jdn− jS−K ,0

)
, represents the payoff from a call option at maturity. It takes into

account how many times the price S moves up by the amount u, and down by the amount
d, over the n periods. Finally, the expected payoff at maturity is summed up for all the
possible option values, multiplied with their probabilities, and discounted by the risk free
rate. In this way, we are able to calculate the value of the option today ( f ). When the
number of periods approaches infinity, the discrete time binomial distribution converges
to the cumulative standard normal distribution and the above formula converges to the
continuous time BSM formula (see Section 6.5) [11].

When n ⇒∞, the discrete rate
(
1+ r

n
)n, where n is the number of periods, converges to the

continuously compounded rate er. When using continuous compounding the parameters
u, d, p, f and E[ST] become [24]

u = eσ
p
∆t and d = e−σ

p
∆t = 1

u
(15)

p = erT −d
u−d

(16)

f = [
pfu + (1− p) fd

]
e−rT (17)

E[ST]= SerT (18)
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4.1.4 Estimating the Up/Down Movements

The parameters u and d should be chosen so that they match the volatility of the under-
lying asset. As mentioned in Section 2.1, the volatility of an asset is a measure of the
variance in it’s returns in a small time interval (σ2∆t). The variance of a variable X is
defined as E(X2)− [E(X )]2, where E is the expected value. Therefore, when the return
from the underlying asset is (u−1) with probability p, and (d−1) with probability (1− p),
we can mach the volatility of the underlying asset as follows

E(X2)− [E(X )]2 =σ2∆t

⇒ p(u−1)2 + (1− p)(d−1)2 − [p(u−1)+ (1− p)(d−1)]2 =σ2∆t

Substituting for p = erT−d
u−d , this equation simplifies to

er∆t(u+d)−ud− e2r∆t =σ2∆t

Using Taylor series expansion for the exponential function ex = 1+ x+ x2

2! + x3

3! ... ignoring
∆t2, and higher powers of t, the above equation simplifies to

(1+ r∆t)(u+d)−ud− (1+2r∆t)=σ2∆t

Now we can assume that u = ex and d = e−x, so that ud = 1, and

(1+ r∆t)(u+d)−1− (1+2r∆t)=σ2∆t

(u+d)= σ2∆t
1+ r∆t

+2

By using the Taylor series for u and d, and ignoring x3 and higher powers of x, we get

u = ex = 1+ x+ x2

2!
.....

d = e−x = 1− x+ x2

2!
.....

(u+d)≈ 2+2
x2

2!
≈ 2+ x2 ≈ σ2∆t

1+ r∆t
+2

⇒ x ≈ σ
p
∆tp

1+ r∆t

Now we can use the Maclaurin series for f (x)= 1p
1+x

up to the second derivative, f (x)=
f (0)+ xf ′(0)+ x2

2! f "(0)... to obtain an approximation of the following function

1p
1+ r∆t

= 1− 1
2

r∆t+ 3
8

(r∆t)2
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Hence, the approximated value of x becomes

x ≈ σ
p
∆tp

1+ r∆t
≈σ

p
∆t(1− 1

2
r∆t+ 3

8
(r∆t)2)

≈σ
p
∆t− 1

2
σr(∆t)3/2 + 3

8
σr2(∆t)5/2

⇒ x ≈σ
p
∆t

Therefore, the values for the up and down movements of the underlying asset become a
function of volatility and time as follows

u = eσ
p
∆t and d = e−σ

p
∆t = 1

u

Note, when we move from a risk neutral world to the real world the volatility (σ) stays
the same. The only thing that changes is that r =µ. Thus, we don’t use the risk neutral
probabilities but the objective probabilities, given by

p∗ = eµ∆t −d
u−d

Working through the same steps as before with p∗ as the probability of an up movement,
we end up with the same equations for u and d. Therefore, we can conclude that the size
of the up and down movements are independent of the expected return and will be the
same in all worlds [24].

4.2 Comparing DTA and ROV
The DT A is applicable when risk is mainly firm specific and market risk is insignificant.
On the other hand, DT A tends to undervalue the investment opportunity when market
risk is significant. The outcome from a R&D program is an example of specific risk since it
is not affected by what happens in the overall economy. The market risk is the commercial
risk factor of the potential future cash flow of a fully developed and marketable product. To
obtain the correct value for an investment opportunity when commercial risk is significant
we need to use ROV , assuming risk neutrality [10]. To illustrate this point we will proceed
with our previous example in Section 3.

Example. Now we assume that the annual volatility in the expected cash flow is σ= 47%
(the average volatility in firm value of a publicly traded biotechnology firm [8]). The
expected annual cash flow from the 6th year until the patent expires in twenty years
is $0.70million. The expected cash flow is discounted at a 5% risk free rate with a
PV = $5.69million, as calculated in Section 2. From Eq.15 we can calculate the sizes of
the up and down movements as follows

u = eσ
p
∆t = e0.47

p
2.5 ≈ 2.10 and d = e−σ

p
∆t = 1

u
≈ 0.48
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Since this risk over the expected cash flow is not diversifiable we calculate the risk neutral
probabilities as presented in Eq.12.

p = (1+ r)t −d
u−d

= (1+0.05)2.5 −0.48
2.10−0.48

= 0.4 and 1− p = 0.6 (19)

The probability of an up movement in the expected cash flow is p = 0.4, and the probability
of a down movement is (1− p) = 0.6. The probabilities of success and failure in the
R&D phases do not need to by adjusted to risk neutral probabilities since their risk
is diversifiable. Therefore, we have the same probabilities as in our previous example,
q1 = 0.5 and (1−q1)= 0.5 for the first phase of R&D, and q2 = 0.7 and (1−q2)= 0.3 for the
second phase. When working through the binomial tree we start with the future value of
the underlying asset at t5 and work back, discounting towards the present. The evolution
of the cash flow can be seen in Table 3.

Table 3: The Evolution of the Cash Flow ($ in millions).

PVu = uPV = $11.97 PVd = dPV = $2.71
PVuu = u2PV = $25.17 PVud = udPV = $5.69
PVdu = duPV = $5.69 PVdd = d2PV = $1.29

In the 5th year (t5) the management has the option to invest I5 = $0.85million in
production and marketing. If the expected cash flow at each node exceeds the cost of this
investment, the option is kept alive. Otherwise, it expires worthless. The payoffs at each
node are calculated as follows

fuu = max
(
PVuu − I5,0

)
= max

(
$25.17−$0.85,0

)
= $24.32million

fud = max
(
PVud − I5,0

)
= max

(
$5.69−$0.85,0

)
= $4.84million

fdu = max
(
PVdu − I5,0

)
= max

(
$5.69−$0.85,0

)
= $4.84million

fdd = max
(
PVdd − I5,0

)
= max

(
$1.29−$0.85,0

)
= $0.44million

At t2.5 the management has the option to invest I2.5 = $0.55million and begin the second
R&D phase. The value of the option is the probability weighted expected payoff from the
5th year, calculated with the risk neutral probabilities. The total payoff is then multiplied
with the objective probabilities that apply to the second R&D phase.

fu = max
((

q2
[
pfuu + (1− p) fud

]+ (1− q2)($0)
)(

1+ r
)−t − I2.5,0

)
= max

((
0.7

[
0.4($24.32)+0.6($4.84)

]+0.3($0)
)(

1+0.05
)−2.5 −$0.55,0

)
= $7.30million
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fd = max
((

q2
[
pfdu + (1− p) fdd

]+ (1− q2)($0)
)(

1+ r
)−t − I2.5,0

)
= max

((
0.7

[
0.4($4.84)+0.6($0.44)

]+0.3($0)
)(

1+0.05
)−2.5 −$0.55,0

)
= $0.82million

When we have calculated the values of the options, fu and fd in t2.5, we can obtain the
value of the option to invest I0 = $0.20million today. We do this in the same manner as
before but now using the objective probabilities that apply to the first phase of the R&D
program (see Figure 5).

f = max
((

q1
[
pfu + (1− p) fd

]+ (1− q1)($0)
)(

1+ r
)−t − I0,0

)
= max

((
0.5

[
0.4($7.30)+0.6($0.82)

]+0.5($0)
)(

1+0.05
)−2.5 −$0.20,0

)
≈ $1.32million

Figure 5: ROV with Market Risk of σ= 47% ($ in millions).

Now we have obtained the value of the option to invest in the project. This value of
$1.32million is significantly higher than the standard NPV of −$0.64million. As well,
it is greater than the NPV of $0.04million, calculated contingent on the success of the
R&D phases modeled with the DT A (see Section 3). Therefore, we can see that when
there is an uncertainty (σ) over the expected cash flow, the value of the option to invest in
the project increases. Furthermore, DT A tends to undervalue the investment opportunity
while ROV results in a correct value [10].
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4.3 Examples of Real Options
There are various types of real options that can be used to value an investment opportunity.
In this section we will introduce the options that might be applicable in the valuation of a
young patented asset.

The Option To Invest. The option to invest gives it’s holder the right to wait or delay
an investment until uncertainty has been resolved and only invest if conditions turn out
favorable. It is similar to an American call option with a strike price (I) equal to the cost
of the investment and the underlying asset (V ) equal to the PV of expected cash flow,
f = max

(
V − I,0

)
. This option is embedded in many projects but it is most valuable in

projects that have an exclusive right to invest, such as in the case of a patent [8] [11].

The Option to Expand. The option to expand provides its holder the right to scale up
it’s project by a certain percentage amount x%, for a certain additional cost Ix. It can be
exercised e.g. if market conditions turn out more favorable than expected. This option
can be viewed as a call option where the underlying asset is the value of the expansion
(x%V ) and the strike price is the cost of expanding (Ix). The expansion value needs
to be compared with the pre-expansion value (V ) and the value of the option becomes
f = max

(
x%V − Ix −V ,0) [31]. This option can be valuable when one wants to take

advantage of introducing a new product into an uncertain developing market. It allows
for a cautious beginning and expanding if conditions turn out favorable [11].

The Option to Contract. Another option that allows for altering the scale of production
is the option to contract if market conditions turn out weaker than expected. This option
can be valuable in the case of a patented project since it gives its holder the right to reduce
the scale of production by a certain percentage amount c%. By doing this one can save a
part of the estimated investment cost Ic. This option is similar to a put option where the
underlying asset is the size of the contraction and the strike is the cost that will be saved
f = max

(
Ic − c%V ,0

)
. Like the option to expand, this option can be valuable when a new

product is introduced into an uncertain market [11].

The Option to Abandon. The option to abandon is valuable if operations go poorly and
the firm might want to abandon the project for some salvage value. An example is to sell
equipment, or sell the patent itself, to another party that is more capable of finishing
the process of production and commercialization. This option is similar to an American
put option on the value of the underlying project (V ) with a strike price (A) equal to
the salvage value, f = max

(
A−V ,0

)
. The value of the investment opportunity with an

abandonment option becomes V +max
(
A−V ,0

)
or f = max

(
A,V

)
. Note that we would

only abandon if the salvage value exceeds the value of the underlying asset [11].

The Option to Default. This option is valuable in most real life R&D projects. It is
seldom that an investment is made in a single up front payment. Most often investments
are made in stages and if the first stage turns out successful this option gives the right to
invest and move on to the next stage. If the first stage fails on the other hand, we will
default. Therefore, this option can be valued as a compound option or as a sequential
option. If a project has ten stages the 5th option would depend on the first four stages and
the 10th option would depend on the previous nine stages. Whether you reach the last
stage, is a function of whether you make it through the previous stages [8] [11].
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The Option to Switch. The option to switch offers a range of flexibility. An example is to
maintain a relationship with a couple of suppliers and switch between them as their prices
change. Another example would be to switch between production facilities in different
countries to respond to changes in costs, exchange rates, or other market conditions. In the
case of a patented product that faces a volatile market the ability to switch between inputs
or outputs in the companies production may be of great value. An increased flexibility may
be worthwhile in responding to changing market demand and being able to differentiate
product’s mix, shape, or size [11].

Growth Options. Growth options are found in all R&D programs. When a new invention
is in its first stages of research, testing, and development, the project involves high initial
costs and often insufficient expected cash inflows. The NPV is often negative and the
investment opportunity appears unattractive. In such cases, clever managers observe
future growth opportunities. If the product is successfully developed and commercialized
it might open access to new markets, increase the company’s competitive advantage, be
the first in a series of other higher quality products, or the foundation of a new invention.
If an initial investment is not made these future opportunities may be lost to competitors.
Therefore, growth options are call options on the future potential commercial project [11].
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5 The Option To Invest

The option to invest or wait is embedded in many projects but is most valuable in projects
where there is an exclusive right to invest, such as in the case of patents. The option to
delay an investment project can be valuable when a project has a negative NPV today
but might have a positive NPV in the future. It might also be worth waiting even though
the current NPV is positive [8]. Most investment opportunities have the following three
characteristics in common. Firstly, they are partly or completely irreversible. If you
change your mind you can not fully recover the initial investment, it is at least partially
sunk cost. Secondly, their future return is uncertain, and finally, their timing can be
controlled. Thus every investment opportunity comes with an option, namely the option
to invest. When an investment is completely irreversible and the level of uncertainty is
high, this option to control the timing of your investment increases in value [28].

In Section 2.1.3, we had an estimate of beta by assuming that a twin security existed in a
market. In reality it’s hard to find a twin security for a patented product especially if it’s a
new unique invention. Hence, in this section we will take advantage of the risk neutral
assumption of the option pricing framework. We will assume that all risk is diversifiable
(no market risk, β= 0) such that the future expected cash flow can be discounted at the
risk free rate.

Example. Now five years have passed from the initial valuation of the investment
opportunity where the management decided to go ahead with the project. The first phase
of the R&D program was successful but several problems have arisen in the second phase.
Hence the final product won’t be completed until in the 6th year. Recall, it was estimated
that the product would be completed in the 5th year and production and marketing could
start in the same year. The first revenues from the product sales were estimated in the
6th year and until the patent expired. Unfortunately, there will be a one year delay of
completing the final product.

The management needs to decide whether to invest in production and marketing without
having the final product completed. There is a need to decide if it is worth waiting for
the R&D outcomes and delay market entry by one year (to the 7th year from start). The
management has also realized that the cost required to produce and introduce the product
into the market will be much higher than initially estimated or $4.70million. There is
a probability of q = 0.5 that the final product will be successful generating an annual
cash flow of $1.05million. There is also an equal probability that the product will not be
favorable with an annual cash flow of $0.35million. At this stage, the investment costs
that have already been paid I0 and I2.5, are sunk costs (irreversible) and therefore, should
not be taken into the valuation. The expected cash flow today is C0 = $0.70million and
will be the same until the patent expires

(
0.5($1.05)+0.5($0.35)= $0.70

)
. The NPV from

today’s investment as opposed to delaying the investment for one year are presented in
Figure 6.
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Figure 6: The NPV of Investing Today and of Investing in 1 Year.

The NPV of the project, if the management decides to invest today, before knowing the
outcome of the R&D phase, is $2.57million. In one year the management has the choice
to invest $4.70million, if the annual expected cash flow has risen to $1.05million. The
probability of this happening is q = 0.5 and results in a NPV of $2.71million. If the cash
flow falls, the NPV becomes −$0.59million and the management will not invest. We
can see, that even though the NPV of the project today is positive, it is worth waiting
under the assumption of investing if the cash flow rises. By investing today we kill the
opportunity cost of waiting, which equals the difference between the NPV of waiting and
the standard NPV : $2.71−$2.57= $0.14million. This means that we are willing to pay
$0.14million for receiving an investment opportunity that is flexible, instead of one that
only allows for an immediate investment.

Another way to look at the value of the flexibility is to consider the investment cost we
would be willing to pay, for a flexible investment, rather than an immediate one.

NPV = 0.5
(−$I
1.05

+
t=15∑
t=2

$1.05
(1.05)t

)
= $2.57million

By solving for I we get I ≈ $5.00million. Therefore the opportunity to invest for
$4.70million immediately, has the same value as the opportunity to invest now or next
year for $5.00million. Thus we are willing to pay more for an investment opportunity
that is flexible.

If we didn’t have the option to wait and our only choice was to invest today or never invest,
the standard NPV approach would have been satisfactory and we would have invested
in the project today with a NPV of $2.57million. If our investment would have been
reversible, there would have been no reason to wait. In that case we could have recovered
our investment if the cash flow would have fallen to $0.35million. However, when we
have the ability to control the timing of our investment and our investment is irreversible,
there is an additional opportunity cost to investing [28].
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5.1 Analogy to Financial Options
The option to invest is similar to a financial call option on a common stock. A call option
gives the holder the right to buy the underlying asset (e.g. stock) at a predetermined
exercise price. In comparison, when you hold an investment opportunity you have the
right to invest in the project for an investment cost. In both cases if you exercise your
option you will receive the underlying asset (stock/investment opportunity) for which the
future price/value is uncertain [28].

In this section we will look at the relationship between a financial call option and the
real option to invest. We will recalculate the value of our investment opportunity (NPV =
$2.71million) using the option pricing framework (see Section 4.1.2). In reality, it is
unlikely that the underlying asset, in the case of a young patented asset, is traded in the
market such that one could take a short position and construct a replicating portfolio.
Taking a short position means that we could borrow the asset from another party and
sell it in the market. However, we will assume that this would be possible and that we
could construct a risk free portfolio with an option in our investment opportunity (Ft) and
a short position in ∆ units of the underlying asset. At time t the value of this portfolio is

Πt = Ft −∆Ct

where Ct is the expected cash flow at time t. Now if the annual cash flow rises to
$1.05million the PV of the option to invest in one year will be

F1 =−$4.70+
t=14∑
t=1

$1.05
(1.05)t ≈ $5.69million

If the expected cash flow declines to $0.35million we will not invest, so the value of the
option in that case, is zero. In order to calculate the value of the option today F0, we can
construct a replicating portfolio. For the portfolio to be risk free we need to make the
assumption that it earns the risk free rate as discussed in Section 4.1.2. The value of
the portfolio today is Π0 = F0 −∆$0.70. The value of the portfolio in one year is either
Π1 = F1 −∆$1.05 in the favorable state or Π1 = 0−∆$0.35 in the unfavorable state. We
need to find ∆ such that we have an equal outcome whether the value of the underlying
asset goes up or down in one year.

Π1 = F1 −∆$1.05= 0−∆$0.35
⇒∆

(
$1.05−$0.35

)= $5.69
⇒∆= 8.13

Taking a short position in 8.13 units of the underlying project the value of our portfolio in
one year becomes

Π1 = F1 −∆$1.05
= $5.69−8.13($1.05)
=−$2.85
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Because the expected rate of capital gain in the cash flow is zero (the expected cash flow
is $0.70million every year) no investor would hold a long position without expecting
to earn at least the risk free rate. Therefore, the cost of holding the short position
equals the risk free rate and the long position receives an annual payment of 0.05∆C0 =
0.05

(
8.13($0.70)

)= $0.28million. The portfolio’s return is the capital gain (Π1−Π0) minus
the payment required for holding the short position.

Return =Π1 −Π0 −$0.28
=Π1 −

(
F0 −∆$0.70

)−$0.28
=−$2.85−F0 +

(
8.13($0.70)

)−$0.28
= $2.56−F0

Since the portfolio must earn the risk free rate, it’s return needs to equal 0.05Π0. Thus
the value of our investment opportunity today becomes

$2.56−F0 = 0.05Π0

$2.56−F0 = 0.05
(
F0 −∆$0.70

)
1.05F0 = $2.56+0.05

(
8.13($0.70)

)
F0 = $2.85

1.05
= $2.71million

The value of the option to invest is F0 = $2.71million. We have been able to value our
investment opportunity, in the same way as a financial call option on a common stock. By
assuming that the underlying asset is traded we were able to construct a risk free portfolio
so that it would not matter whether the expected cash flow went up or down in one year.

When the underlying asset of an investment opportunity is not traded, or there is no
perfectly correlated asset in the market we can not follow the option pricing theory.
However, the contingent NPV calculation under the assumption of risk neutrality resulted
in the same value of the option to invest (see Figure 6). The approach of choosing the
higher NPV from investing today or waiting under the strategy of only investing if the
cash flow rises, is essentially dynamic programming. Hence when the assumption holds
that risk is diversifiable and the expected cash flow can be discounted at the risk free rate,
option pricing and dynamic programming yield the same answer [28].

In context to the net payoff profile from a call option illustrated in Figure 2, F0 is the price
you would need to pay to receive the option (earlier this cost was noted as c for a call and
p for a put). Therefore, to break even the value of the underlying asset V0 needs to exceed
both the strike price I and the cost of the option c = F0. On the other hand, the standard
NPV approach states that when V0 exceeds the cost of the investment, NPV > 0 and an
investment should be made. It ignores the opportunity cost of waiting that is incorporated
in the option value F0, indicating that one should not invest unless V0 > I+F0. Hence, the
full cost of investing today should be I +F0 = $4.70+$2.71= $7.41million, which results
in a totally different NPV of $7.27−$7.41 = −$0.14million, in comparison to the one
calculated before $7.27−$4.70= $2.57million (see Figure 6).
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5.2 Characteristics of the Option to Invest
Now when we have shown that an investment opportunity can be treated as the option
to invest, and that this option is analogous to a financial call option, we can examine
how each variable affects the value of this option. We will proceed with the assumptions
given in Section 5. The investment needed for production and commercialization is
I = $4.70million. The expected cash flow today is C0 = $0.70million (in the 6th year
from initial start) and the risk free interest rate is r = 5%. There is an uncertainty of
50% over the cash flow. There is a probability of q = 0.5 that the cash flow will rise
to $1.05million

(
uC0 = 1.5($0.70) = $1.05

)
and a probability of (1− q) = 0.5 that it will

fall to $0.35million
(
dC0 = 0.5($0.70)= $0.35

)
. Hence, the expected cash flow until the

patent expires is $0.70million
(
0.5($1.05)+0.5($0.35) = $0.70

)
. We will use the same

replicating portfolio as introduced in Section 5.1 to see how changing the investment cost
(I), the expected cash flow from the underlying product (C0), the magnitude of the up/down
movements in the cash flow next period, and the probability of those movements

(
q and

(1− q)
)

will affect the value of the option to invest [28].

5.2.1 Changing the Investment Cost

When the cost of the investment (I) is not constant but can vary, the PV of our option in
one year in the favorable state (cash flow rises to $1.05million), becomes a function of I.

F1 =−I +
t=14∑
t=1

$1.05
(1.05)t ≈ $10.39− I

Recall, if the expected cash flow declines to $0.35million we will not invest, so the value
of the option in that case, is zero. Hence, the value of the portfolio in one year is either
Π1 = F1 −∆$1.05 in the favorable state or Π1 = 0−∆$0.35 in the unfavorable state. To
maintain the risk free portfolio as earlier stated, we need to find how many units of the
underlying project (∆) we would need to hold such that it will not matter whether the
expected cash flow rises or falls.

Π1 = F1 −∆$1.05= 0−∆$0.35
⇒∆

(
$1.05−$0.35

)= $10.39− I

⇒∆= $10.39
0.7

− I
0.7

⇒∆= $14.85− I
0.7

The value of the portfolio today therefore becomes Π0 = F0−∆$0.70= F0−
(
$10.39− I

)
and

since we need to take a short position in ∆= $14.85− I
0.7 units of the product the value of

our portfolio in one year is

Π1 = F1 −∆$1.05

= (
$10.39− I

)− (
$14.85−

( I
0.7

))
$1.05

= $10.39− I −$15.59+1.5I
= 0.5I −$5.20

33



The cost of holding the short position equals the risk free rate, so the long position receives
an annual payment of 0.05∆C0 = 0.05

(
$14.85− I

0.7

)
$0.70= $0.52−0.05I. The portfolio’s

return therefore becomes

Return =Π1 −Π0 −
(
$0.52−0.05I

)
=Π1 −

(
F0 −

(
$10.39− I

))− (
$0.52−0.05I

)
= (

0.5I −$5.20
)− (

F0 −
(
$10.39− I

))− (
$0.52−0.05I

)
≈ $4.68−0.45I −F0

Since the portfolio must earn the risk free rate, the return should equal 0.05Π0 and we
can find the value of the investment opportunity today (F0), as a function of I.

$4.68−0.45I −F0 = 0.05Π0

$4.68−0.45I −F0 = 0.05
(
F0 −∆$0.70

)
$4.68−0.45I −F0 = 0.05

(
F0 −

(
$10.39− I

))
1.05F0 = $5.20−0.5I

F0 = $4.95−
( 0.5
1.05

)
I

We have obtained the equation for the investment opportunity as a function of the direct
investment cost. When I = $4.70million, the value of the option is F0 = $2.71million,
and it becomes better to wait than invest today. Now there has to be some value of I that
will justify an immediate investment. By solving the following inequality that justifies
investing today we can find this value of I. The PV of the expected cash flow if we invested
today was V0 = $7.27million (see Figure 6).

V0 > I +F0

⇒ $7.27> I +
(
$4.95−

( 0.5
1.05

)
I
)

⇒ $7.27−$4.95> I
(
1− 0.5

1.05

)
⇒ I < $4.42million

Thus, when I < $4.42million, lets say I = $4.41million, the value of the option to wait
becomes

F0 = $4.95− 0.5
1.05

I

F0 = $4.95− 0.5
1.05

$4.41

F0 ≈ $2.85million

which is less than the payoff from an immediate investment V0 − I = $7.27−$4.41 ≈
$2.86million. Therefore, when I < $4.42million, there is no value in waiting and the
option should be exercised today. On the other hand, when I ≥ $4.42million, the value of
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the option becomes greater than it’s payoff. Hence, the optimal investment strategy would
be to keep the option alive and wait (see Figure 7) [28].

Figure 7: The Option to Invest as a Function of I.

5.2.2 Changing the Cash Flow

Let us consider another scenario where we keep the cost fixed (I = $4.70million), but we
let the initial cash flow vary (C0). The uncertainty over the cash flow is 50% as before and
it will rise/fall with the same probabilities as before of q = 0.5 and (1−q)= 0.5, respectively.
If we invest today (in the 5th year from initially starting the project), the first revenue
stream is expected in the next year, before knowing whether the cash flow will rise or fall.
In that year, the final product will be completed, uncertainty will be resolved, and the
expected cash flow will either rise (1.5C0) or fall (0.5C0). For now, we simplify reality and
make the assumption that the cash flow will stay at that level until the patent expires
(see Figure 8).

Figure 8: Expected Cash Flow until Patent Expires.

The value of our replicating portfolio today is Π0 = F0 −∆C0. If we wait for one year until
the final product is completed we will only invest if the product is successful, market
conditions are favorable, and the expected cash flow rises to C1 = 1.5C0. Now the value of
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the option in one year (6th year from initial start, t1), becomes a function of the initial
cash flow as follows

F1 =−$4.70+
t=14∑
t=1

C1

(1.05)t

=−$4.70+
t=14∑
t=1

1.5C0

(1.05)t

≈−$4.70+14.85C0

We will assume that the initial cash flow C0 is in a range such that if it goes up it will
be worth investing but if it goes down the value of the option (F1) is zero. Therefore, the
value of the portfolio in one year will be either Π1 = F1 −∆1.5C0 or Π1 = 0−∆0.5C0, and
we can find ∆ such that it will not matter whether the expected cash flow rises or falls.

Π1 = F1 −∆1.5C0 = 0−∆0.5C0

⇒−$4.70+14.85C0 −∆1.5C0 =−∆0.5C0

⇒∆C0 =−$4.70+14.85C0

⇒∆= 14.85− $4.70
C0

When we have found ∆, we can calculate the value of the portfolio in one year.

Π1 = F1 −∆1.5C0

Π1 =−$4.70+14.85C0 −
(
14.85− $4.70

C0

)
1.5C0

Π1 = $2.35−7.42C0

The payment required from the short position becomes 0.05∆C0 = 0.05
(
14.85C0 −$4.70

)
,

and we can calculate the portfolio’s return as follows

Return =Π1 −Π0 −0.05∆C0

=Π1 −
(
F0 −∆C0

)−0.05
(
14.85C0 −$4.70

)
= (

$2.35−7.42C0
)− (

F0 −
(
14.85C0 −$4.70

))−0.74C0 +$0.23
= $2.35−7.42C0 −F0 +14.85C0 −$4.70−0.74C0 +$0.23
≈−$2.12+6.68C0 −F0

For the portfolio to be risk free, it must earn the risk free rate and it’s return must equal
0.05Π0. Hence the value of the investment opportunity today (F0) becomes

−$2.12+6.68C0 −F0 = 0.05Π0

−$2.12+6.68C0 −F0 = 0.05
(
F0 −∆C0

)
−$2.12+6.68C0 −F0 = 0.05

(
F0 −

(
14.85C0 −$4.7

))
−$2.12+6.68C0 −F0 = 0.05F0 −0.74C0 +$0.23

1.05F0 =−$2.35+7.42C0

F0 = 7.07C0 −$2.24
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We have obtained the equation for the option to invest as a function of C0 under the
assumption that we will only invest if the price goes up. When C0 = $0.70million, the
value of the option is $2.71million and we would wait as stated before. There has to be
some value of C0 that is low enough so that we would not invest at all. We can see from the
equation for F0, that when C0 ≈ $0.32million (exact value, C0 = $0.316541771million)
the value of the option is zero. We can also see that the payoff from an immediate
investment is worthless as follows

F0 = max
(
V0 − I,0

)
⇒ max

( t=15∑
t=1

$C0

(1.05)t − I,0
)
= max

(
10.38C0 −$4.70,0

)
⇒ max

(
10.38($0.32)−$4.70,0

)
= max

(
−$1.38,0

)
⇒ F0 = 0

Thus, when C0 ≤ $0.32million we will never invest. There has to be some value of C0 that
is high enough to justify an immediate investment. Recall that we should invest today if
the value of the investment exceeds the sum of the investment cost and the opportunity
cost as follows

V0 > I +F0

10.38C0 > $4.70+ (
7.07C0 −$2.24

)
3.31C0 < $2.46

C0 > $2.46
3.31

C0 > $0.74million

This value of the expected cash flow is the critical value of our investment opportunity,
C∗

0 = $0.74million (exact value, C∗
0 = $0.743957632million). When C0 exceeds this

value the option to invest is so deep in the money that it’s better to invest today and
receive next years profit instead of waiting to see if the cash flow rises. If we consider
C0 = $0.75,million the payoff from an immediate investment becomes F0 = max

(
V0 −

I,0
)
= max

(
10.38($0.75)− $4.7,0

)
= $3.08million, while the value of waiting is F0 =

7.07($0.75)−$2.24= $3.06million. Thus, even though we know that the expected cash
flow will rise in one year, it’s of more value to invest today when C0 > $0.74million. On
the other hand, if C0 ≤ $0.74million the payoff from immediate investment becomes
F0 = max

(
10.38($0.74)− $4.7,0

)
= $2.98million, less than the value of waiting F0 =

7.07($0.74)−$2.24= $2.99million. Hence, we have found the optimal investment rule for
this investment opportunity, illustrated in Table 4.

Table 4: The Optimal Investment Rule ($ in millions)

Cash Flow Range Value of the Option to Invest Optimal Investment Rule
C0 > $0.74 F0 = 10.38C0 −$4.70 An immediate investment.

$0.32< C0 ≤ $0.74 F0 = 7.07C0 −$2.24
Wait and only invest if the
cash flow rises in one year.

C0 ≤ $0.32 F0 = 0 Never invest.
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It can bee seen in Figure 9, that the option to invest is a piecewise linear function of
the expected cash flow C0 and that the optimal investment rule depends on C0. The
investment rule changes from waiting to an immediate investment at the critical value
C∗

0 = $0.74million [28].

Figure 9: The Option to Invest as a Function of C0.

5.2.3 Changing the Probabilities

We can also consider how the probabilities of the cash flow going up or down will affect
the option to invest. To do this we let C0 be a random variable and the investment cost be
constant (I = $4.70million). Recall that the size of the up and down movements in the
cash flow are calculated as follows

u = Cup

C0
= $1.05

$0.70
= 1.5= 1+ ru

d = Cdown

C0
= $0.35

$0.70
= 0.5= 1+ rd

where ru is the rate of an up movement and rd is the rate of a down movement. The
number of units we need to hold in the short position (∆), only depends on this uncertainty,
not on the probability of this happening (q). Therefore, we have the same value of
∆= 14.85− $4.70

C0
as in the previous section, same value of the option F1 =−$4.7+14.85C0,

and the same value of the portfolio in one year Π1 = $2.35−7.42C0. However, the payment
for holding the short position depends on the expected capital gain in one year which
depends on the probability of an up or down movement in the cash flow. To calculate the
expected payment required for holding the short position, we calculate the expected value
of the cash flow in one year E[C1].

E[C1]= quC0 + (1− q)dC0 = q1.5C0 + (1− q)0.5C0

E[C1]= q1.5C0 +0.5C0 − q0.5C0 = qC0 +0.5C0

E[C1]= (q+0.5)C0

Knowing the expected value of the cash flow we can calculate the expected rate of capital
gain in one year as follows
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E[C1]−C0 = (q+0.5)C0 −C0 = qC0 +0.5C0 −C0

E[C1]−C0 = (q−0.5)C0

E[C1]−C0

C0
= (q−0.5)

Now the annual payment required for holding the short position is the risk free rate,
minus the expected rate of capital gain given by(

r− (q−0.5)
)
∆C0 =

(
0.05− (q−0.5)

)
∆C0

= (0.55− q)∆C0

The risk free return on the portfolio becomes Π1 −Π0 − (0.55− q)∆C0 = 0.05Π0 and we can
obtain the value of the option to invest as follows

Π1 −Π0 − (0.55− q)∆C0 = 0.05Π0

Π1 − (F0 −∆C0)− (0.55− q)∆C0 = 0.05(F0 −∆C0)
($2.35−7.42C0)− (

F0 − (14.85C0 −$4.70)
)
...

...− (
(0.55− q)(14.85C0 −$4.70)

)= 0.05
(
F0 − (14.85C0 −$4.70)

)
$2.35−7.42C0 − (F0 −14.85C0 +$4.70)...

...− (8.17C0 −14.85C0q−$2.585+$4.70q)= 0.05F0 −0.74C0 +$0.23
$2.35−7.42C0 −F0 +14.85C0 −$4.70...

...−8.17C0 +14.85C0q+$2.585−$4.70q = 0.05F0 −0.74C0 +$0.23
14.85C0q−$4.70q = 1.05F0

F0 = 14.14C0q−
($4.70

1.05

)
q

Now we have obtained the equation of the option to invest as a function of C0 and q.
The reader can verify that by letting C0 = $0.70million and q = 0.5 the value of the
option to invest becomes F0 = $2.71million as before. From the optimal investment rule
presented in Table 4, we know that when C0 ≤ $0.32million, F0 = 0, even if there is a
100% probability that the price will increase in the upcoming year. As one would expect
when C0 > $0.32million the value of the option increases as q increases, since when q
increases, it’s more likely that the price is going up in the next period. Now because
the option to invest depends on q we need to find when it’s better to invest today rather
than wait as a function of q. Recall that it’s better to invest today if V0 > I +F0. Now
V0 = C0

1.05 +
∑t=15

t=2
(q+0.5)C0

(1.05)t ≈ (5.67+9.43q)C0 where the investment is made in period 0 and
the cash flow is not expected to rise in the first period. Thereafter the expected value of the
cash flow equals (q+0.5)C0 as discussed before. Thus, to justify an immediate investment
we need
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V0 > I +F0

(5.67+9.43q)C0 > $4.70+14.14C0q−
($4.70

1.05

)
q

5.67C0 +9.43qC0 > $4.70+14.14C0q−
($4.70

1.05

)
q

(5.67−4.71q)C0 > $4.70−
($4.70

1.05

)
q

C0 <
$4.70(1− q

1.05 )
5.67−4.71q

When q = 0.5 the critical value is C∗
0 = $0.74million as before and if the cash flow exceeds

this critical value, one should invest immediately. When we increase the probability
of an up movement to e.g. q = 0.7, we can see that the critical value decreases to C0 =
$0.66million. Thus, when q increases the range for C0 where the optimal investment rule
is to wait decreases, and a lower value of C0 is needed to justify an immediate investment.
With an increased probability, it is more likely that the cash flow will rise and the cost
of waiting, which is is the revenue foregone in t1 (see Figure 8), will exceed the value of
waiting [28].

5.2.4 Increasing Uncertainty

Until now we have considered a volatility of 50% over the cash flow and the probability of
an up/down movement has been q = 0.5 and (1− q)= 0.5, respectively. Now we will look at
how an increase in the cash flow’s uncertainty to 75%, will affect the value of the option to
invest, while keeping the probabilities the same. In the previous section we changed the
probabilities of the cash flow movements which resulted in an altered expected value in
t2. Changes in the cash flow uncertainty do not affect the expected value, thus we have
an expected value of E[C1]= 1

2

(
1.75($0.70)+0.25($0.70)

)= $0.70million and the payoff
from an immediate investment is F0 = V0 − I0 = $2.57million (see Figure 6). To obtain
the value of the option to wait one year, we go through the same steps as before letting C0
be a random variable. The process for the cash flow is presented in Figure 10.

Figure 10: Expected Cash Flow with Uncertainty of 75%.
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Now the value of the option to invest in one year, assuming that we will only invest if the
cash flow rises, is calculated as follows

F1 =−$4.7+
t=14∑
t=1

C1

(1.05)t

=−$4.7+
t=14∑
t=1

1.75C0

(1.05)t

≈ 17.32C0 −$4.7

The value of the portfolio in one year will either be Π1 = F1−∆1.75C0, or Π1 = 0−∆0.25C0,
and we can obtain ∆ as earlier

Π1 = F1 −∆1.75C0 = 0−∆0.25C0

⇒−$4.7+17.32C0 −∆1.75C0 =−∆0.25C0

⇒∆1.5C0 =−$4.7+17.32C0

⇒∆= 11.55− $4.7
1.5C0

When we have found ∆ so that the portfolio will be riskless we can calculate the return on
the portfolio Π1 −Π0 −0.05∆C0 = 0.05Π0 and find the value of the option to invest

0.05Π0 =Π1 −Π0 −0.05∆C0

0.05(F0 −∆C0)= (F1 −∆1.75C0)− (F0 −∆C0)−0.05∆C0

0.05F0 −0.05
(
11.55− $4.70

1.5C0

)
C0 = F1 −

(
11.55− $4.70

1.5C0

)
1.75C0 −F0...

...+
(
11.55− $4.70

1.5C0

)
C0 −0.05

(
11.55− $4.70

1.5C0

)
C0

0.05F0 −0.58C0 +$0.16= 17.32C0 −$4.70−20.21C0 +$5.48−F0...

...+11.55C0 − $4.70
1.5

−0.58C0 +$0.16

1.05F0 = 8.66C0 −$2.35
F0 = 8.25C0 −$2.24

If we let C0 = $0.70million the value of the option to invest becomes F0 ≈ $3.54million.
This is higher than the value calculated under an uncertainty of 50%, or F0 = $2.71million.
Hence, an increased uncertainty increases the value of the option to wait and we can see
that the critical value of C0 that will justify an immediate investment becomes

V0 > I +F0

10.38C0 > $4.70+ (8.25C0 −$2.24)
2.13C0 < $2.46

C0 > $2.46
2.13

C0 > $1.15million
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The range where the option to wait is valuable increases from the threshold that we
obtained before of C∗

0 = $0.74million to this new critical value of C∗
0 = $1.15million.

Therefore, when uncertainty increases it is more likely that we will wait rather than
invest today [28].

5.3 The "Bad News Principle"
We can also consider how "bad news" (a downward movement in the cash flow) and "good
news" (an upward movement in the cash flow) affect the critical value C∗

0 . To do this we
let the probability of an up movement q and the size of the up/down movements vary. Now
the cash flow in t1 will either go up by an amount u with a probability of q or down by an
amount d with the probability (1− q) (see Figure 11).

Figure 11: Probability of an Up/Down Movement in the Expected Cash Flow.

If we invest today the NPV of our investment opportunity becomes a function of C0, q, u
and d as follows

NPV =−I + C0

1.05
+ q

( t=15∑
t=2

(1+u)C0

(1.05)t

)
+ (1− q)

( t=15∑
t=2

(1−d)C0

(1.05)t

)
NPV =−I +C0

( 1
1.05

+9.43q(1+u)+9.43(1− q)(1−d)
)

NPV =−I +9.43C0
(
0.10+ q+ qu+1−d− q+ qd

)
NPV =−I +9.43C0

(
1.10+ q(u+d)−d

)
(20)

However, if we wait the NPV becomes

NPV = qmax
(
V1up − I,0

)
+ (1− q)max

(
V1down − I,0

)
NPV = qmax

( t=15∑
t=2

$(1+u)C0

(1.05)t − I
1.05

,0
)
+ (1− q)max

( t=15∑
t=2

$(1−d)C0

(1.05)t − I
1.05

,0
)

NPV = qmax
(
9.43(1+u)C0 − I

1.05
,0

)
+ (1− q)max

(
9.43(1−d)C0 − I

1.05
,0

)
Recall that we will only invest if the R&D results in a high quality product and market
conditions turn out favorable. In this case the expected cash flow rises and therefore, the
value of the option to wait simplifies to

NPV = q
(
9.43(1+u)C0 − I

1.05

)
(21)

By equating the NPV from an immediate investment in Eq.20, and the value of waiting
from Eq.21, we can solve for C0 and find the critical value of the cash flow that warrants
an immediate investment.
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−I +9.43C0
(
1.10+ q(u+d)−d

)= q
(
9.43(1+u)C0 − I

1.05

)
−I +10.37C0 +9.43C0qu+9.43C0qd−9.43C0d = 9.43C0q+9.43C0qu− qI

1.05

10.37C0 +9.43C0qd−9.43C0d−9.43C0q = I − qI
1.05

9.43C0
(
1.10+ qd−d− q

)= I
(1.05
1.05

− q
1.05

)
9.43C0

(
0.10+ (1− q)(1−d)

)= I
( 1
1.05

)(
1.05− q

)
C0

(
0.10+ (1− q)(1−d)

)= I
( 1
9.43

)( 1
1.05

)(
0.05+1− q

)
C∗

0 = 0.10I
( 0.05+ (1− q)
0.10+ (1− q)(1−d)

)
It can be seen, that the critical value C∗

0 does not depend in any way on the size of the
upward movement (u). It only depends on the size of the downward movement (d), and
the probability of the cash flow decreasing (1− q). Furthermore, the larger the size of the
downward movement, the larger the critical value C∗

0 , and the range where waiting is
optimal increases. When d is large, the greater is the magnitude of possible bad news and
the motivation to wait increases [28].

5.4 Cost Uncertainty
Most R&D projects involve substantial uncertainty over cost. Even though the cost of
the investment is known today, it’s value might change as time goes by. Material costs,
employee salaries, or government regulations are examples of factors that can affect
the cost of the investment. To see how uncertainty over investment costs can affect the
decision to invest, we will go back to our previous example, with a constant expected
cash flow of $0.70million and now we assume an uncertainty of 75% over the investment
cost. Therefore, the cost of the investment today of $4.70million can either rise to
$8.23million or fall to $1.18million in one year. We will let the probability of these
movements be q = 0.5 and (1− q) = 0.5, respectively. If we invest today the NPV of our
investment opportunity is the same as before, F0 = $2.57million (see Figure 6). If we
wait, we will only invest in one year, if the investment cost falls to $1.18million. In the
case of waiting, the NPV of our investment opportunity becomes

V0 =
t=15∑
t=2

$0.70
(1.05)t = $6.60million

I0 = $1.18
1.05

= $1.12million

NPV = qmax
(
V0 − I0,0

)
= 0.5max

(
$6.60−$1.12,0

)
= $2.74million
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In this case it’s better to wait than to invest right away. On the other hand, if we would
have assumed an uncertainty over cost of 50% instead of 75%, the NPV of waiting would
have been lower than the one calculated from an immediate investment. Thus the optimal
investment rule would have been to invest right away.

It might appear that an increased uncertainty always increases the incentive to wait, or
at least, increases the expected rate of return. However, this is not always the case. Some
uncertainty over costs such as the amount of time, effort or materials needed to finish a
project, can only be resolved by undertaking the project. As time unfolds these costs may
be greater or lower than initially estimated and the total cost of the investment will not
be known until the project is completed. Sometimes investing provides information that
will not be obtained unless the project is undertaken.

Example. Let us assume that if we invest $4.70million today, there is a 65% probability
that we will finish production and marketing and start selling the product, receiving an
expected cash flow of $0.70million until the patent expires (V0 = $7.27million). However,
there is a 35% probability that we will need extra material and effort to finish production,
resulting in an overtime pay and an additional cost of $7.50million. One might calculate
the NPV of this scenario as −(

$4.70+0.35($7.50)
)+$7.27≈−$0.06million, discouraging

an investment. On the other hand, this calculation ignores the value of the information
that will be obtained by investing $4.70million at the onset, where there is a 65%
probability that no additional cost will be needed. As well, it ignores the fact that we can
abandon the project if an additional cost of $7.50million will be required. The correct
value of the project in this example would be −$4.70+0.65($7.27)= $0.03million.

When uncertainty over cost is mostly influenced by market risk that is not controlled
by the firm, such as material costs or government regulations, an increased uncertainty
creates the incentive to wait. On the other hand, when the risk is firm specific and can be
partly or completely resolved by investing, it can have the opposite effect, to accelerate
the investment [28] [32].

5.5 Interest Rate Uncertainty
We can also consider how uncertainty over interest rates affects the decision to invest.
For a better explanation of this subject we will assume that the interest rate today is
10%. With a probability q = 0.5 the interest rate will rise to 15% and with probability
(1− q) = 0.5, it will fall to 5%. We will let the expected cash flow of $0.70million and
the investment cost of $4.70million stay constant. If we invest today and there is no
uncertainty over interest rates the NPV becomes

NPV =−$4.70+
t=15∑
t=1

$0.70
(1.1)t = $0.62$million

The NPV under the assumption of waiting, when there is no uncertainty over the interest
rates is

NPV = −$4.70
1.1

+
t=15∑
t=2

$0.70
(1.1)t = $0.42$million
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Clearly, when there is no uncertainty over interest rates, it is better to invest today rather
than wait. When the interest rates are uncertain, the NPV of investing today becomes

NPV =−$4.70+0.5
t=15∑
t=1

$0.70
(1.15)t +0.5

t=15∑
t=1

$0.70
(1.05)t = $0.98million

Hence, the value of investing today increases when interest rates are uncertain from
NPV = $0.62million, to NPV = $0.98million. Now suppose that we wait for one year.
With an uncertainty over interest rates, today’s NPV of waiting is either

NPV = 0.5
(
− $4.70

1.15
+

t=15∑
t=2

$0.70
(1.15)t

)
=−$0.30million

or

NPV = 0.5
(
− $4.70

1.05
+

t=15∑
t=2

$0.70
(1.05)t

)
= $1.06million

We will only invest in one year if the interest rate falls to 5%. When interest rates are
uncertain, the NPV of waiting ($1.06million) is higher than the value of investing today
($0.98million), thus, it’s better to wait.

This simple analysis of interest rate uncertainty shows that mean preserving volatility
in interest rates will increase the expected value of a project but it will also increase the
incentive to wait. The value of waiting for more information increases when uncertainty
over interest rates increases. Therefore, if a government aims at encouraging investment
in a society, a policy that leads to stable and predictable interest rates may be more
important than the level of interest rates. Low but volatile interest rates could discourage
investment, increasing the incentive to wait [28].
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6 Continuous Time Valuation

Until now, we have considered our investment opportunity as a discrete time valuation
problem. This is a simplification of reality where expected cash flow, investment costs and
uncertainty can change continuously through time. In Section 5, we made the assumption
that uncertainty would resolve over one period and the cash flow would stay at that level
until maturity. In reality the future is always uncertain and the amount of uncertainty
will increase as the time horizon is extended. To model our investment opportunity as a
continuous time problem we shall introduce some mathematical tools that are gaining
increasing use in finance and economics. The two primary tools that we will examine
are the stochastic processes and Itô’s Lemma. These provide important results for the
derivation of the BSM model (see Section 6.5) and the real options theory (see Section 7).

6.1 Stochastic Processes
Stochastic processes describe the probabilistic evolution of any variable whose value
changes in an uncertain way over time. Stochastic processes can be classified as either
discrete or continuous. A discrete stochastic process is one where the value of a variable
can change only at certain fixed points in time for example the random walk (see Section
4). Continuous time stochastic process is one where changes can take place any time. A
Markov process is a stochastic process where the past history of the variable is irrelevant
and only the PV of the variable can be used to predict the future, denoted as

E[Vt+1
∣∣Vt,Vt−1,Vt−2...V0]= E[Vt+1

∣∣Vt]

The Markov process indicates the efficient market hypothesis, which states that it is not
possible to predict trends in the market through technical analysis of the past. All relevant
information is already in the current value of the underlying asset [24] [28].

6.2 The Wiener Process
A Wiener process is a continuous time stochastic process. It is also known as Brownian
motion where in physics it has been used to describe the collisions of particles. A variable
wt follows a Wiener process if it satisfies the two following properties:

1. The change in wt over a small period of time equals wt+∆t −wt =∆wt = εt
p
∆t. The

term εt represents a random variable from a standard normal distribution with
mean 0 and standard deviation 1.

2. The value of ∆wt is independent of w j, j ≤ t.

The second property implies that the Wiener process is a Markov process. The past
history of the variable wt, is irrelevant for forecasting its future value wt+1. Furthermore,
if t1 < t2 < t3 than the change in the Wiener process in two non-overlapping intervals
(wt3 −wt2) and (wt2 −wt1) are independent of each other.

A Wiener process at t = 0 equals w0 = 0. If we divide a timeline from t = 0 to t = T into n
time steps, each of length ∆t (n∆t = T), the value of the Wiener process at time T, is the
sum of all the independent increments up to time T.
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wT =
n−1∑
i=0

εi
p
∆t = (

ε0 +ε1 +ε2 + ....+εn−1
)p
∆t (22)

Because the increments εt ∼ N(0,1) are independent of each other we can apply the
Central Limit Theorem to their sum. Since the expected value of each increment is zero,
the expected value of wT is also zero, E[wT]= 0. Because the variance of each increment
is 1, the variance of wT is the sum of all the increments’ variances multiplied with (

p
∆t)2

or V ar(wT) = n∆t = T. Thus we know that wT is normally distributed with a mean of
zero and variance T, wT ∼ N(0,T). This means that if the value of a variable is w0 at t0
then at time T it is normally distributed with mean w0 and standard deviation

p
T. Since

wT −w0 ∼ N(0,T −0) it follows that the change in wt over any time interval e.g. wt2 −wt1

is also normally distributed with mean zero and variance equal to the length of the time
interval ∼ N(0, t2 − t1). The variance of a Wiener process grows linearly with time or in
other words, the variance at time t is smaller than the variance at time t+∆t.

It is important to realize why εt is multiplied by
p
∆t instead of ∆t. This is because

as ∆t → 0, which is necessary in continuous time analysis when the time steps become
infinitely small, the square root of ∆t goes at a much slower rate towards zero preventing
the process from stopping (e.g. when ∆t = 0.01 then

p
∆t = 0.1). Similarly, when ∆t is largep

∆t increases at a much slower rate than ∆t. By letting ∆t become infinitesimally small
we can write the Wiener process in continuous time as

dz = εt
p

dt (23)

with mean of E[dz] = 0 and variance E[(dz)2] = dt. The Wiener process has been used
to describe the process of the change in a stock price. It might seem reasonable that
stock prices follow a Wiener process since they satisfy the Markov property and have
independent increments. However, we know that their price can never be negative.
Therefore, it is not reasonable to assume that price changes follow a normal distribution.
Nevertheless, we can assume that changes in stock prices are lognormally distributed.
This means that the changes in the logarithm of the price is normally distributed. With
transformation of this kind we can use the Wiener process to describe the behavior of stock
prices as well as other variables that change stochastically and continuously through
time [11] [24] [28].

6.2.1 Generalized Wiener Process

The Wiener process can be generalized into other processes. One generalization is the
Wiener process with drift, given by

dx =αdt+σdz (24)

where the drift rate α and the variance rate σ2 are constants and dz represents the
increment of the Wiener process. The change in the variable x over a small time interval
is normally distributed with an expected value of E[dx]=αdt and variance E[σ2(dz)2]=
σ2dt. The term σdz =σεt

p
dt is often referred to as added noise or variability of the path
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followed by x. Sample paths for Eq.24 are shown in Figure 12. The trajectory for x was
calculated over 15 years assuming a time step of 1 month (∆t = 1/12) as follows

xt+1 = xt +α∆t+σεt
p
∆t (25)

The paths all start at x0 = 0 and have an annual drift of α= 0.3 and standard deviation of
σ= 1. Note that this is a Markov process because the value of xt+1 only depends on the
value of xt, not on its past history.

Figure 12: Sample Paths of a Generalized Wiener Process.

The difference between the four paths in Figure 12, is due to the random value of εt at
each time step. When εt = 0 the process in Eq.24 has no variability and simplifies to
dx =αdt. This is the equation for a straight line with a slope α, as shown by the black
path in Figure 12. The other trajectories all have independent increments of the Wiener
process, where εt is a random variable drawn from a standard normal distribution at each
time step, resulting in three different paths. By looking at the whole picture, we can see
that the value of α controls the trend of the process. In the short run when t is small the
dominant factor of the process is the volatility σ

p
t, since

p
t >> t. As time increases the

reverse is true, t >>p
t and the drift αt becomes a dominant determinant.

The optimal forecast for the same stochastic process as given in Eq.25 with α= 0.3 and
σ= 1 is illustrated in Figure 13. The trajectory for xt was forecasted from the beginning of
the 7th year (x7) until the end of the 15th year. The expected value of x7, T months into
the future is given by

x7+T = x7 +α T
12

Because of the Markov property, only the value of x in the beginning of the 7th year (x7) is
needed to forecast its future, the past is irrelevant.
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Figure 13: Forecasted Value of x with 95% and 66% Confidence Interval.

The orange dotted line shows the 66% confidence interval of the forecasted path followed
by x. This is calculated as the expected value of x7 plus/minus one standard deviation.

x7 +α T
12

±σ
√

T
12

Similarly the outer black dots display the 95% confidence interval for the forecasted value
of x7 plus/minus 1.96 standard deviation.

x7 +α T
12

±1.96σ

√
T
12

Because the Wiener process grows linearly with time, the standard deviation increases as
the square root of time. This means that as we move further into the future the forecast
becomes less accurate than in the beginning of the forecasted time horizon [24] [28].

6.3 Itô Processes
An Itô process is a generalized Wiener process where the drift and variance rate are a
function of both the underlying variable and time. The change in the underlying variable
in a very short time interval is approximately normally distributed. The expected drift and
variance rate of an Itô process are likely to change over time. However, it is assumed that
they stay constant over a small time interval (t+∆t). An Itô process for the underlying
asset x, with a drift of a(x, t) and variance rate of b2(x, t), can be defined in terms of the
Wiener process dz, as follows

dx = a(x, t)dt+b(x, t)dz (26)

The change in x only depends on its current value, not on it’s history. Thus an Itô process
is a Markov process [24] [28].
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6.3.1 Geometric Brownian Motion (GBM)

A special case of the Itô process presented in Eq.26 is the geometric Brownian motion
(GBM) (see Eq.27).

dx =αxdt+σxdz (27)

The drift (α) and the variance (σ2) are constants over a small interval of time, x is a
random variable, and dz is the increment of the Wiener process. This process leads to the
most widely used model of stock price behavior where the random variable is the stock
price, µ is the expected return on the stock, and σ is the volatility of the stock.

dS =µSdt+σSdz (28)

This process is convenient in modeling stock prices because the expected percentage return
investors require on a stock (µ) is independent of the stock price. Hence µ stays constant
over a small time interval but the drift rate changes in proportion to the stock price: µS.
The expected increase in the stock price over a small time interval becomes µdt (in a risk
neutral world µ= r). Similarly it is reasonable to assume that the variability (σ) in the
stock returns over a small time period is the same, independent of the price of the stock.
Therefore, the standard deviation of the change should be in proportion to the price of the
stock: σS. Figure 14 illustrates a sample path of the process given in Eq.28, assuming
that the current value of the stock is S0 = 50, with an expected rate of return µ= 12%,
and volatility σ= 25%. The path was generated by assuming monthly time steps over 5
years [24].

Figure 14: Sample Path of a GBM followed by a Stock Price.

6.4 Itô’s Lemma
The price of any derivative can be written as a function of the stochastic variables under-
lying the derivative and time. The mathematician, K. Itô discovered this phenomena in
1951, known as Itô’s Lemma [33]. If a variable x follows an Itô process, and a function
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F(x, t) can be differentiated once with respect to t and twice with respect to x, then F(x, t)
also follows a stochastic process, given by

dF(x, t)=
[∂F(x, t)

∂x
a+ ∂F(x, t)

∂t
+ 1

2
∂2F(x, t)
∂x2 b2

]
dt+ ∂F(x, t)

∂x
bdz (29)

where a is the drift rate and b2 is the variance rate. The function F(x, t) and the variable x
are affected by the same underlying source of uncertainty dz, where F(x, t) has the mean

[∂F(x, t)
∂x

a+ ∂F(x, t)
∂t

+ 1
2
∂2F(x, t)
∂x2 b2

]
and variance

(∂F(x, t)
∂x

)2
b2

For a derivation of Itô’s Lemma see Hull (2015) p.341 [24]. It’s result is important in
finding the value of any derivative. One of the main assumption underlying the BSM
model is that stock prices are lognormally distributed. We can use Itô’s Lemma to prove
this, by letting F(S, t)= lnSt, where St follows the GBM illustrated in Eq.28. Then the
price of the option F(S, t) also follows a stochastic process given by

dF(S, t)=
[∂F(S, t)

∂S
µS+ ∂F(S, t)

∂t
+ 1

2
∂2F(S, t)
∂S2 σ2S2

]
dt+ ∂F(S, t)

∂S
σSdz (30)

By differentiating F(S, t) with respect to S and t we get

∂F(S, t)
∂S

= 1
S
∂F(S, t)

∂t
= 0

∂2F(S, t)
∂S2 =− 1

S2

Substituting these results into Eq.30 we obtain

dF(S, t)=
(
µ− 1

2
σ2

)
dt+σdz

We have shown that F(S, t)= lnSt follows a generalized Wiener process with a constant
drift rate

(
µ− 1

2σ
2
)

and variance σ2. Therefore, the natural logarithm of the change in

the stock price from t = 0 up to time T, is normally distributed with mean
(
µ− 1

2σ
2
)
T and

variance σ2T.

ln
(ST

S0

)
∼ N

[(
µ− 1

2
σ2

)
T,σ2T

]
The solution to the process followed by S is

ln(ST)= ln(S0)+
(
µ− 1

2
σ2

)
T +σdz
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or

ST = S0e

(
µ− 1

2σ
2
)

T+σdz

When there is no volatility this equation simplifies to

ST = S0eµT

which is the expected value of the stock at time T [24].

6.5 The Black-Scholes-Merton (BSM) Model
When first introduced, the aim of the BSM model was to value financial assets e.g.
stocks. It builds on the idea that one can construct a replicating portfolio consisting of
the underlying asset and the option. For the portfolio to be risk free it must earn the
risk free rate. The assumptions underlying the discrete time binomial approach and the
BSM model are the same, as outlined in Section 4.1. However, in the binomial approach
it is assumed that the underlying asset follows a discrete random walk while the BSM
model assumes that it follows a continuous stochastic process (see Section 6.3.1). The
BSM model therefore accounts for continuous trading such that the replicating portfolio
only maintains risk free over a very short period of time and needs to be rebalanced
frequently. It also assumes that there are no dividends during the life of the option but
this assumption can be relaxed (see Section 6.6.1.1).

6.5.1 The BSM Differential Equation

Let us consider an option’s time to maturity as (T − t), where t is not necessarily t = 0.
In this way, we can obtain the value of a derivative, at any time t. To derive the BSM
differential equation we let the function F(x, t) from Eq.29 be the price of the derivative,
contingent on the price of the underlying asset which follows the GBM presented in Eq.28.
Denoting the underlying asset as V , the discrete version of the process becomes

∆V =µV∆t+σV∆z (31)

The price of the derivative F(V , t) in discrete time is

∆F(V , t)=
[∂F(V , t)

∂V
µV + ∂F(V , t)

∂t
+ 1

2
∂2F(V , t)
∂V 2 σ2V 2

]
∆t+ ∂F(V , t)

∂V
σV∆z (32)

where ∆V is the change in the value of the underlying asset and ∆F(V , t) is the change in
the price of the option, over a small time interval ∆t. Now we will consider a replicating
portfolio, with a long position in the option and a short position in ∆= ∂F(V ,t)

∂V units of the
underlying asset. The value of our portfolio is given by

Π= F(V , t)− ∂F(V , t)
∂V

V (33)

The change in the portfolio over a small period ∆t can be denoted as
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∆Π=∆F(V , t)− ∂F(V , t)
∂V

∆V (34)

By substituting Eq.31 and Eq.32 into Eq.34, the stochastic component of the equations
falls out

(∂F(V ,t)
∂V σV∆z

)
and we obtain

∆Π=
[∂F(V , t)

∂t
+ 1

2
∂2F(V , t)
∂V 2 σ2V 2

]
∆t (35)

This means that the change in the portfolio must be risk free over a small period ∆t. In
absence of arbitrage opportunities its return must equal the risk free rate as follows

∆Π= rΠ∆t. (36)

By substituting Eq.33 and Eq.35 into Eq.36, we get

[∂F(V , t)
∂t

+ 1
2
∂2F(V , t)
∂V 2 σ2V 2

]
∆t = r

(
F(V , t)− ∂F(V , t)

∂V
V

)
∆t

And by rearranging terms this equation simplifies to the BSM differential equation, given
by

∂F(V , t)
∂V

rV + ∂F(V , t)
∂t

+ 1
2
∂2F(V , t)
∂V 2 σ2V 2 = rF(V , t) (37)

The price of any financial derivative needs to satisfy this equation. Note, even though
the expected return from the underlying asset is µ, as illustrated in Eq.31, the price of
the derivative does not depend on µ, only on the risk free rate r. Hence, the price of any
financial derivative is risk neutral. This is not necessarily the case for real options (see
Section 7).

6.5.2 The BSM Pricing Formula

The BSM differential equation has different solutions for the various derivatives that it
satisfies. It’s solution depends on the boundary conditions used, that define the values
of the derivative, for possible values of the underlying asset and time. In this section we
will introduce its well known solution for pricing a European call option. In the following
section we will consider its application in patent valuation. The boundary conditions for a
European call option at t = T, on the underlying asset V is F = max

(
V − I,0

)
. It’s solution

is given by

c =V N(d1)− Ie−r(T−t)N(d2) (38)

where V is the current price/value of the underlying asset, I is the strike price of exercising
the option, T − t is the time to maturity, and r is the risk free rate. The variables d1 and
d2 are calculated as follows
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d1 =
ln

(V
I
)+ (r+ 1

2σ
2)(T − t)

σ
p

(T − t)
(39)

d2 =
ln

(V
I
)+ (r− 1

2σ
2)(T − t)

σ
p

(T − t)
= d1 −σ

√
(T − t) (40)

The cumulative probability distribution function N(x), tells us the probability that a
variable with a normal distribution is less than x, P

(
X ≤ x

)
. When V > I, N(d1) and N(d2)

tend to 1. Hence, when t approaches T, Eq.38 tends to V − I. On the other hand, when
I >V , N(d1) and N(d2) tend to 0. In this case when t → T, Eq.38 tends to max

(
V − I,0

)
.

By differentiating the price of a call option in Eq.38 twice with respect to V and once
with respect to t, we can identify that it satisfies the BSM differential equation. The first
derivative of c with respect to V becomes

∂c
∂V

= N(d1)+V N ′(d1)
∂d1

∂V
− Ie−r(T−t)N ′(d2)

∂d2

∂V

Since N(x) is the cumulative probability distribution function, N ′(x) is the probability
density function for a standard normal distribution, given by

N ′(x)= 1p
2π

e−
x2
2

Because d1 = d2 +σ
p

(T − t), it follows that N ′(d1) is

N ′(d1)= N ′(d2 +σ
√

(T − t)
)

= 1p
2π

e−
(

d2+σ
p

(T−t)
)2

2 = 1p
2π

e−
(

d2
2+2d2σ

p
(T−t)+σ2(T−t)

)
2

= N ′(d2)e
(
−d2σ

p
(T−t)− 1

2σ
2(T−t)

)
Now since d2 = ln

(
V
I

)
+(r− 1

2σ
2)(T−t)

σ
p

(T−t)
, we have

N ′(d1)= N ′(d2)e

(
−
(
ln

(
V
I

)
+(r− 1

2σ
2)(T−t)

)
− 1

2σ
2(T−t)

)
= N ′(d2)e

(
ln

(
I
V

)
−r(T−t)

)
= N ′(d2)

Ie−r(T−t)

V

We can write d1 = lnV−lnI+(r+ 1
2σ

2)(T−t)
σ
p

(T−t)
and d2 = lnV−lnI+(r− 1

2σ
2)(T−t)

σ
p

(T−t)
. Thus, ∂d1

∂V = ∂d2
∂V =

1
Vσ

p
T−t

and ∂c
∂V simplifies to
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∂c
∂V

= N(d1)

Now we have shown that delta, the change in the price of the call option with respect to
the change in the price/value of the underlying asset is equal to N(d1). Next we’ll need to
find the second derivative of c with respect to V as follows

∂2c
∂V 2 = N ′(d1)

∂d1

∂V

= N ′(d1)
1

Vσ
p

T − t

And by differentiating c with respect to t we get

∂c
∂t

=V N ′(d1)
∂d1

∂t
− rIe−r(T−t)N(d2)− Ie−r(T−t)N ′(d2)

∂d2

∂t

We know that V N ′(d1)= N ′(d2)Ie−r(T−t) and therefore

∂c
∂t

=V N ′(d1)
(∂d1

∂t
− ∂d2

∂t
)− rIe−r(T−t)N(d2)

And because d1 −d2 =σ
p

(T − t) we have ∂
∂t

(
σ
p

(T − t)
)= −σ

2
p

(T−t)
and the above equation

simplifies to

∂c
∂t

= −V N ′(d1)σ
2
p

(T − t)
− rIe−r(T−t)N(d2)

Summarizing the above result we find

∂c
∂V

rV + ∂c
∂t

+ 1
2
∂2c
∂V 2σ

2V 2 = N(d1)rV + −V N ′(d1)σ
2
p

(T − t)
− rIe−r(T−t)N(d2)...

...+ 1
2

N ′(d1)
1

Vσ
p

T − t
σ2V 2

= N(d1)rV − rIe−r(T−t)N(d2)

= r
(
V N(d1)− Ie−r(T−t)N(d2)

)
= rc

We have shown that the closed form solution for the price of a European call option indeed
satisfies the BSM differential equation [24].

6.6 Patent as a Call Option
A patent has the characteristics of a call option. It gives its holder the right but not
the obligation to buy the underlying asset (invest in the patented project) for a certain
strike price (the cost of the investment). In Section 5 we considered the option to invest
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or wait for more information to be obtained. We saw that we could value our investment
opportunity in the same way as a financial call option.

Damodaran (2002) [8], also considered the value of a patent as the option to wait. They
argued that the monetary value of the patent should equal the price of the call option
on the PV of future cash flow. The exercise price was the direct investment cost and
the option’s maturity was the expiration date of the patent. The value of the patent was
calculated with the closed form solution for the price of a European call option (see Eq.38),
assuming the underlying asset followed a GBM (see Eq.28). A dividend yield (δ) was
included in the analysis. In real option valuation the dividend yield represents the cost
of delaying the project’s commercialization. In this section we will employ this approach,
discuss its features, and its application in real option valuation.

6.6.1 The Dividend Yield

To understand the importance of the dividend yield (δ) in real option valuation we shall
begin by considering a financial call option. The expected return on a dividend paying
stock is the sum of the expected dividends and the growth in the stock, µ= δ+α. Both
the dividend yield and the growth rate are calculated as a percentage amount of the stock
price. When δ> 0 and there is a significant rise in the stock price, a holder of an American
call option could find it optimal to exercise right before an ex-dividend date, to receive the
expected dividend payment. On the ex-dividend date the price of the stock will decline
by the amount of the dividend payment. When δ= 0 the return from the stock equals its
growth rate µ=α. The entire return is captured in the price movements and the holder of
an American call option, would not generally exercise prior to maturity [28].

Dixit and Pindyck (1994) [28] argued that there is always some dividend yield δ> 0, in
the case of investment opportunities. They denoted this yield as the difference between
the expected return (µ) and the expected growth rate in the underlying asset (α). By
assuming µ > α, the dividend yield could be treated as the cost of waiting, instead of
keeping the option to invest alive. They claimed, when δ= 0 there is no difference between
the expected return rate and the expected rate of capital gain. No matter how high the
NPV would be, there would be no cost of waiting and one would never invest. Moreover,
when δ is large, the cost of waiting is large and the value of the option becomes small,
accelerating investment (see Section 7.1.2).

Just as the underlying stock price will decrease after a dividend payment has been made,
the value of the expected cash flow from a real asset will decrease as time to maturity
decreases. This is due to the revenues that are foregone in the waiting period. Generally,
the patented product will generate excess returns only while it’s patented. When the
patent expires competitors will start producing similar or the same products and take a
part of, or the whole market share. Thus a delay of commercializing the product while it
is patented will cost the firm a part of those patent protected returns, and every year that
goes by without having the patented product commercialized, comes with a cost. When the
cost of delaying is estimated from this point of view, δ can be calculated as the percentage
change in the PV of cash flow, over a particular period

(PVNextPeriod−PVToday
PVToday

)
. However, if

the cash flow is evenly distributed between years, the cost of waiting can be estimated
as a fraction of the time that is left until the option expires. For example, if there are
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twenty years until a patent expires, a one year delay of commercializing the product could
cost δ= 1/20. Similarly, if there were fifteen years until expiration, the cost could equal
δ= 1/15. When there is less time until the patent expires, the cost of waiting increases.
Hence, the probability of delay is greater in the early stages of the patent’s life [8].

6.6.1.1 Adjusting BSM for the Dividend Yield

When there are dividends the expected rate of change in the underlying asset is less than
it would be in the absence of dividends or α = µ−δ. In a risk neutral world we have
α= r−δ and the GBM in Eq.28 can be adjusted as follows

dx = (r−δ)xdt+σxdz (41)

Including the dividend yield in the analysis in Section 6.5.1, the differential equation
becomes

∂F(V , t)
∂V

(r−δ)V + ∂F(V , t)
∂t

+ 1
2
∂2F(V , t)
∂V 2 σ2V 2 = rF(V , t) (42)

When the expected growth rate in the underlying asset is (r−δ), its future value at time
T becomes Vte(r−δ)(T−t). To provide a way to adjust the BSM option pricing formula for
dividends, we introduce a simple rule. If the underlying asset with dividends grows from
V0 today to VT at time T, then in the absence of dividends it will grow from V0 to VT eδT .
Alternatively, if the value of the asset today, in the absence of dividends is V0e−δT , it will
grow to VT at time T. Hence, when valuing a European option that expires at time T on
a dividend paying asset, we can reduce the current value Vt to Vte−δ(T−t), and value the
option as there were no dividends (see Eq.43) [24].

c =Vte−δ(T−t)N(d1)− Ie−r(T−t)N(d2) (43)

Since ln
(Vte−δ(T−t)

I
)= ln

(Vt
I
)−δ(T − t), d1 and d2 become

d1 =
ln

(Vt
I
)+ (r−δ+ 1

2σ
2)(T − t)

σ
p

(T − t)
(44)

d2 =
ln

(Vt
I
)+ (r−δ− 1

2σ
2)(T − t)

σ
p

(T − t)
= d1 −σ

√
(T − t) (45)

Example. We will proceed with the example from Section 5. The investment strategy was
to only invest in the favorable state where the value of the project was V =∑t=14

t=1
$1.05
(1.05)t =

$10.39million. The risk free rate was estimated 5%. The cost of production and commer-
cialization was I = $4.70million and we will assume an annual volatility of 50%. Since the
cash flow is evenly distributed between years, the cost of waiting is calculated as a fraction
of the number of years that are left until the patent expires

(
δ= 1

(T−t) = 1
(20−7) = 1

13

)
. From

Figure 6, it can be seen that the payoff from an immediate investment was $2.57million
and the value of waiting was $2.71million.
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Now the value of our investment opportunity, by using the BSM option pricing formula
for a call option, can be calculated with d1, d2, N(d1) and N(d2) as follows

d1 =
ln

($10.39
$4.70

)+ (0.05− 1
13 + 1

20.52)(20−7)

0.5
p

(20−7)
= 1.147

d2 =
ln

($10.39
$4.70

)+ (0.05− 1
13 − 1

20.52)(20−7)

0.5
p

(20−7)
=−0.655

N(d1)= normcd f (−∞,1.1475,0,1)= 0.874
N(d2)= normcd f (−∞,−0.655,0,1)= 0.256

The value of the call option becomes

c = $10.39e−
1

13 (13)0.874−$4.70e−0.05(13)0.256= $2.71

We can see that the BSM option pricing formula generates the same results as obtained
in Section 5. It is no coincidence because the two models build on the same replicating
portfolio strategy.

Damodaran (2002) [8], takes the position that the value of a patent should equal the price
of the call option (c). It may be an unreasonable estimation and the value of the patent
should rather be the amount of freedom that is acquired by holding an exclusive right to a
product. This freedom is simply the option premium calculated as the difference between
an immediate investment and the value of waiting, resulting in a monetary value of

Value of Patent= c−NPV
= $2.71−$2.57
= $0.14million

This is the cost we would be willing to pay for receiving an investment opportunity that is
flexible rather than one that only allows for an immediate investment (see Section 5). As
the patent’s life shortens, the cost of delay will increase and the expected value of the call
option declines. To illustrate this point the price of the call option was calculated, letting
time vary, while other variables were held constant (see Figure 15). Here the optimal
investment strategy would be to keep the option alive until there are 12 years to patent
expiration. At that time the option’s payoff (NPV ) will exceed the value of waiting.
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Figure 15: The Value of Waiting vs. NPV .

It can be seen that the value of the option to wait/delay commercialization declines as
time to expiration shortens. If there is external competition, then there will be some other
firm or individual planning on entering the same market. The competing product might
be able to fulfill the same need and demand as our patented product. Hence, the option’s
time to maturity would be the time until the competitor launches it’s product. The greater
the number of competing products on the way to the market, the less likely it is that the
option to wait will be valuable [8] [28].

In our previous examples we have assumed that the option to invest or wait expires when
the patent expires. This is a reasonable estimation if it is expected, due to competition,
that there will be no cash flow generated after the patent expires. However, it is possible
that the firm has some competitive advantage after the patent expires. Many companies
are able to form a strong brand name while their product is patent protected and keep
generating excess returns after the patent expires. In this case the life of the option
needs to be defined as the expected period over which this competitive advantage can be
sustained. An extended lifetime, will result in an increased value of the patent, increasing
the incentive to wait [8].

6.6.2 The BSM Model in ROV

The BSM model was introduced in order to value financial assets. Although it is conve-
nient in use, it may not be applicable in valuing options on real assets. For example, it
assumes a constant deterministic strike price. In ROV the costs associated with materials,
production, or labor etc. are liable to vary through time and often there is significant
uncertainty in investment costs. It also assumes that the volatility in the underlying asset
is constant but in real projects this parameter is likely to change over time. The BSM
model includes an assumption about the probability distribution of the underlying asset.
Furthermore, it makes the assumption that the underlying asset can be traded regularly
and assumes that investors can adjust their investment portfolios continuously. It values
an option at its maturity which may not be convenient in the case of real assets where in-
vestments prior to maturity are probable due to external competition or other unexpected
events. When the assumptions underlying the BSM model do not hold, the result will
become less reliable. However, the model can yield qualitative insights [3] [8] [11] [23].
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7 Real Options Theory

In this section we will review the mathematical theory underlying the valuation of real op-
tions. The content is mainly derived from the first educational book that deals exclusively
with real options, by Dixit and Pindyck (1994) [28]. We begin by considering an investment
opportunity with an infinite time horizon, starting with a deterministic case where there
is no uncertainty. Then the stochastic case will be solved with both DP and CCA in order
to compare those two approaches. We will examine how the problem changes when the
time horizon is finite, and finally, introduce equivalent risk neutral valuation.

7.1 Infinite Time Horizon
The model derived in this section was first developed by Mcdonald and Siegel (1986) [34],
and later presented by Dixit and Pindyck (1994) [28]. The aim was to find at what time it
would be optimal to invest in an irreversible investment opportunity, with a PV of V . At
an initial time t the value of the project is known but its future is uncertain. Therefore, it
is assumed that V evolves according to the following GBM.

dV =αV dt+σV dz

At an unknown future time T an investment will be made. The value of the investment
opportunity is calculated as the expected payoff discounted to the present by the discount
rate ρ, as follows

F(V )= maxE
[
(VT − I)e−ρT]

(46)

We need to assume that ρ >α such that δ= ρ−α> 0. This is similar to a perpetual call
option on a dividend paying stock. We need δ> 0, else one would never exercise the option
and waiting would always be the optimal investment strategy [28].

7.1.1 The Deterministic Case

When there is no uncertainty (σ= 0), the process followed by V simplifies to

dV =αV dt

Since V follows a lognormal distribution, its expected value at some random future time t
becomes

ln(Vt)= ln(V0)+αt
Vt =V0eαt

The value of the investment opportunity is

F(V )= (
V0eαt − I

)
e−ρt (47)
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If we let α≤ 0, we can see that V either stays constant or decreases with time. The optimal
investment strategy would be to invest immediately or never invest, F(Vt)= max

(
Vt− I,0

)
.

Let us consider the scenario where 0≤α≤ ρ. Now V eαt will grow with time. If the current
value of the project is less than the investment cost (V0 < I), there might be some time t,
where the opposite would hold. To find the optimal time to invest we differentiate F(V )
with respect to t as follows

F(V )
dt

= ∂

∂t
(
V0e−(ρ−α)t − Ie−ρt)= 0

⇒−V0(ρ−α)e−(ρ−α)t +ρIe−ρt = 0

By solving for t we obtain

−ln
(
V0(ρ−α)

)+ (ρ−α)t+ ln(ρI)−ρt = 0

⇒ ln
[ ρI

V0(ρ−α)

]
=αt

⇒ t = 1
α

ln
[ ρI

V0(ρ−α)

]
The optimal time to invest becomes

t∗ = max
[

1
α

ln
[ ρI

V0(ρ−α)

]
,0

]
(48)

If I isn’t too much smaller than V0, we will have t∗ > 0, indicating that it is optimal to
wait. If t∗ = 0 we should invest immediately. To find for what value of V∗ an immediate
investment would be preferred, we let t∗ = 0 as follows

t∗ = 1
α

(
ln

[
ρI

]− ln
[
V0(ρ−α)

])= 0

⇒ ln
[
ρI

]= ln
[
V0(ρ−α)

]
⇒V∗

0 = ρ

ρ−α I (49)

When α= 0, we have V∗
0 = I and it becomes optimal to invest if V0 >V∗

0 , else we will never
invest. In the case where α> 0, we will invest when the value of the investment exceeds
the investment cost by an amount ρ

ρ−α , but if V0 <V∗
0 we should wait (see Figure 16).

To derive the optimal investment rule when t∗ > 0, we simply substitute the formula for
the optimal timing (Eq.48), into the equation for the value of our investment opportunity
(Eq.47) as follows
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F(V )=V0e−(ρ−α)t − Ie−ρt

=V0e
−ρ

[
1
α ln

[
ρI

V0(ρ−α)

]]
e
α

[
1
α ln

[
ρI

V0(ρ−α)

]]
− Ie

−ρ
[

1
α ln

[
ρI

V0(ρ−α)

]]
=V0eln

[
ρI

V0(ρ−α)

](−ρ/α)

eln
[

ρI
V0(ρ−α)

]
− Ieln

[
ρI

V0(ρ−α)

](−ρ/α)

=V0

[ ρI
V0(ρ−α)

](−ρ/α)[ ρI
V0(ρ−α)

]
− I

[ ρI
V0(ρ−α)

](−ρ/α)

=
[ ρI

V0(ρ−α)

](−ρ/α)( ρI
ρ−α − I

)
=

[V0(ρ−α)
ρI

](ρ/α)( αI
(ρ−α)

)
Figure 16 shows the value of our investment opportunity as a function of V w.r.t three
different growth rates (α), assuming an investment cost of I = $4.70million and a discount
rate of ρ = 0.15. The critical point V∗ = ρ

ρ−α I, is exactly where the value of waiting and the
value of an immediate investment intercept. When α= 0, the optimal investment strategy
is to invest if V > I, else we will never invest. For α = 0.02 we can see that waiting is
optimal until V ≈ $5.40million and when α= 0.05 we should wait until V ≈ $7.10million.
Hence, an increased growth in V increases the incentive to wait and the value of our
investment opportunity [28].

Figure 16: The Value of the Investment Opportunity w.r.t. Different Growth Rates.

7.1.2 The Stochastic Case - Solution by DP

DP is a mathematical optimization method that was first developed by Richard Bellman
in the 1950s [35]. It’s essence is to solve a problem by breaking it into its subproblems. In
the case of an investment decision we can break a sequence of many future decisions into
two parts, an immediate decision and the expected value of continuation.

In continuous time analysis, each time period becomes infinitely small (∆t → 0), and the
Bellman equation is defined as
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ρF(x, t)=max
[
π(x, t)+ 1

dt
E

[
dF(x, t)

]]
(50)

where ρ is the discount factor and ρF(x, t) is the return required from the asset. The
immediate payoff from the asset is π(x, t) and 1

dt E
[
dF(x, t)

]
is the limit of 1

∆t E
[
F(x+∆x, t+

∆t)
]
, denoting the expected rate of capital gain over a small period of time (dt).

Let us assume that the underlying asset of our investment opportunity (V ) follows the
GBM, given by

dV =αV dt+σV dz

When the underlying asset follows a stochastic process, we can not determine the optimal
investment time t∗. However, we can find the optimal investment strategy dependent on
the critical value V∗, such that it is optimal to invest when V >V∗. Since the investment
opportunity does not generate any cash flow until investment has been made, the only
return from holding it is the rise in capital appreciation. Thus, the Bellman equation (see
Eq.50), simplifies to

ρF(V )= 1
dt

E[dF(V )] (51)

Expanding the right hand side of this equation using Itô’s Lemma, we get

dF(V )=
[∂F(V )

∂V
αV + ∂F(V )

∂t
+ 1

2
∂2F(V )
∂V 2 σ2V 2

]
dt+ ∂F(V )

∂V
σV dz

Because we are considering the investment opportunity as infinite, it is not a function of
time and ∂F(V )

∂t = 0. Since E[dz]= 0 (see Section 6.2), the expected value of the change in
F(V ) becomes

E
[
dF(V )

]= [∂F(V )
∂V

αV + 1
2
∂2F(V )
∂V 2 σ2V 2

]
dt

By substituting this result into the Bellman equation (see Eq.51) we get the following
differential equation

∂F(V )
∂V

αV + 1
2
∂2F(V )
∂V 2 σ2V 2 −ρF(V )= 0

In order to compare this solution to the CCA approach (see Section 7.1.3), we let α= ρ−δ.
As explained earlier we need ρ >α and δ= ρ−α> 0, to make sure there will be an optimal
solution. Now the Bellman equation becomes

∂F(V )
∂V

(ρ−δ)V + 1
2
∂2F(V )
∂V 2 σ2V 2 −ρF(V )= 0 (52)

F(V ) must satisfy this equation subject to the following boundary conditions
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• F(0)= 0
This is a boundary condition due to the stochastic process followed by V. If it goes to
zero, it will stay at zero. Hence V = 0 and the investment opportunity will be of no
value.

• F(V∗)=V∗− I
This is the value matching condition. At the critical value V∗ investment is optimal
and we will receive the payoff V∗− I, upon investing.

• ∂F(V∗)
∂V = 1

This is the smooth pasting condition that determines a unique stopping point. If
F(V∗) is not continuous and smooth at the critical exercise point V∗ than it might be
better to exercise at another point.

By rearranging terms in the second condition we can also say that the critical value
(V∗) needs to equal or exceed the sum of the opportunity cost of waiting and the direct
investment cost or V∗ = F(V∗)+ I. This verifies that the NPV rule is flawed by indicating
that one should invest when V ≥ I.

To find the value of our investment opportunity we need to solve the second order homoge-
neous differential equation (see Eq.52) subject to the boundary conditions. To do this it is
assumed that the solution takes the form

F(V )= AVβ (53)

where A is constant. Substituting this solution into Eq.52, we get the following quadratic
function (denoted as Q)

Q = 1
2
σ2β(β−1)+ (ρ−δ)β−ρ = 0 (54)

The possible values for the roots (β) are

β1 = 1
2
− ρ−δ

σ2 +
√√√√(

ρ−δ
σ2 − 1

2

)2

+ 2ρ
σ2 > 1

β2 = 1
2
− ρ−δ

σ2 −
√√√√(

ρ−δ
σ2 − 1

2

)2

+ 2ρ
σ2 < 0

The quadratic function in Eq.54 is illustrated in Figure 17. The two roots can be seen
where the function crosses the horizontal axis, one to the right of one (β1 > 1) and one
to the negative side (β2 < 0). When β→±∞, Q →+∞. When β= 0 we have Q =−ρ and
when β= 1 the function equals Q =−δ. Recall that we are assuming ρ > δ> 0, otherwise
waiting would always be optimal and one would never invest. Thus we are concentrating
on the positive root (β1) which we will denote as β.
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Figure 17: The Quadratic Function

Because Eq.52 is linear in the dependent variable F(V ) and its derivatives, the general
solution can be written as a linear combination of two independent solutions F(V ) =
A1Vβ1 + A2Vβ2 . However, the first boundary condition needs to hold F(0) = 0. Because
β2 < 0 we need A2 = 0 and the solution simplifies to Eq.53, where β=β1 > 1. To see if this
solution satisfies the boundary conditions outlined above, we substitute and find

F(0)= A0β = 0

F(V∗)= AV∗β =V∗− I ⇒ I =V∗(1− AV∗β−1)
∂F(V )
∂V∗ = AβV∗β−1 = 1⇒V∗β−1 = 1

Aβ

Now we can solve for the critical value V∗, observing

I =V∗
(
1− A

1
Aβ

)
=V∗

(
1− 1

β

)
⇒V∗ = I

1− 1
β

(β
β

)
⇒V∗ = β

β−1
I (55)

Because we have β> 1, the factor β

β−1 will always be larger than one (see Eq.55). Therefore,
the critical value V∗ at which it is optimal to invest will always exceed the investment
cost I by an amount determined by this factor. When β→ 1, the factor becomes larger
and the gap between V∗ and I increases. This indicates that the traditional NPV rule,
encouraging an investment when V ≥ I, is incorrect.

To solve for the constant A we use the second boundary condition F(V∗) as follows [36]
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F(V∗)= AV∗β =V∗− I

⇒ A = V∗− I
V∗β

By substituting V∗ (see Eq.55) into this result for A, we get

A =
β

β−1 I − I(
β

β−1 I
)β =

(
I
[( β

β−1

)
−1

])(
β

β−1
I
)−β

= I1−β
[( β

β−1

)1−β−
( β

β−1

)−β]

= 1
Iβ−1

[(β−1
β

)β−1 −
(β−1

β

)β]= 1
Iβ−1 (β−1)β−1

[
β1−β− β−1

ββ

]
= 1

Iβ−1 (β−1)β−1
[
β1−β−

(
β1−β−β−β

)]
= 1

Iβ−1 (β−1)β−1
(
β−β

)
⇒ A = (β−1)β−1

Iβ−1(β)β
(56)

Since β is a function of σ, ρ and δ we can examine how changes in these parameters will
affect the factor β

β−1 as well as the optimal investment rule. Figure 18 shows how change
in σ affects the value of β, keeping ρ and δ constant.

Figure 18: Changes in β w.r.t. σ (ρ = 0.2 and δ= 0.1).

It can be seen that as σ increases, β decreases. When β decreases the factor β

β−1 increases.
Hence, the required difference increases between V∗ at which it is optimal to invest and
the investment cost I, increasing the value of the option to invest. In context to this
analysis, Chang (2005) [2] examined how change in σ would affect the constant A, keeping
other parameters constant (see Figure 19).
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Figure 19: Changes in A w.r.t. σ (I = 30, ρ = 0.2 and δ= 0.1).

Apparently, an increase in σ has the opposite effect on A than it has on β. Since the value
of the option is F(V )= AVβ, it’s value is ambiguous under the trade off between A and β

when volatility increases. Interestingly, when the option is deep in the money, it’s value
decreases as σ increases. This is because a decrease in β overrides the increase in A when
volatility is low. Hence an option with low volatility is more valuable than one with high
volatility (see Figure 20). This is in contrast with finite horizon financial options, where
an increase in volatility, always increases the value of the option (see Table 2).

Figure 20: Option Value w.r.t. σ (V = 90, I = 30, ρ = 0.2 and δ= 0.1).

However, when the option is not deep in the money, out of money, or at the money, an
increase in σ will increase its value (see Figure 21).
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Figure 21: Option Value w.r.t. σ (V∗ = 60, I = 30, ρ = 0.2 and δ= 0.1).

Let us revisit Figure 18, considering the extreme case where σ→∞. Under this scenario
it can be seen that β→ 1 and thus, V∗ →∞. Here it becomes unlikely that the value of the
underlying asset reaches the critical value V∗ and waiting will always be optimal. When
σ→ 0 and α> 0 the quadratic function simplifies to

⇒ 1
2
σ2β(β−1)+ (ρ−δ)β−ρ = 0

⇒β= ρ

ρ−δ
By substituting this value of β into Eq.55 for V∗, we obtain

V∗ =
[ ρ

ρ−δ
ρ

ρ−δ −1

]
I =

[ ρ

ρ−δ
ρ−(ρ−δ)
ρ−δ

]
I =

( ρ

ρ−δ
)(ρ−δ

δ

)
I = ρ

δ
I

⇒V∗ = ρ

ρ−α I

This is the same result as derived under the deterministic case (see Section 7.1.1). It
shows that an increase in α> 0 will increase the critical value V∗, increase the incentive
to wait, and the value of our investment opportunity (see Figure 16). Figure 22 shows how
change in δ affects the value of β, holding σ and ρ constant.
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Figure 22: Changes in β w.r.t. δ (σ= 0.3 and ρ = 0.35).

When δ increases it can be seen that β increases. As a consequence the factor β

β−1 decreases
as well as the critical value V∗. Hence higher cost of waiting (δ) accelerates investment. In
the extreme case where δ→∞ the value of the option goes to zero. Figure 23 displays how
change in the discount factor ρ affects the value of β, keeping other parameters constant.

Figure 23: Changes in β w.r.t. ρ (σ= 0.3 and δ= 0.03).

When ρ increases we can see that β decreases. Thus, the factor β

β−1 increases, increasing
the incentive to wait [28].

7.1.3 The Stochastic Case - Solution by CCA

The main assumption underlying the CCA approach is that the stochastic asset underlying
the investment opportunity (V ) can be replicated with another traded asset, often called
the spanning asset. To be able to construct a replicating portfolio the price of the spanning
asset needs to be perfectly correlated with the price of the underlying asset. In the absence
of arbitrage opportunities the value of the replicating portfolio must equal the value of
the investment opportunity. This is the same methodology as explained in Section 5.1
and under the BSM model (see Section 6.5.1). If the underlying asset were a commodity
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that is traded in the market, it would be convenient to use the CCA approach. It is
seldom that a spanning asset exists for R&D projects such as young patented assets.
Nevertheless, we will assume that an asset exists (v̄) that is perfectly correlated with the
stochastic variable underlying our investment opportunity (V ). Because these two assets
are perfectly correlated their correlation with the market is the same (ρ v̄m = ρV m), thus
they have the same β. Now we assume that the spanning asset evolves according to the
following stochastic process

dv̄ =µv̄dt+σv̄dz

where µ is the expected return that reflects the non-diversifiable risk, obtained from the
CAPM model (see Section 2.1.3). We assume that the expected percentage change in V is
less then the expected rate of return an investor would require from holding the spanning
asset v̄. Thus α<µ and δ=µ−α, represents the cost of waiting. To construct a replicating
portfolio we take a long position in our investment opportunity F(V ), and short ∆= ∂F(V )

∂V
units of the underlying asset (this is the same as shorting the spanning asset because the
two assets are perfectly correlated). Hence the value of our portfolio is Π= F(V )−∆V . No
rational investor would hold the long position unless receiving at least the risk adjusted
expected return (µ). Now µ=α+δ and since the short position includes ∆= ∂F(V )

∂V of the
underlying asset, it will require a payment of δV∆ = δV ∂F(V )

∂V . The composition of the
portfolio may change over time as V changes. However, over a very short period of time dt
we hold ∆ fixed. Thus the return from the portfolio over the time interval dt is

Return = dF(V )− ∂F(V )
∂V

dV −δV
∂F(V )
∂V

dt

Using Itô’s Lemma and the properties of the Wiener process as earlier, we get

dF(V )= ∂F(V )
∂V

dV + 1
2
∂2F(V )
∂V 2 dV 2

The change in F(V ) is not a function of time since we are assuming infinite time horizon.
From the stochastic process followed by V we know that the variance is dV 2 =σ2V 2dt.
Substituting for dF(V ) the return becomes

Return = 1
2
∂2F(V )
∂V 2 σ2V 2dt−δV

∂F(V )
∂V

dt

This return is risk free. To avoid arbitrage opportunities it should equal rΠdt as follows

1
2
∂2F(V )
∂V 2 σ2V 2dt−δV

∂F(V )
∂V

dt = r
(
F(V )− ∂F(V )

∂V
V

)
dt

Rearranging terms and dividing through by dt we obtain the following differential equa-
tion

∂F(V )
∂V

(r−δ)V + 1
2
∂2F(V )
∂V 2 σ2V 2 − rF(V )= 0 (57)
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It can be seen that this equation is closely related to the differential equation derived
under the DP approach (see Eq.52). The difference is that the risk free rate r has replaced
the discount factor ρ. The value of our investment opportunity F(V ) needs to satisfy
Eq.57 subject to the same boundary conditions as outlined earlier (see Section 7.1.2). The
solution takes the same form as before

F(V )= AVβ

where V∗ is given by Eq.55, the constant A is given by Eq.56, and the root β is defined as

β= 1
2
− r−δ

σ2 +
√√√√(

r−δ
σ2 − 1

2

)2

+ 2r
σ2

7.1.4 Comparing DP and CCA

We have seen that DP and CCA, satisfy very similar differential equations. Their
difference lies in the estimation of the expected rate of return. The DP approach requires
an estimation of a discount rate (ρ) that reflects the decision maker’s subjective judgement
of risk. Under the CCA approach on the other hand, this rate can be estimated according
to the capital market equilibrium (CAPM).

Although the CCA approach offers a better way of estimating the expected rate of return,
it does require that the investment opportunity can be replicated with another traded
asset. When it is assumed that the underlying asset follows a stochastic process, the
stochastic component of the spanning asset has to be perfectly correlated to the stochastic
component of the underlying asset. This can be quite demanding, especially in the case of
a new unique invention [28].

Under the assumption of risk neutrality (ρ = r), the CCA solution is equivalent to the DP
solution. In this case the change in σ, δ, or r (holding other parameters fixed), will have
the same effect on β and the critical value V∗ (see Section 7.1.2). However, when investors
are risk averse and the expected return under the CCA approach is calculated according
to the CAPM model (see Section 2.1.3), we have the following relationship

δ=µ−α= (
r+ ρ v̄m

σm
σ(rm − r)

)−α
If we let δ vary (keeping α constant), an increase in the risk free rate r as well as an
increase in σ will have the opposite effect on the critical value V∗. In this case, an increase
in these parameters is likely to be accompanied with an increase in µ, which implies
an increase in δ. This lowers the value of the investment opportunity and accelerates
investment [28] [34]. This effect is prevalent even when the option is out of the money [2].
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7.2 Finite Time Horizon
Many real life investment opportunities do not come with an infinitely lived option to
invest. An example of this is a patent that has a known expiration date. When the
time horizon is finite, the investment opportunity becomes a function of time. We can go
through the same steps as before and construct a risk free portfolio. Assuming a spanning
asset exists, we will obtain the same risk free return as earlier.

Return = dF(V , t)− ∂F(V , t)
∂V

dV −δV
∂F(V , t)
∂V

dt

However, when we use Itô’s Lemma to expand F(V , t), the time variable does not vanish
as in the previous section and we obtain

Return = 1
2
∂2F(V , t)
∂V 2 σ2V 2dt+ ∂F(V , t)

∂t
dt−δV

∂F(V , t)
∂V

dt

To avoid arbitrage opportunities this return should equal the risk free rate (rΠdt), and we
get

1
2
∂2F(V , t)
∂V 2 σ2V 2dt+ ∂F(V , t)

∂t
dt−δV

∂F(V , t)
∂V

dt = r
(
F(V , t)− ∂F(V , t)

∂V
V

)
dt

Rearranging terms and dividing through by dt we obtain the following differential equa-
tion

∂F(V , t)
∂V

(r−δ)V + ∂F(V , t)
∂t

+ 1
2
∂2F(V , t)
∂V 2 σ2V 2 − rF(V , t)= 0 (58)

This is the same equation as we saw earlier after adjusting the BSM model for dividends
(see Eq.42). In very few cases the partial differential equation leads to a closed form
solution such as the BSM equation for the European call option (see Section 6.5.2).
However, a reasonable set of boundary conditions for Eq.58 could be

• F(0, t)= 0

• F(V∗, t)=V∗− I

• ∂F(V∗,t)
∂V = 1

• F(V ,T)= max
(
V − I,0

)
The first three conditions are similar to the ones used in the case of infinite time horizon
(see Section 7.1.2). We need to define a boundary condition for the expiration of the finite
time horizon. The fourth condition is an example of such boundary where we will exercise
at time T if the stochastic variable V is greater than I. In contrast to the infinite time
horizon in the previous section, Eq.58 subject to these boundary conditions can not be
solved analytically [37].

Real option solution methods can be divided into two groups, analytical and numerical
methods. The former are the DP and CCA which can sometimes yield a closed form
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solution as illustrated. When the time horizon is finite, or the number of variables
increases, or the variables are inconstant, some problems can not be solved analytically.
In that case there is a need for numerical solution methods that can approximate the
underlying stochastic variables [28] [34]. The most common numerical methods are the
binomial tree approach (see Section 4.1), Monte Carlo simulation (see Section 8.1), and
finite difference methods.

In the beginning of the real options analysis era, most problems were solved as infinite
since it offers a convenient, one dimensional solution [37]. It has been argued that it
is possible to account for the omission of finite time horizon in a model by letting the
value of the underlying asset follow a jump process. In such a process, the underlying
variable jumps to zero at some unknown date, and stays there. It is also possible to let the
underlying asset have an average downward drift (δ) that is expected to decline at a rapid
rate, such that the omission of finite time horizon may be insignificant [34]. However, it is
questionable to value a finite investment opportunity as an infinitely lived one. This is
because an infinitely lived patent will always be worth more than a finitely lived one. For
example, Schwartz (2004) [16] found that by extending the duration of a patent by 10%,
the value of the underlying project increased by 35%.

7.3 Equivalent Risk Neutral Valuation
In this section we will look at an example of an equivalent risk neutral valuation that
further reflects the relationship between DP and CCA. Let us consider a project with
profit flow π(x, t). The underlying asset x follows the GBM, given by

dx =αxdt+σxdz

The value of the firm at a current time t is F(x, t) and at a future time t+dt the value of
the asset changes to x+dx. We will assume that the project will end at a finite time T,
with a terminal payoff of Ω(xT ,T). With dynamic programming we specify a discount rate
ρ and the current value of the firm F(x, t) is the expected PV , based on information as of
time t, given by

F(x, t)= E t

[∫ T

t
e−ρ(τ−t)π(xτ,τ)dτ+ e−ρ(T−t)Ω(xT ,T)

]
(59)

After a small time period dt the value of the underlying asset has changed to F(x+dx, t+
dt). Since dx is a random increment from the stochastic process we need to take the
expected value discounted back to the present, over the small time period dt, as follows

F(x, t)=π(x, t)dt+ e−ρdtE t
[
F(x+dx, t+dt)

]
(60)

This equation is one kind of the Bellman equation since the time period from t to T is
broken into two components, the current short interval dt

(
π(x, t)dt

)
and the continuation

value
(
e−ρdtE t

[
F(x+dx, t+dt)

])
. To find a solution we expand the right hand side of the

equation using Itô’s Lemma (ignoring dt2 and higher terms).
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π(x, t)dt+ e−ρdtE t
[
F(x+dx, t+dt)

]
=π(x, t)dt+ (1−ρdt)

[
F(x, t)+ ∂

∂t
F(x, t)dt...

...+ ∂

∂x
F(x, t)αxdt+ 1

2
∂2

∂x2 F(x, t)σ2x2dt
]

= F(x, t)+ [
π(x, t)−ρF(x, t)+ ∂

∂t
F(x, t)+ ∂

∂x
F(x, t)αx...

...+ 1
2
∂2

∂x2 F(x, t)σ2x2]dt

By substituting this result into Eq.60 we see that F(x, t) satisfies the following differential
equation

π(x, t)+ ∂F(x, t)
∂x

αx+ ∂F(x, t)
∂t

+ 1
2
∂2F(x, t)
∂x2 σ2x2 −ρF(x, t)= 0 (61)

subject to the following boundary condition

F(x,T)=Ω(x,T) for all x (62)

We have shown that Eq.59 is the solution to the differential equation in Eq.61. This is
a special case of a general result known as the Feynman-Kae formula [28]. Now if we
consider the differential equation for CCA, subject to the boundary condition (see Eq.62),
we have

π(x, t)+ ∂F(x, t)
∂x

(r−δ)x+ ∂F(x, t)
∂t

+ 1
2
∂2F(x, t)
∂x2 σ2x2 − rF(x, t)= 0 (63)

We do not have the solution to this differential equation beforehand. Although, we can
see that this equation is quite similar to Eq.61, here r replaces ρ and (r−δ) replaces α.
Since µ= δ+α, and by assuming that the required return is µ= r, we can write r = δ+α
or α= r−δ. Adjusting the stochastic process for the underlying variable x, we obtain the
following equivalent process

dx′ = (r−δ)x′dt+σx′dz

The artificial variable x′ starts at the same initial value as x, but then it follows a different
stochastic process dx′. Therefore, we can write the solution to Eq.63 as follows [28]

F(x, t)= E′
t

[∫ T

t
e−r(τ−t)π(x′τ,τ)dτ+ e−r(T−t)Ω(x′T ,T)

]
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8 The Model

The proposed model of this study is built on the model originally presented by Schwartz
(2004) [16], later developed by Ernst, Legler, and Lichtenthaler (2010) [9] and simplified by
Hernández, Güemes, and Ponce (2018) [15]. These studies aimed at determining the value
of a patent in the pharmaceutical and chemical industries. A simulation approach was
implemented and the decision process was viewed from the perspective of abandonment.
Even though abandonment is discussed extensively in the literature, most often it is the
option to default which is under consideration. That said, abandonment does describe the
decision to default, in that the project will be stopped when the decision is taken.

When constructing a model in order to value a patent it makes a difference which industry
is under consideration. Patented projects can be seen in industries such as for example
pharmaceuticals, telecommunications, computer and technologies, semiconductors, food
and beverages, automobiles, and biotechnologies. The R&D process, competition inter-
actions and market conditions can vary between industries. Most research on patent
valuation, using real options, is to be found in the pharmaceutical industry, which has
become a research-oriented sector. In that particular industry the product goes through
many stages in R&D until it is accepted by the FDA. This process is expensive, time
consuming and only one out of 10,000 discovered compounds become a prescription drug.
Hence the probability of failure is high and the option to abandon has been found valuable.
This industry offers a long history of returns in the market, a great variety of possible
spanning assets, and a wide experience in R&D. Therefore, it may be straight forward to
estimate parameters in the purpose of a valuation. In contrast, a pioneer venture may
have no available data of historical returns and no comparable asset in the market. The
management may need to prove demand for their new invention and enhance the com-
pany’s market position if that market or a spin off product should develop in the upcoming
years. Thus, at the outset the cash flow is likely to be dominated by expenses, and the most
valuable option might be a growth option on possible future growth opportunities [11].

No project has the same characteristics. The more options that are allowed in a model
the wider the range of managerial flexibility - adding value to the patent. Precautions
need to be taken when estimating which option or combination of options is the most
appropriate. Estimations like these depend on the nature of the project to be valued. The
aim of this thesis is to provide a general model that can be applied to obtain the monetary
value of a granted patent. To do this we examined what patented projects have in common.
The first commonality is that their future is uncertain. That means that there is a need
to account for uncertainty in both expected cash flow and investment costs. Second, a
new invention usually has to go through some R&D before the product is fully developed
and marketable. At this stage the time to completion and expected development costs
are both uncertain. If the product is successfully developed and market conditions are
favorable, production and marketing will take place. Finally, they all have a finite horizon
protection from competition (usually 20 years). When the patent expires the market share
will decline or even vanish but this effect will be different between various projects and
industries.

The model developed aims to value a patented project as a sequential choice over con-
tinuation, expansion, or abandonment. It is reasonable to assume that if the project is
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marginal, the management may have the opportunity to expand its scope. However, if
the option to expand does not make the project favorable the decision to default will be
taken. This situation can arise if costs turn out to be higher than expected and/or cash
flows turn out to be lower than anticipated. The concentration will be on the uncertainty
over expected future cash flow, uncertainty in development costs, time to completion of
the development phase, and uncertainty in the estimated costs of commercialization. The
values we use when implementing our model are hypothetical and not industry specific.
That said, in reality, market conditions need to be evaluated within the parameters of the
type of industry and the nature of the project.

The simulation approach used to solve the real options problem will be introduced and the
variables used in the model will be examined. We will explain the algorithm and present
the results from the simulation. To better realize how different parameters affect the
value of the patent a sensitivity analysis will be performed.

8.1 Solution Method
There are several variables that need to be evaluated when selecting the most appropriate
solution method. The evaluator needs to distinguish between European and American
options, how many state variables are to be taken into account, and whether they are
path dependent. For example, it is convenient to use simulation when European options
are to be valued because the simulation approach is forward looking - meaning that it
works from the beginning to the end of the life of the option. American options on the
other hand do have features of dynamic programming. They are valued by working from
the end of the life of the option to the time being observed. In that case the binomial tree
approach is the most suitable numerical solution method since it allows for comparing
the value of an early exercise to the one at maturity (see Section 4.1). Research has
been conducted in order to find an approach that can approximate the value of American
options by simulation, using simple least squares, see Longstaff and Schwartz (2001) [38].
Although the binomial tree approach has been widely used, it is not convenient when there
are many state variables or where there are path dependencies [24]. The model presented
includes a European sequential option where the state variables are path dependent. Thus
the simulation approach was found to be the most appropriate solution method for this
study.

8.1.1 Monte Carlo Simulation

The simulation approach is a useful tool for solving real options valuation problems.
It is computationally efficient, can be easily implemented, intuitive, transparent, and
flexible [39]. This approach is well suited for valuing path dependent options since it
simulates new values depending upon the values from the state before. The method
becomes relatively more efficient as the number of underlying variables increases or
where there are many stochastic variables.

It is believed that the Monte Carlo simulation approach satisfies the requirements and
needs of the proposed model. In each simulation run the expected value of the investment
opportunity is calculated where the underlying stochastic variables are subject to random
movements. At every decision node the expected payoff (Fk) is calculated. The process is
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performed 10,000 times. The simulation constructs a probability distribution of possible
outcomes where the final expected value is the mean of all the possible option values (F̄).

F̄ =
∑n=1e4

k=1 Fk

n

As the number of simulations increases the more accurate the result will be. When
(n →∞), then F̄ → E[Fk], with probability 1 [15] [39] [40].

8.2 Model Derivation
In the following subsections we will explain the variables used in the model and their
characteristics. Most R&D projects involve considerable uncertainty over costs and future
cash flow. In the model, both of these will be taken into account. It is assumed that
investment costs are irreversible and an amount invested is a sunk cost. To maintain
computational efficiency the model is built in a discrete time manner.

8.2.1 Cost To Completion

As earlier stated (see Section 5.4), there are two types of uncertainties over costs. One
is related to the overall economy (non-diversifiable) such as government regulations and
material costs. The other is firm specific such as the amount of time and effort needed
to complete a project. The former is often called input cost uncertainty, and the latter,
technical uncertainty. Input cost uncertainty will change whether or not the firm is
investing. This kind of uncertainty increases the incentive to wait for more information to
be obtained. The opposite holds for technical uncertainty which can only be resolved by
investing, and thus, encourages investment [32]. For R&D projects, technical uncertainty
is far more important [28]. This is because it is not known at the outset how much time,
effort, or cost is needed to complete the project. Thus to resolve uncertainty, there is a
need to invest.

In the beginning of the analysis it is estimated that the total cost needed to finish the
development phase is K0 = $7.50million. The variable for the cost to completion is
supposed to follow a stochastic process until the R&D has been completed as follows

dK =−Idt+σK
p

IKdz

where I is the expected investment cost (see Section 8.2.4), σK is the uncertainty over the
cost to completion, and dz is the increment of the Wiener process (see Section 6.2). The
uncertainty over cost to completion (σK ) should reflect the variability of the estimated
and realised development costs. This estimation can be obtained from the firm’s earlier
experience in R&D, or from similar projects/firms in the same industry. Usually, costs
regarding R&D projects are highly uncertain. Therefore, it is reasonable to estimate
a variability of 50%. The first term −Idt illustrates when investment takes place the
remaining cost to completion will decrease by the amount of the investment. The second
term σK

p
IKdz reflects the technical uncertainty which will only be resolved by investing.

The discrete approximation to this process can be written as
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K t+1 = K t − I t∆t+σK
√

I tK t
p
∆t(ε)

where ε is a random number drawn from a standard normal distribution. The remaining
cost to completion in the next period (K t+1) is the current cost to completion (K t) minus
the investment that is made (I t), subject to uncertainty that will cause the remaining cost
to increase or decrease in the upcoming period.

8.2.2 Development Time

This variable represents the time expected to complete the development phase (DT). To
estimate this variable, development time for other similar R&D projects can be used as a
proxy. In the beginning of the analysis it is estimated that development will take 3 years.
Because the cost to completion (K t) is a random variable, the development phase may take
shorter or longer time than expected.

8.2.3 Time Until Patent Expires

It is estimated that there are 20 years until the patent expires. To reflect actual circum-
stances, the project will be evaluated quarterly (N = 4). Therefore, the time steps in the
simulations are ∆t = 1

N = 0.25. To include the current time (t = 0) in the analysis the
number of evaluations needs to be TE = 20+ 1

N , resulting in NTE = (4)(20+ 1
4 )= 81 periods.

8.2.4 Investment Costs

We will allow for two types of investment costs in this model. The first one is the periodic
investment in R&D (I t). It is estimated that the company has a certain budget per year
to invest in development. This cost will reduce the remaining cost to completion (K t)
each period, but the total investment needed to complete R&D is not known, because of
the uncertainty concerning K t. At an initial time t0, this cost is estimated as the cost to
completion, divided by the number of years development is expected to take.

I0 = K0

DT

The annual rate of investment therefore becomes I0 = $7.50
3 = $2.50million. With a time

step of ∆t = 0.25 the periodic rate of investment is I t = $0.63million and will be the same
until development is completed. However, in the last period it may be lower since it only
needs to be large enough to finish the last payment of development (K t).

The other investment cost is the expected cost of commercialization (Imt). At the outset it
is estimated that the periodic cost of commercialization is $1.73million. However, only
if the development phase is successful does the management have the choice to invest
in production and marketing. While R&D is taking place, the final product is unknown,
and thus, there is no general direction to which the expected marketing costs will develop.
Therefore, it is assumed that Im follows the stochastic process given by

dIm = Imdt+σIm Imdz
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The initial estimation of this cost may rise or fall by dIm each period until development
has been completed. Hence, the expected costs of commercialization may turn out to
be higher or lower than anticipated. The discrete approximation of this process can be
written as

Imt+1 = Imt∆t+σIm Imt

p
∆t(ε)

It is assumed that the uncertainty over costs of commercialization is the same as for the
cost to completion (σIm). It is estimated that the commercialization will take two periods
after R&D has been completed (YD = 2).

8.2.5 Expected Cash Flow

The future benefits from the project are uncertain and need to be estimated by man-
agement to the best of its knowledge. The expected future cash flow is calculated as
the expected annual net revenue (after subtracting the expected operational expenses
and taxes). The expected annual cash flow is estimated at the beginning of the analysis
C0 = $2.70million per year. Then it is supposed to follow the GBM given by

dC =αCdt+σCCdz

where α is the drift in the cash flow and σC is the volatility over expected cash flow. The
cash flow is expected to grow at the rate of inflation which is assumed to be 2.5% per year.
The return on successful R&D projects can be used to estimate the cash flow volatility
but we will assume σC = 30%. We know from our previous discussion that the expected
return over future prices is the sum of the expected growth rate in the cash flow plus the
dividend yield (µ=α+δ). By assuming risk neutrality (µ= r), we obtain α= r−δ where
r is the risk free rate and δ represents the cost of waiting. Hence, the risk equivalent
process followed by the cash flow becomes

dC = (r−δ)Cdt+σCCdz

The solution to this process (see Section 6.4) can be written in a discrete time manner as
follows

Ct+1 = Cte
(
(r−δ)− 1

2σ
2
C

)
∆t+σC

p
∆t(ε) (64)

The trajectory of the cash flow starts in C0. Because no cash flow is received until R&D
has been completed, the path followed by the cash flow until that time is the anticipated
cash flow (Ce t) and is not taken into the PV calculations. Once the development is
completed, and if conditions turn out favorable, the firm will exercise the option to invest
in commercialization. When commercialization has been completed, the initial value of the
realized cash flow (Ct), is the last value of the trajectory followed by the anticipated cash
flow (Ce t). Thus, both Ce t and Ct follow the same stochastic process (see Eq.64), but they
do have different initial values. The initial value of the path followed by the anticipated
cash flow (Ce t) is C0 = $2.70million while the initial value of the realized cash flow (Ct)
is the last value of the path followed by Ce t . A reasonable estimation for the risk free rate
is 5% (see Section 2). Under the risk neutral valuation we have δ = r−α = 2.5%. It is
assumed that the risk free rate and the cost of waiting will stay constant over the life of
the project.
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8.2.6 Market Share

It is well known that after the patent expires a part of, or the whole market share, will
be lost as a consequence of competition. For instance, Fujimoto et.al (2019) [41] found
that branded therapeutic markets experienced a decrease in the quantity of sales in the
first three years after patent expiration by 49%, 65%, and 67% respectively. There is
no common methodology of valuation when it comes to the expiration of the patent. It
has been assumed that the terminal value can be estimated as the PV of the cash flow
in the last period, multiplied with some constant M. This is similar to assuming that
a terminal value of a firm is a multiple of earnings over a given period of time [9] [16].
The PV of cash flow in future periods after patent expiration has also been estimated
with the formula for growing perpetuity, multiplied with a possible market share (m) [15].
Alternative assumptions can also be applied. For example, the life of the patent can be
extended by some number of years where the market share is suppose to decline by a
certain percentage each period after patent expiration.

In this thesis we will consider another alternative. If CTE is the cash flow in the last
period of patent protection, then the expected value of cash flow after the patent expires is
E[Ct]= CTE eαt. By letting CTE be equal to the initial level of cash flow, and discounting
back at the risk free rate, we obtain the expected PV of the cash flow.

E[PVCt]=
∫ ∞

0
CTE eαte−rtdt = CTE

(r−α)
= CTE

δ

This value is then multiplied with a relevant market share (m) and discounted back to the
present time of evaluation (i).

PVCexp (i)= CTE

δ
e−r∆t(NTE−i)(m)

It is estimated that the market share will be m = 50%, after the patent expires.

8.2.7 Patent Value

The value of the patent (VPatent) is measured as the opportunity cost we would be willing
to pay for receiving an investment opportunity that is flexible rather than one that only
allows for a now or never investment. This value is found by looking at the difference
between the value of the project with flexibility and without flexibility.

The project is evaluated at every point in time (i) over the life of the patent (see Section
8.3). The PV of future expected cash flow is calculated as follows

PVC(i)=
NTE∑

t=DT+YD

Cte−r∆t(t−i) +PVCexp (i)

where DT is the time when development is completed and YD is the number of periods
that apply to commercialization. The cash flow (Ct) will be received when R&D and
commercialization has been completed, and until the patent expires (NTE). The time
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steps in the simulations are ∆t. The value of the project at patent expiration, at every
point in time (i), is PVCexp (i). The PV of investment costs is calculated as follows

PVI(i)=
DT∑
t=i

I te−r∆t(t−i) +
DT+YD∑
t=DT+1

Imt e
−r∆t(t−i)

where I t is the periodic investment in R&D and Imt is periodic investment in commercial-
ization. The value of the project without flexibility, at every time step i, is calculated as
follows

V (i)= PVC(i)−PVI(i)

If the project is unfavorable (V (i)< 0), the option to expand is introduced. This option is
calculated as follows

Vexpand(i)= max
((

PVC(i)x− Ix −PVC(i)
)
,0

)
where x is the percentage of expansion and Ix is the cost of expansion. If the expansion
option is of no value, its payoff is zero, and the option to default is introduced. The option
to default is a call option on the PV of future cash flow (PVC) with a strike price equal
to the PV of investment costs (PVI). Therefore, the payoff from the option to default, at
every time step i, becomes

Vf lex(i)= max
(
PVC(i)−PVI(i),0

)= max
(
V (i),0

)
According to the equations above, we can write a more precise illustration of this payoff,
given by

Vf lex(i)= max
(( NTE∑

t=DT+YD

Cte−r∆t(t−i) +PVCexp (i)
)− (DT∑

t=i
I te−r∆t(t−i) +

DT+YD∑
t=DT+1

Imt e
−r∆t(t−i)),0)

where i is the time of evaluation, ∆t is the time step in the simulations, Ct is the expected
cash flow at time t, TE is the time of patent expiration, DT is the time to complete
development, YD is the number of periods in commercialization, PVexp is the PV of cash
flow at expiration, I t is the investment cost at time t, and Imt is the expected cost of
commercialization. If the expansion option is valuable (Vexpand(i)> 0), we evaluate if its
value is large enough to make the project favorable.

Vf lex(i)= max
(
V (i)+Vexpand(i),0

)
If the expansion makes the project favorable we will continue and move on to the next
evaluation point i. However, if the project does not become favorable with the option to
expand, we will default with a payoff of zero (Vf lex(i)= 0). The option to invest becomes
worthless and we move on to the next simulation. If we exercise the option to continue at
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all times, the value of the project becomes the one calculated at t = 0 in matrix i = NTE,
given by

Vf inal =
( NTE∑

t=DT+YD

Cte−r∆t(t−1) + CTE

δ
e−r∆t(NTE−1)

)
−

( DT∑
t=1

I te−r∆t(t−1) +
DT+YD∑
t=DT+1

Imt e
−r∆t(t−1)

)
The PV of the option to expand - if there were any expansions, is added to the final value
of the project as follows

Vf lex =Vf inal +
NTE∑
i=1

Vexpand(i)e−r∆t(i−1)

The final value of the project with flexibility in every simulation k, is denoted as Vk f lex ,
and without flexibility as Vk. If we default and the respective simulation stops before we
get to the last period of evaluation (i = NTE) we have

Vk f lex = 0 and Vk =V (i)

However, if the option to continue is exercised at all times (i), we have

Vk f lex =Vf lex and Vk =Vf inal

After 10,000 simulations (k) the value of flexibility is obtained by subtracting the mean of
the simulated values with no flexibility (V̄ ) from the mean of values with flexibility (V̄f lex),
as follows

V̄f lex =
∑n=1e4

k=1 Vk f lex

n
and V̄ =

∑n=1e4
k=1 Vk

n

Flexibility= V̄f lex − V̄

The value of the patent is then calculated by subtracting the median of all values without
flexibility from the median of all values with flexibility. It is believed that this is a
reasonable estimation of value of the patent because the median of the distribution is the
value that separates the higher half of the data sample from the lower half.

VPatent =median(Vk f lex)−median(Vk)

8.2.8 Parameters Used in Simulations

For actual valuation processes, all parameters used in the simulations need to be estimated
with care. Estimations like these can be hard to acquire. However, it can be helpful to look
at the history of the company’s success of coming up with new products, consider similar
projects/firms in the same industry, or go to industry averages. As stated earlier, the
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objective of this study is to develop a general model, thus the values used in implementing
the model are not industry specific. The hypothetical parameters used in the simulations
can be seen in Table 5.

Table 5: Parameters Used in Simulations ($ in millions).

Variable Value
Cost to Completion (K0) $7.50
Cost Uncertainty (σK ) 50%
Development Time (DT) 3 years
Periodical Investment Costs (I t) $0.63
Costs of Commercialization per Period (Imt) $1.73
Uncertainty in Costs of Commercialization (σIm) 50%
Number of Periods in Commercialization (YD) 2
Expected Annual Cash Flow (C0) $2.70
Cash Flow Uncertainty (σC) 30%
Annual Drift in Expected Cash Flow (α) 2.5%
Percentage of Expansion (x) 45%
Cost of Expansion (Ix) $2.00
Time Until Patent Expires (TE) 20 years
The Cost of Waiting (δ) 2.5%
Risk Free Interest Rate (r) 5%
Market Share After Patent Expiration (m) 50%
Times Steps per Year (∆t) 0.25
Number of Simulations (k) 10,000

8.3 The Algorithm
The simulation was implemented in the programming platform MATLAB R2019a [42].
The number of simulations was set to 10,000. In every simulation (k) we go through i
time steps, from the initial time of analysis up to NTE. The number of decision points is
i = [1 : NTE]= [1 : 81]. At every decision point i, we create a matrix Qk,i with j = [1 : NTE]
rows and 5 columns. The first column applies to the realized cash flow (Ct), the second to
the periodic investment (I t), the third to the remaining cost to completion (K t), the fourth
to the costs of commercialization (Imt), and the fifth to the anticipated cash flow (Ce t). In
the beginning of the analysis (t0), we are positioned in the first matrix Qk,i=1. The first line
( j = 1) in the matrix displays the initial values for all of the variables Ct j,1 = 0, I t j,2 = I0,
K t j,3 = K0, Imt j,4

= Im0 and Ce t j,5
= C0. Their trajectories are then calculated according to

the processes outlined in Section 8.2. No cash flow will be received while the R&D is taking
place. However, the expected cash flow (Ce t) will follow a stochastic process until the
actual cash flow (Ct ) is received. The last value of the trajectory followed by the expected
cash flow is the initial value of the actual cash flow. At t0 the program evaluates if the
future cash flow, received after development and commercialization has been completed,
exceeds the cost of the investment. If not the expansion option is introduced. If the
expansion does not make the project favorable we will default in matrix Qk,i=1 and move
on to the next simulation. However, if we exercise the option to continue, we will pay the
first investment cost (I0) in the respective simulation. Then we move to the next period in
the matrix (Qk,i=2). Here we start in the second line ( j = 2). This is because the costs that
were paid in matrix i = 1 and line j = 1 are sunk costs and should not be taken into the
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analysis. We calculate the trajectories for all the random variables again (Ct j,1 , I t j,2 K t j,3 ,
Imt j,4

and Ce t j,5
). As before, if investment costs exceed the future expected cash flow at this

point in time, the expansion option is evaluated. If that option does not make the project
favorable the option to default will be exercised and we move on to the next simulation.
However, if we exercise the option to continue we move on to matrix Qk,i=3. Here we start
in period three (i = 3) and line three ( j = 3). The values for the first two periods will be the
same as earlier but the trajectories for the random variables from then on are calculated
again. This process continues until we reach the last period (i = NTE), or the option to
default has been exercised. Abandonment may arise if

1. The PV of expected cash flow is lower than anticipated.

2. The cost to completion is higher than anticipated.

3. The R&D takes more time than expected.

4. The option to expand does not make the project favorable.

The option to default will add value to the project, because, even though the costs that
have already been paid in previous periods are sunk costs, the option to halt the project
prevents further losses when conditions are unfavorable. If the product is successfully
developed and commercialized the project will not be abandoned/expanded from there.
The algorithm can be seen in Appendix A.

8.4 Results
An example of the trajectories followed by the expected cost to completion and the expected
cash flow are illustrated in Figure 24.

Figure 24: Example of the Trajectories followed by the Cost to Completion (K t) and the
Expected/Actual Cash Flow (Ce t /Ct).

This figure demonstrates only one trajectory out of the 10,000 that were sampled. The
blue line represents the point in time that development was completed and the cost to
completion reaches zero. In the beginning of the analysis the development phase was
expected to take 3 years, but in this case it took a little longer. The total investment
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needed to complete the R&D phase was $8.38million, which is above the expected cost to
completion of $7.50million. Although the development took more time than expected and
the costs needed to complete the development phase were higher than anticipated, the
project was not abandoned. The path followed by the cash flow to the left of the blue line
represents the anticipated cash flow (Ce t) and the path to the right represents the realized
cash flow (Ct). In the beginning of the analysis it was estimated that the annual cash flow
would be $2.70million. Because the project was evaluated quarterly in the simulations,
the expected cash flow was $0.68million in the first quarter. In this example, the path
followed by the cash flow rose over the life of the patent.

According to the parameters given in Table 5, the results from five different simulation
runs are given in Table 6.

Table 6: Results from Five Different Simulation Runs ($ in millions).

Value of The Project with Flexibility $23.48 $23.97 $23.08 $22.92 $24.50
Portion of Paths Abandoned 33.74% 34.07% 33.75% 34.61% 33.32%
Portion of Paths Expanded 16.24% 15.39% 16.29% 15.69% 16.2%
Value of The Project without Flex. $21.33 $21.89 $20.98 $20.81 $22.40
Value of Flexibility $2.14 $2.08 $2.08 $2.11 $2.10
Value of Patent $0.53 $0.53 $0.53 $0.46 $0.47

It can be seen that the mean value of the project with flexibility for the given parameters
was $23.59million and $21.48million without flexibility. The project was halted in
33.96% of the simulated paths and expanded 15.96% of the time. The value of flexibility
could be found by subtracting the mean value of the project without flexibility from the
mean value with flexibility. The value of the patent was found by looking at the difference
between the median values of the distribution of the project with and without flexibility.
The median of the distribution is the value that separates the higher half of the data
sample from the lower half. In all of the simulations the median was slightly to the left
of the mean which indicates that a larger number of the samples were lower than the
mean. The option to default was most often exercised in the first quarter or in 6.8% of the
simulated paths. It was last exercised after 4.75 years and only once over the 10,000 runs
(see Figure 25).

Figure 25: The Frequency of Defaulting per Quarter.
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The same applies to the option to expand which was most often exercised in the first
quarter or in 3.44% of the simulations and last exercised in the 5th year (see Figure 26).

Figure 26: The Frequency of Expansion per Quarter.

If we did not allow for the option to expand, the proportion of paths abandoned would
have risen to approximately 45%. The mean of the simulated costs to completion was
$7.65million, slightly higher than the estimated $7.50million. Because we could default
if conditions were unfavorable, the mean cost that was actually spent in development
over the simulated paths was $5.64million, which represents that the project was halted
before R&D was completed.

8.5 Sensitivity Analysis
Sensitivity analysis with respect to volatilities in cash flow and costs is illustrated in Table
7. It can be seen how adjusting these parameters affects the probability of abandonment,
expansion, the value of flexibility, and the value of the patent.

Table 7: Sensitivity Analysis w.r.t. Volatilities in Cash Flow and Costs.

Cash Flow
Uncertainty

Percent
Abandoned

Percent
Expanded

Value of
Flexibility

Value of
Patent

20% 4.61% 6.28% $0.61 $0.32
25% 15.66% 11.63% $1.23 $0.43
30% 33.74% 16.24% $2.14 $0.53
35% 54.62% 18.62% $3.07 $1.84
40% 72.31% 17.07% $3.90 $3.12

Cost
Uncertainty

Percent
Abandoned

Percent
Expanded

Value of
Flexibility

Value of
Patent

40% 32.95% 15.26% $1.66 $0.43
45% 33.52% 15.28% $1.87 $0.48
50% 33.74% 16.24% $2.14 $0.53
55% 35.1% 16.51% $2.39 $0.62
60% 35.89% 15.34% $2.64 $0.63
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The table shows that an increase in cash flow uncertainty increases the probability of
abandonment and the value of the patent. This is in harmony with the "Bad News
Principle" (see Section 5.3) and previous discussion of an increased uncertainty over cash
flow (see Section 5.2.4). When cash flow uncertainty increases, the probability of bad news
increases, which increases the probability of abandonment. Increase in uncertainty also
increases the probability of possible good news, increasing the value of our investment
opportunity. In the context of the real options theory, an increase in cash flow uncertainty
increases the opportunity cost (the flexibility), the value of the investment opportunity,
and the incentive to wait. This effect is not prevalent when uncertainty in costs are
increased. It can be seen that uncertainty over costs does not have as decisive an effect
on the probability of abandonment and the value of the patent. This is because of the
technical uncertainty that was included in the process followed by the cost to completion.
This kind of uncertainty can only be resolved by investing, which accelerates investment.
However, this effect levels off because the technical uncertainty was not included in the
process followed by the costs of commercialization. As uncertainties over costs and cash
flow increase, the probability of expansion also increases. However, in the last line of the
two panels in Table 7, it can be seen that the probability of expansion decreases when
uncertainty becomes significantly high. This is because the value of the expansion option,
when the project is marginal, is not high enough to prevent the project from defaulting.

Sensitivity analysis with respect to the risk free rate and drift in expected cash flow is
illustrated in Table 8.

Table 8: Sensitivity Analysis w.r.t. The Risk Free Rate and Drift in Cash Flow ($ in
millions).

Risk Free
Interest Rate

Percent
Abandoned

Percent
Expanded

Value of
Flexibility

Value of
Patent

3% 9.69% 5.8% $0.76 $0.20
4% 24.54% 12.07% $1.62 $0.38
5% 33.74% 16.24% $2.14 $0.53
6% 42.19% 18.02% $2.43 $0.57
7% 49.2% 19.77% $2.68 $1.19

Cash Flow
Drift

Percent
Abandoned

Percent
Expanded

Value of
Flexibility

Value of
Patent

0.5% 52.75% 21.11% $3.03 $1.64
1.5% 43.17% 17.99% $2.54 $0.60
2.5% 33.74% 16.24% $2.14 $0.53
3.5% 23.05% 11.88% $1.55 $0.37
4.5% 7.92% 4.9% $0.60 $0.17

These result are in line with the discussion in Section 5.5, where an increase in the risk
free rate increases the value of flexibility. It can be seen that by increasing the drift the
value of flexibility decreases. An increase in the drift is likely to be due to higher expected
inflation. This would also affect the risk free rate and thus, these two effect would mitigate
one another.
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Sensitivity analysis with respect to change in the expected cost to completion, the expected
cash flow, the time to completion of the development phase, and the market share after
the patent expires is illustrated in Table 9.

Table 9: Sensitivity Analysis w.r.t. Costs, Cash Flow, Time to Completion, and Market
Share ($ in millions).

Expected Cost
To Completion

Percent
Abandoned

Percent
Expanded

Value of
Flexibility

Value of
Patent

$5.5 26.51% 11.16% $1.51 $0.28
$6.5 31.01% 13.64% $1.85 $0.37
$7.5 33.74% 16.24% $2.14 $0.53
$8.5 37.69% 18.84% $2.47 $0.70
$9.5 42.15% 20.56% $2.89 $0.72

Expected
Cash Flow

Percent
Abandoned

Percent
Expanded

Value of
Flexibility

Value of
Patent

$2.30 43.73% 18.27% $2.53 $0.76
$2.50 38.81% 16.83% $2.33 $0.57
$2.70 33.74% 16.24% $2.14 $0.53
$2.90 29.2% 15.13% $1.88 $0.46
$3.10 26.49% 13.58% $1.76 $0.28

Time To
Completion

Percent
Abandoned

Percent
Expanded

Value of
Flexibility

Value of
Patent

1 year 6.83% 5.23% $0.41 $0.11
2 years 18.87% 11.97% $1.14 $0.34
3 years 33.74% 16.24% $2.14 $0.53
4 years 49.05% 19.44% $3.05 $1.01
5 years 62.15% 19.68% $3.97 $2.04

Market Share
After Patent
Expiration

Percent
Abandoned

Percent
Expanded

Value of
Flexibility

Value of
Patent

0% 33.84% 16.01% $2.08 $0.41
50% 33.74% 16.24% $2.14 $0.53

100% 33.4% 16.11% $2.04 $0.56

These variables all have predictable effects on the probability of abandonment, expansion,
and the value of the patent. When the expected costs to completion increase, the probability
of the options being exercised increases as well as the value of flexibility and the patent.
When the expected cash flow increases, the probability of the options being exercised
decreases as well as the value of flexibility and the patent. As the expected time to
completion increases, the total cost to completion is divided over a longer period, lowering
the periodical investment. This increases the probability of the options being exercised
and increases the opportunity cost of the investment opportunity. Interestingly, changing
the market share after patent expiration has almost no effect on the value of the patent.
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9 Conclusion

Flexibility can be an important component in the value of investment opportunities, es-
pecially when uncertainty is high, investments are irreversible and when we have the
ability to control the timing of our investment. The standard valuation approaches (DCF),
indicating that one should invest immediately when the future benefits from the project
exceed the investment costs (V ≥ I), tend to undervalue uncertain investment opportu-
nities. The standard NPV approach fails to take into account the future opportunities
and the flexibility to respond to unexpected events as time goes by. To capture the value
of flexibility, contingent valuation approaches have been applied (DT A). These methods
have their limitations when uncertainty in both investment costs and expected cash flow is
significant. The main drawback of these approaches is the estimation of a single discount
factor over the life of the project. This assumes that the same source of uncertainty is
resolved in every period and that risk increases at a constant rate through time. It can
be difficult to estimate the correct discount factor, especially when no comparable asset
exists, such as in the case of a new unique invention.

The option pricing framework is a powerful tool to capture the value of flexibility, and
invalidates the use of a single discount rate. We have seen that an investment opportunity
is analogous to a financial call option on a common stock. By assuming risk neutrality, the
option pricing framework yields the same results as the contingent NPV approach. We
also saw that the binomial option pricing approach and the BSM model yield the same
answer. This is no coincidence, since these two methods build on the same replicating
portfolio strategy. We found that valuation approaches used for pricing financial options
can easily be applied to capture the value of flexibility involved in an investment opportu-
nity. However, there is a vast difference between real options and financial options. The
main difference is that financial assets are most often traded, while very few real assets
are traded. Therefore, the parameters used for financial option valuation can be obtained
from the market and it is reasonable to assume that investors can adjust their investment
portfolios continuously. This is rarely the case for real assets, and the parameters for
the valuation process will need to be estimated. Another important difference is that the
strike price in financial option valuation is deterministic and constant over the life of the
option. This is rare in the case of investment opportunities where uncertainty over costs
can be significant.

Most patent protected projects have in common that the underlying asset will need to go
through R&D before the product can be commercialized. In the beginning of this process
the time to completion and development costs are uncertain. Therefore, the duration of
future expected cash flow is unknown. This makes analysis of R&D investment projects a
difficult investment problem. The model developed in this thesis is aimed at catching these
sources of uncertainty. It was assumed that the uncertainty in the underlying stochastic
variables was normally distributed. However, in reality we can not assume a normal
distribution, because in the real world volatility is not constant. The results from the
model were in line with expectations of the option pricing theory. We saw that an increase
in uncertainty increases the value of our investment opportunity and the value of the
patent. Interestingly, changing the market share after patent expiration had negligible
effect.
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The main disadvantage of the simulation approach is that it does not allow for defining
the optimal stopping rule. Because this approach is forward looking it is useful when
estimating option values at maturity (European options). In order to compare early
exercise decisions to the ones at maturity (American options), the binomial tree approach
would be a better alternative. However, an American option will always be more valuable
than a European option. That said, the binomial tree approach is not as suitable when
the number of stochastic variables increases or when their value depends on a previous
state. Therefore, there is no one right way to go. The solution method and the options that
are taken into account in the valuation process will always depend on the nature of the
project and the objective of the one performing the evaluation.

Throughout this thesis we have seen that the option pricing framework and real options
are essential to capture the value of uncertain investment opportunities. It has been
argued that patents should be valued as options because they provide its holder the
exclusive right to invest at a cost (strike price) in the investment opportunity (underlying
asset) at a certain time in the future. However, the asset underlying real options comes
with a much higher price than financial assets underlying financial options (e.g. stocks).
This is because the asset underlying real options is the PV of future expected cash flow.
Therefore, pricing a patent as an option will result in a very high valuation. The approach
proposed in this thesis, to let the value of the patent correspond to the opportunity cost
inherent in an investment opportunity, seems like a more reasonable valuation.

The truth is that all valuation models are a simplification of reality. This is because
they all build on assumptions. The results from a valuation model can never be better or
more reliable than the assumptions underlying the model. There is a tempting and fatal
imagination in mathematics. Albert Einstein warned against it, he said: "Leave elegance
to the tailor". This means, we can not believe in something because it is a beautiful
formula. Even though a valuation model yields a promising result, we can never be sure
what the future brings. In the end it is the power of the human mind to observe and
manage changes as time goes by, that will lead to accomplishment.
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A Algorithm

1 c lear a l l ; c l ose a l l ;
2

3 %%Parameters used in simulations
4 N=4; %Number of evaluations per year
5 delta_t = 1/N; %Time steps in simulation
6 D_T = 3; %Expected development time estimated at t=0
7 Y_D = 2; %Number of periods that apply to commercialisation
8 K_0 = 7 . 5 ; %Total development cost estimated at t=0
9 I_t = (K_0 /D_T) ; %Maximum investment per period

10 I_m = 1.73*N; %Cost o f commercialization per period
11 I_x = 2; %Cost o f expansion
12 x = 1 .45 ; %Percent expanded
13 rp = 0; %Risk premium
14 r = 0 .05 ; %Risk free rate
15 mu = r + rp ; %Expected rate of return
16 alpha = 0.025; %Growth rate
17 d = r+rp−alpha ; %Cost o f waiting
18 C_0 = 2 . 7 ; %I n i t i a l expected cash flow
19 T=20+1/N; %Number of years unt i l patent expires
20 sigma_I = 0 . 5 ; %Uncertainty over investment costs
21 sigma_c = 0 . 3 ; %Uncertainty over the expected cash flow
22 Nsim = 10000; %Number of simulations
23 m = 1; %Market share a f ter patent expires
24

25 %Create vectors for the data from each simulation
26 D_t = zeros (Nsim, 1 ) ; %The number of years development takes place
27 NPVsim = zeros (Nsim, 2 ) ; %NPV without f l e x col1 and with f l e x col2
28 patent = zeros (Nsim, 1 ) ; %Value of the patent
29 I _ t o t a l = zeros (Nsim, 1 ) ; %Total investment spent in development
30 year = zeros (1 ,Nsim) ; %The year we default i f we default
31 SunkCost = zeros (Nsim, 1 ) ; %Costs that have been paid i f we default
32 Ktotal = zeros (Nsim, 1 ) ; %The t o t a l expected cost to completion
33 NPVfinal =zeros (Nsim, 1 ) ; %Final value with f l e x .
34 NPVnoflexFinal = zeros (Nsim, 1 ) ; %Final value without f l e x .
35

36 %Create vectors for PV ca lcu lat ions at each time in each simulation
37 PV_C = zeros (Nsim,N*T) ; %PV of cash flow that has been received
38 PV_I = zeros (Nsim,N*T) ; %PV of per iod ic investment
39 PV_Im = zeros (Nsim,N*T) ; %PV of commercialization costs
40 PV_exp = zeros (Nsim,N*T) ; %PV of cash flow at expirat ion
41 V_expand = zeros (Nsim,N*T) ; %The value of the option to expand
42 NPV = zeros (Nsim,N*T) ; %Value of pro jec t w. f l e x . at time step i
43 NPVnoflex = zeros (Nsim,N*T) ; %Value of pro jec t without f l e x .
44 Value = zeros (Nsim,N*T) ; %Value with expansion option
45

46
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47 %Create vectors for the f i n a l values in every simulation
48 PVC=zeros (Nsim, 1 ) ; %PV of actual cash flow
49 PVI = zeros (Nsim, 1 ) ; %PV of per iod ic investment
50 PVcom = zeros (Nsim, 1 ) ; %PV of commercialization costs
51 PVexp = zeros (Nsim, 1 ) ; %PV of cash flow at expirat ion
52 PV_expand = zeros (Nsim, 1 ) ; %PV of expansion options
53 CostExpand = zeros (Nsim, 1 ) ; %Total cost spent in expanding
54

55 %Count the number of times we exerc ise the option to expand
56 NoExpand = zeros (Nsim,N*T) ; numexpand = 0;
57 %Count the number of times we wi l l default
58 counter = 0;
59

60 %Start simulations
61 f o r k = 1:Nsim
62

63 %Define the start ing points in each simulation
64 i = 1 ; %Counts the matrices , i = (1 :NT]
65 j = 1 ; %Counts the periods in matrix i , j = [1 :NT]
66

67 %Create matrix with NT l ines and 5 columns Ct , It , Kt , Im & Ce
68 Q{k , i } = zeros (N*T, 5 ) ;
69 Q{k , i } ( j , 1 ) = 0 ; %Realized cash flow
70 Q{k , i } ( j , 2 ) = I_t * del ta_t ; %Maximum investment per period
71 Q{k , i } ( j , 3 ) = K_0 ; %Expected cost to completion
72 Q{k , i } ( j , 4 ) = I_m* delta_t ; %Cost o f commercialization
73 Q{k , i } ( j , 5 ) = C_0* del ta_t ; %Anticipated cash flow
74

75 while i <= N*T
76 j = 1 ;
77

78 %F i l l in the values that have been achieved or paid
79 while j < i
80 Q{k , i } ( j , 1 ) = Q{k , i −1}( j , 1 ) ;
81 Q{k , i } ( j , 2 ) = Q{k , i −1}( j , 2 ) ;
82 Q{k , i } ( j , 3 ) = Q{k , i −1}( j , 3 ) ;
83 Q{k , i } ( j , 4 ) = Q{k , i −1}( j , 4 ) ;
84 Q{k , i } ( j , 5 ) = Q{k , i −1}( j , 5 ) ;
85

86 j = j +1;
87 end
88

89 i f j ~= 1
90 j = j −1;
91 end
92

93
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94



95 %Calculate the t r a j e c t o r i e s unt i l Kt = 0
96 while Q{k , i } ( j , 3 ) > 0 && (Q{k , i } ( j , 3 ) ~= Q{k , i } ( j , 2 ) )
97 j = j +1;
98

99 %The expected cash flow while R&D takes place (Ce)
100 Q{k , i } ( j , 5 ) = Q{k , i } ( j −1 ,5) * exp ( ( ( r−d ) −(( sigma_c^2) / 2 ) )

* . . .
101 delta_t +( sigma_c* sqrt ( de l ta_t ) *randn ) ) ;
102 %Periodic investment in development ( I t )
103 Q{k , i } ( j , 2 ) = Q{k , i } ( j −1 ,2) ;
104 %Calculate change in the costs to completion ( Kt )
105 Q{k , i } ( j , 3 ) = Q{k , i } ( j −1 ,3)−Q{k , i } ( j −1 ,2) +( sigma_I * . . .
106 ( sqrt (Q{k , i } ( j −1 ,3)*Q{k , i } ( j −1 ,2) ) ) * sqrt ( de l ta_t ) *randn )

;
107 %Calculate change in the marketing costs (Im)
108 Q{k , i } ( j , 4 ) = Q{k , i } ( j −1 ,4) + . . .
109 ( sigma_I*Q{k , i } ( j −1 ,4)* sqrt ( de l ta_t ) *randn ) ;
110

111 %I f Im < 0 we l e t Im = 0
112 i f Q{k , i } ( j , 4 ) < 0
113 Q{k , i } ( j , 4 ) = 0 ;
114 end
115

116 %I f Kt < It , we only need to pay I t = Kt
117 i f Q{k , i } ( j , 3 ) <= Q{k , i } ( j , 2 )
118 Q{k , i } ( j , 2 ) = Q{k , i } ( j , 3 ) ;
119 end
120

121 %I f Kt < 0 , we set Kt = 0
122 i f Q{k , i } ( j , 3 ) < 0
123 Q{k , i } ( j , 3 ) = 0 ;
124 %We pay the remaining costs from the previous period
125 Q{k , i } ( j , 2 ) = Q{k , i } ( j −1 ,3)−Q{k , i } ( j −1 ,2) ;
126 end
127

128 %Number of years i t takes to complete R&D in simulation k
129 D_t (k , 1 ) = i ;
130 %Number of years i t takes to complete R&D in matrix i
131 D_j = j ;
132 end
133

134 %When we have calculated the t r a j e c t o r i e s for I ,K, Im & Ce
135 %we calcu late the las t values for the paths fol lowed by Im & Ce
136 %Their paths wi l l l as t for two more periods unt i l the real ized
137 %cash flow i s introduced .
138

139 f o r j = D_j+1 : D_j+Y_D
140 %Calculate expected cost o f commercialization (Im)
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141 Q{k , i } ( j , 4 ) = Q{k , i } ( j −1 ,4) +( sigma_I*Q{k , i } ( j −1 ,4) . . .
142 * sqrt ( de l ta_t ) *randn ) ;
143 %Calculate the antic ipated cash flow (Ce)
144 Q{k , i } ( j , 5 ) = Q{k , i } ( j −1 ,5) * exp ( ( ( r − d ) −(( sigma_c^2) / 2 ) ) . . .
145 * del ta_t +( sigma_c* sqrt ( de l ta_t ) *randn ) ) ;
146 end
147

148 %Calculate the t ra j e c to ry for real ized cash flow unt i l maturity
.

149 %The f i r s t value i s the las t value from Ce .
150 j = j +1;
151 while j <= (N*T)
152 i f Q{k , i } ( j −1 ,1) == 0
153 Q{k , i } ( j , 1 ) = Q{k , i } ( j −1 ,5) * exp ( ( ( r − d ) − . . .
154 ( ( sigma_c^2) / 2 ) ) * del ta_t +( sigma_c* sqrt ( de l ta_t ) *

randn ) ) ;
155 e lse
156 Q{k , i } ( j , 1 ) = Q{k , i } ( j −1 ,1) * exp ( ( ( r − d ) − . . .
157 ( ( sigma_c^2) / 2 ) ) * del ta_t +( sigma_c* sqrt ( de l ta_t ) *

randn ) ) ;
158 end
159 j = j +1;
160 end
161

162 %Calculate PV of investment costs at time step i
163 PV_Itemp = 0;
164 i f i < D_j
165 f o r j = i : D_j
166 PV_Itemp = Q{k , i } ( j , 2 ) *exp(−r* del ta_t * ( j−i ) ) ;
167 PV_I (k , i ) = PV_I (k , i ) + PV_Itemp ;
168 j = j +1;
169 end
170 end
171

172 %Calculate PV of marketing costs at time step i
173 PV_Imtemp =0;
174 i f i <= D_j
175 f o r j = D_j +1: D_j+Y_D
176 PV_Imtemp = Q{k , i } ( j , 4 ) *exp(−r* del ta_t * ( j−i ) ) ;
177 PV_Im(k , i ) = PV_Im(k , i ) + PV_Imtemp ;
178 end
179 e l s e i f D_j < i && i <= D_j+Y_D
180 f o r j = i : D_j+Y_D
181 PV_Imtemp = Q{k , i } ( j , 4 ) *exp(−r* del ta_t * ( j−i ) ) ;
182 PV_Im(k , i ) = PV_Im(k , i ) + PV_Imtemp ;
183 end
184 end
185
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186

187 %Calculate PV of real ized cash flow ( Ct ) at time step i
188 PV_Ctemp = 0;
189 j = i ;
190 while j < (N*T)
191 PV_Ctemp = Q{k , i } ( j , 1 ) *exp(−r* del ta_t * ( j−i ) ) ;
192 PV_C(k , i ) = PV_C(k , i ) + PV_Ctemp ;
193 j = j +1;
194 end
195

196 %Calculate PV of cash flow at expirat ion
197 j = (N*T) ;
198 PV_exp (k , i ) = (Q{k , i } ( j , 1 ) / d ) *exp(−r* del ta_t * ( j−i ) ) ;
199

200 %Calculate the value of the pro jec t with the option to default
201 NPV(k , i ) = max( (PV_C(k , i )+PV_exp (k , i ) ) − ( PV_I (k , i )+PV_Im(k , i ) )

,0 ) ;
202

203 %Calculate the value of the pro jec t without f l e x i b i l i t y
204 NPVnoflex (k , i ) = (PV_C(k , i )+PV_exp (k , i ) ) − ( PV_I (k , i )+PV_Im(k , i )

) ;
205

206 %I f NPV(k , i ) = 0 , we introduce the option to expand
207 Value (k , i ) = (PV_C(k , i )+PV_exp (k , i ) ) − ( PV_I (k , i )+PV_Im(k , i ) ) ;
208 i f Value (k , i ) < 0
209 %Calculate the value of the expansion option
210 V_expand (k , i ) = max ( ( ( PV_C(k , i )+PV_exp (k , i ) ) *x − I_x − . . .
211 (PV_C(k , i )+PV_exp (k , i ) ) ) , 0 ) ;
212 i f V_expand (k , i ) > 0
213 Value (k , i ) = Value (k , i ) + V_expand (k , i ) ;
214 i f Value (k , i ) > 0
215 %Count the number of expansions
216 NoExpand(k , i ) = NoExpand(k , i ) +1;
217 numexpand = numexpand + 1;
218 %Cost of expanding
219 CostExpand (k , 1 ) = CostExpand (k , 1 ) + I_x ;
220 %I f i t was pro f i tab l e to expand we wi l l not default
221 NPV(k , i ) = Value (k , i ) ;
222 end
223 end
224 end
225

226 %I f we could not survive by expanding , we wi l l default .
227 i f NPV(k , i ) == 0
228 counter = counter +1;
229 NPVfinal (k , 1 ) = 0 ; %Value with the f l e x . to default
230 NPVnoflexFinal (k , 1 ) = NPVnoflex (k , i ) ; %Value without f l e x .
231 year (1 ,k ) = i ; %The year the dec is ion i s taken to default
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232

233 SunkCostTemp = 0;%Calculate sunk costs
234 f o r j = 1 : i
235 SunkCostTemp = Q{k , i } ( j , 2 ) *exp(−r* del ta_t * ( j −1) ) ;
236 SunkCost (k , 1 ) = SunkCost (k , 1 ) + SunkCostTemp ;
237 end
238

239 i = 1000; %Makes sure that we go to next simulation
240

241 e l s e i f i == (N*T)
242

243 %I f we do not default a f ter evaluating the pro jec t at
244 %every time step i , the value of the pro jec t i s
245 %calculated from t = 0 in matrix NT
246

247 %PV of investment costs
248 PVI_temp = 0;
249 f o r j = 1 : D_j
250 PVI_temp = Q{k , i } ( j , 2 ) *exp(−r* del ta_t * ( j −1) ) ;
251 PVI (k , 1 ) = PVI (k , 1 ) + PVI_temp ;
252 end
253

254 %PV of commercialization costs
255 PV_IcomTemp = 0;
256 f o r j = D_j +1: D_j+Y_D
257 PV_IcomTemp = Q{k , i } ( j , 4 ) *exp(−r* del ta_t * ( j −1) ) ;
258 PVcom(k , 1 ) = PVcom(k , 1 ) + PV_IcomTemp ;
259 end
260

261 %PV of real ized cash flow
262 PVC_temp = 0;
263 f o r u = ( D_j+Y_D+1) : (N*T)
264 PVC_temp = Q{k , i } ( u , 1 ) *exp(−r* del ta_t * (u−1) ) ;
265 PVC(k , 1 ) = PVC(k , 1 ) + PVC_temp ;
266 end
267

268 %PV of the option to expand
269 PV_expTemp = 0;
270 f o r i i = 1 :N*T
271 PV_expTemp = V_expand (k , i i ) *exp(−r* del ta_t * ( i i −1) ) ;
272 PV_expand (k , 1 ) = PV_expand (k , 1 ) + PV_expTemp ;
273 end
274

275 %Terminal value of the cash flow
276 PVexp(k , 1 ) = (Q{k , i } (N*T, 1 ) / d ) *exp(−r* del ta_t * (N*T−1) ) *m;
277

278

279
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280

281 %Value of the po jec t with f l e x i b i l i t y
282 NPVfinal (k , 1 ) = ( (PVC(k , 1 ) + PVexp(k , 1 ) ) − (PVI (k , 1 ) +PVcom(k , 1 ) )

) . . .
283 + PV_expand (k , 1 ) ;
284

285 %Value of the pro jec t without f l e x i b i l i t y , calculated in i =1
286 NPVnoflexFinal (k , 1 ) = ( (PVC(k , 1 ) + PVexp(k , 1 ) ) . . .
287 − (PVI (k , 1 ) +PVcom(k , 1 ) ) ) ;
288 end
289

290 %I f we do not default we go to the next period of evaluation
291 i = i +1;
292 end
293

294 %Calculate the costs spent in development
295 i f SunkCost (k , 1 ) > 0
296 I _ t o t a l (k , 1 ) = SunkCost (k , 1 ) ;
297 e l s e i f SunkCost (k , 1 ) == 0
298 I _ t o t a l (k , 1 ) = sum(Q{k , D_t (k , 1 ) } ( : , 2 ) ) ;
299 end
300

301 %Calculate the t o t a l cost to completion
302 Ktotal (k , 1 ) = sum(Q{k , D_t (k , 1 ) } ( : , 2 ) ) ;
303

304 %Write the resul ts for the value of the pro jec t
305 NPVsim(k , 1 ) = NPVnoflexFinal (k , 1 ) ; %Without f l e x i b i l i t y
306 NPVsim(k , 2 ) = NPVfinal (k , 1 ) ; %With f l e x i b i l i t y
307 end
308

309 %Results from simulations for the pro jec t with f l e x i b i l i t y
310 NPV_flex = mean(NPVsim( : , 2 ) ) ; %Value of pro jec t
311 NPV_flMedian = median (NPVsim( : , 2 ) ) ; %Median
312 NPV_flex_st = std (NPVsim( : , 2 ) ) ; %Standard deviation
313

314 %95% Confidence l eve l
315 NPV_flex_Up = NPV_flex + 1.96* NPV_flex_st / sqrt (k ) ;
316 NPV_flex_Down = NPV_flex − 1.96* NPV_flex_st / sqrt (k ) ;
317

318 %Results from simulations for the pro jec t without f l e x i b i l i t y
319 NPV_mean = mean(NPVsim( : , 1 ) ) ; %Value of pro jec t
320 NPV_Median = median (NPVsim( : , 1 ) ) ; %Median
321 NPV_stdv = std (NPVsim( : , 1 ) ) ; %Standard deviation
322

323 %95% Confidence l eve l
324 NPV_Conf_Up = NPV_mean + 1.96*NPV_stdv / sqrt (k ) ;
325 NPV_Conf_Down = NPV_mean − 1.96*NPV_stdv / sqrt (k ) ;
326
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327 %The value of f l e x i b i l i t y
328 Flex_Value = NPV_flex − NPV_mean;
329

330 %The value of the patent
331 Patent_Value = NPV_flMedian − NPV_Median ;
332

333 %Porportion of paths abandoned
334 Abandoned = num2str ( ( counter / k ) *100 , ’%g%%’ ) ;
335

336 %Porportion of paths the option to expand was exercised
337 Expansion = num2str ( ( numexpand / k ) *100 , ’%g%%’ ) ;
338

339 %Mean of the simulated costs to completion
340 K_mean = mean( Ktotal ( : , 1 ) ) ;
341

342 %Mean of the costs that were spent in development
343 I_mean = mean( I _ t o t a l (k , 1 ) ) ;
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