

B.Sc. final project – Computer Science

Transmo
Transforming graphs to data

May, 2022

Name of student: Finnbogi Jakobsson

Kennitala: 130698-2399

Name of student: Gísli Þór Gunnarsson

Kennitala: 101298 - 2219

Name of student: Hákon Hákonarson

Kennitala: 021098-2489

Supervisor: Sigurjón Ingi Garðarsson

 ii

Table of contents

1 Introduction .. 1

1.1 Background .. 1

1.2 Project description ... 1

2 System design .. 1

2.1 System flow ... 1

2.2 Tech stack .. 2

2.2.1 Front-end .. 2

2.2.2 Back-end web service .. 2

2.2.3 Back-end image processing ... 3

2.3 System overview .. 3

2.4 Image processing ... 4

2.4.1 Three problems .. 5

2.4.2 Detecting slices in a pie ... 6

2.4.3 Finding text in an image .. 8

2.4.4 Combining text and pie slices .. 9

2.5 API: application programming interface ... 9

2.6 Wireframes of the frontend .. 10

2.7 Testing.. 11

2.7.1 Unit testing ... 11

2.7.2 Accuracy testing... 12

3 Risk analysis .. 14

4 Product backlog ... 16

5 Progress report ... 19

5.1 Project burndown ... 19

5.2 Sprint overview .. 20

5.2.1 Sprint 0 ... 20

 iii

5.2.2 Sprint 1 ... 20

5.2.3 Sprint 2 ... 20

5.2.4 Sprint 3 ... 20

5.2.5 Sprint 4 ... 21

5.2.6 Sprint 5 ... 21

5.2.7 Sprint 6 ... 21

5.2.8 Sprint 7 ... 21

6 Known bugs ... 21

6.1 Text algorithm .. 21

6.2 Dark coloured background ... 21

6.3 Size check of uploaded file .. 21

6.4 Graphs that are not made in Excel ... 22

6.5 GET transmo-api.grid.is/finn/bogi ... 22

6.6 Removal of colour icons .. 22

7 Conclusion ... 22

7.1 Final product .. 22

7.2 Retrospective.. 22

7.2.1 What went well .. 23

7.2.2 What could have gone better.. 23

7.2.3 Future development ... 23

8 Appendix .. 24

8.1 Sprints .. 24

8.1.1 Sprint 0 ... 24

8.1.2 Sprint 1 ... 25

8.1.3 Sprint 2 ... 28

8.1.4 Sprint 3 ... 31

8.1.5 Sprint 4 ... 33

 iv

8.1.6 Sprint 5 ... 35

8.1.7 Sprint 6 ... 38

8.1.8 Sprint 7 ... 39

8.2 Test images .. 42

8.3 Test data ... 46

8.4 Work distribution by work type ... 49

Table of figures

Figure 1: Flow chart ... 2

Figure 2: Prototype of the system overview .. 4

Figure 3: Original image .. 5

Figure 4: Everything masked out except the pie .. 6

Figure 5: Pie masked out.. 7

Figure 6: Colour icons removed .. 7

Figure 7: Image thresholded .. 8

Figure 8: API.. 10

Figure 9: Frontend wireframe 1 ... 1

Figure 10: Final look of the frontend ... 1

Figure 11: Project burndown ... 1

Figure 12: Work distribution ... 1

Figure 13: Sprint 1 burndown .. 1

Figure 14: Sprint 2 burndown .. 2

Figure 15: Sprint 3 burndown .. 2

Figure 16: Sprint 4 burndown .. 2

Figure 17: Sprint 5 burndown .. 3

Figure 18: Sprint 6 burndown .. 3

Figure 19: Sprint 7 burndown .. 4

Figure 20: 12_entries ... 5

Figure 21: fiveshadesofRED_20values_appart.. 6

Figure 22: bogatest ... 8

Figure 23: fiveshadesofRED_10values_appart.. 9

 v

Figure 24: fiveshadesofgray ... 9

Figure 25: rokk_stig ... 10

Figure 26: 8_entries ... 11

Figure 27: 11_entries ... 11

Figure 28: 12_entries ... 12

Figure 29: Finnbogi, time spent by work type ... 14

Figure 30: Gísli, time spent by work type.. 16

Figure 31: Hákon, time spent by work type ... 19

Table of tables

Table 1: Unit test coverage .. 12

Table 2: Risk analysis .. 14

Table 3: Product backlog ... 16

Table 4: Total time spent ... 19

Table 5: Sprint 0 backlog ... 24

Table 6: Sprint 0 time spent ... 24

Table 7: Sprint 1 backlog ... 25

Table 8: Sprint 1 time spent ... 27

Table 9: Sprint 2 backlog ... 28

Table 10: Sprint 2 time spent ... 31

Table 11: Sprint 3 backlog ... 31

Table 12: Sprint 3 time spent ... 33

Table 13: Sprint 4 backlog ... 34

Table 14: Sprint 4 time spent ... 35

Table 15: Sprint 5 backlog ... 36

Table 16: Sprint 5 time spent ... 37

Table 17: Sprint 6 backlog ... 38

Table 18: Sprint 6 time spent ... 39

Table 19: Sprint 7 backlog ... 40

Table 20: Sprint 7 time spent ... 41

Table 21: 12_entries ... 46

Table 22: fiveshadesofRED_20values_appart ... 46

Table 23: bogatest .. 47

 vi

Table 24: fiveshadesofRED_10values_appart ... 47

Table 25: fiveshadesofgray .. 47

Table 26: rokk_stig .. 47

Table 27: 8_entries ... 47

Table 28: 11_entries ... 48

Table 29: 10_entries ... 48

 1

1 Introduction

1.1 Background

The idea for this project originally came from the web development company Grid. Grid was

founded in 2018 by "a group of web software veterans and data enthusiasts" as they describe

themselves and their goal is to reinvent the way organizations and their people work with

data and numbers. They are doing this by developing their product which is an innovative no-

code web tool which can help people optimize their data by integrating with their spreadsheet

software and allows them to work quickly and strategically in a familiar spreadsheet

environment. Their product can help produce beautiful web reports and interactive scenarios

without first having to learn a complex new program.

1.2 Project description

On the internet there are many reports and articles which use graphs to draw attention to

certain findings they want to emphasize. While the human eye can easily read these graphs

and understand the data they are intended to show, it is not as easy for a computer. So, when

the need arises to do further research with the data and only the graphs are available it could

get quite tedious and costly to input it all manually, that is where this project could be of use.

The main goal of this project is to create software prototype which can read these graphs and

automatically write the data behind them to a spreadsheet. This could save both time and

resources for anyone doing research based on graphs when it is hard or impossible to get the

original data.

2 System design

2.1 System flow

A user will upload an image of a graph on a website which will be sent to another server

through an API. That server then starts a process with a text reader and colour histogram that

will analyse the image and extract all the data that was used to create the graph. Put that data

into a .xlsx or .csv file which is then returned to the user.

 2

Figure 1: Flow chart

2.2 Tech stack

The system consists of the following items.

2.2.1 Front-end

• Vue

A frontend framework for developing single page applications. A good tool to create

functioning and good-looking website without coding everything from scratch.

• JavaScript

Programming language for frontend development.

2.2.2 Back-end web service

• Flask

A python web service framework. Used to create python written backends for

websites and APIs.

 3

• Python

One of the most popular high-level general-purpose programming languages.

• AWS – Elastic Bean Stalk

A web service hosting provider.

2.2.3 Back-end image processing

• Python

One of the most popular high-level general-purpose programming languages.

• OpenCV

A library used in python for various of different image processing tasks.

• Pytesseract

A library that uses machine learning to detect and read text.

• Pandas

A library that is used in various of data science projects to encapsulate data into an

efficient data frame.

2.2.4 Version control and other supporting software

• GitHub

The most popular version control software for programming. A useful tool when

collaborating on a project so different collaborators don’t overwrite each other’s

work.

2.3 System overview

The system is composed of three main elements. The front-end which is a website for users to

interact with the system. A back-end comprised of two elements, one is a web server API that

accepts the requests from the website and the other is a logic-layer element which manages

the graph algorithm. This way the three systems are independent and can be easily worked on

separately. For example, it would be easy to swap the front end out or add another website.

Same goes for the computer vision element, if a better computer vision algorithm is

developed it could be changed out without affecting neither the API nor the front end. Similar

goes with the API as long it accepts the same API commands.

 4

Figure 2: Prototype of the system overview

2.4 Image processing

The implementation ended up being quite different than what was set out to be based on the

original project description. The original project description said to make a program that

would take most graph types and extract the data behind that graph into a table. The reverse

of creating a graph in a sheet program like excel. The team consulted with a teacher in

Reykjavík University that did his Ph.D. in computer vision on how to approach this project

due to lack of knowledge in creating a system of this complexity. The outcome of that

meeting was that the project was bigger and more complicated than anticipated and the team

needed to figure a way to scale down the problem to something simpler. With that

information the team brainstormed and produced a smaller version which only detects pie

 5

charts to begin with and if that is completed quickly then more graph types could be added.

Pie charts were chosen because it is possible to detect the size of each slice without training a

machine learning model.

Figure 3: Original image

2.4.1 Three problems

Detecting a pie chart involves three main subproblems. First is to detect the size of each slice

in the pie chart. Second is to detect the label positions and the actual text that makes up the

label. Third is to connect the labels to the slices so the results returned by the system have

any meaning. Each of these problems in and of themselves are difficult for a team of students

but not impossible.

 6

Figure 4: Everything masked out except the pie

2.4.2 Detecting slices in a pie

Detecting the pie and its slices was the first obstacle. Using a colour histogram, the pixel

count of a given colour value can be more easily organized or binned. For that, a library

called OpenCV came in very handy. It is often used in machine learning applications, but it

has good tools for image analysis and manipulation. For this project it was used to bin similar

colours together with colour histogram function and to find a big circle in the image that is

most likely the pie and mask out everything else in the image, so the colour histogram is

more effective. The team had to figure out what bin size to use, too big and few and the

program might end up binning similar but separate colours together. Having too many bins

takes up more memory and makes the time complexity of going through them bigger and in

some cases a single slice in a pie could have one colour to the human eye, but the exact

colour value could vary by one or two values which would result in one slice ending up in

multiple bins, which is not ideal. Ideal number of bins and the size of each bin is to be a

power of two since computers are efficient if it can work in powers of two. After some excel

calculations and speculation the team ended up having the bin size 8 and number of bins 32.

This should catch all pixels of same colour with slight variable value, but if a colour sits right

on the value where a bin ends and a new bin begins the program deals with that by checking

neighbouring bins to the bin that has the most pixels. Having the bins larger and fewer

 7

without neighbour checks is not as robust since there is still a chance a colour lands on the

intersection where two bins meet and then the pixel count could split into two bins. That is

why the team decided on slightly smaller bins with neighbour checks.

Figure 5: Pie masked out

Figure 6: Colour icons removed

 8

Figure 7: Image thresholded

2.4.3 Finding text in an image

Finding and reading the text was the most difficult obstacle of them all. For this problem a

library called Tesseract OCR was used instead of implementing text detection from scratch.

Tesseract OCR is an engine owned by Google and originally developed by Hewlett-Packard;

it is currently free to use under the Apache license. Before this is used a few image

processing steps are taken with OpenCV to make the text detection easier. Some of the steps

taken are masking out the pie in the image so there are less things to confuse the engine,

remove noise, remove the rectangular icons and then threshold the image. Thresholding

makes very light pixels white and darker pixels are made black to have the most contrast for

the character detection. The image is sent through the Tesseract OCR engine, and it returns

all text that it finds in the image, also positions of each text, certainty of what it detected and

other information. This information is then processed to figure out what text were the actual

labels and what could be discarded. To get to this point a lot of work and research was

needed to understand the engine and what parameters would give the best results and figuring

out all the pre-processing steps to the image. The engine would return text that was wrong or

had a lot of extra characters that were not in the picture.

 9

2.4.4 Combining text and pie slices

Linking a label from the text reader to a calculated ratio from the pie is the third and last step

before returning the results to the user. To do so the program needs to go through each label

and check on its left side if it has a small icon of a colour that matches one of the colours in

the pie. To find the colour icon the positional data from the label is used, take the positional

data, and start from the left upper corner and move down quarter of the height of the word

and then search left for pixels in a darker colour. If enough coloured pixels are found, then

that colour is compared to one of the pie colours and if there is a match the label is assigned

to the slice. Once every label has been assigned one of the slices found in the pie the data is

passed to a function that calculates the value of each slice from the sum passed in with the

request relative to the ratio found in the image. Then the data is packaged into a Pandas

DataFrame to be returned to the API.

2.5 API: application programming interface

Having an API makes this project more versatile and can be used with many more systems

than just the frontend provided in this project. Some company or personal user could use this

system with their system without hosting it on their own servers. The reason behind this was

to have the system more versatile and not be limited by the frontend the team creates. The

API parameters are described in a figure below.

 10

Figure 8: API

2.6 Wireframes of the frontend

Figure 9: Frontend wireframe 1

 11

Due to most of the project is to create a web service instead of a full application, the frontend

will be very minimal, only as an example entry point to the backend API which handles

extracting the data from the graphs.

In developing the project, the team discovered that it would be simpler and would enable a

more feature rich program by adding some settings. Choosing if the user is uploading a pie

graph or a stacked bar graph was a feature to be able to process stacked bar graphs without

any machine learning algorithm detecting whether a pie graph or stacked graph was

uploaded. Choosing a file format was also added so the user had the option of choosing what

file format suited their needs best. Adding the sum field was a feature added if the user knew

what the total sum of the graph was then it would be included in the calculations and file

returned to the user.

Final look of the frontend can be seen in the figure below.

Figure 10: Final look of the frontend

2.7 Testing

2.7.1 Unit testing

For unit testing a framework called pytest is used. Pytest makes testing easy and simple, you

make python documents that end with “_test.py” and when you run pytest on the project it

looks for all files with that name in every subdirectory and runs the test and gives a report on

how many tests succeeded and how many failed. This is very handy since if all tests are

 12

written and someone makes a change one can simply run the command “pytest” in the

terminal and check if everything still works as expected, given the tests have good coverage.

This framework is also great since it is quite easy to use with GitHub actions. It runs the tests

automatically when trying to merge to the main branch. With pytest action setup on GitHub it

makes sure that every time a pull request is created to merge to the main branch the code

always works. The team set a rule so a merge cannot happen to the main branch if the tests do

not all succeed, and it is not possible to push to the main branch remote repository. Having

these types of tests and safety measures helps us minimize the risk of deploying code that

does not work.

Test coverage of the unit tests is variable. Every function has at least one test to make sure it

runs correctly. Some have more to try and cover edge cases and make the tests more robust.

With the code in this project there are few inputs and the image processing either works or it

does not. So, it can be rather difficult to write tests for edge cases since a lot of the functions

and libraries that are being used are like black boxes and it is nearly impossible to create edge

case tests without creating them by trial and error.

Table 1: Unit test coverage

Name Statements Miss Coverage

backend/processgraph/__init__.py 1 0 100%

backend/processgraph/graph2data.py 54 7 87%

backend/processgraph/image_proc.py 87 11 87%

backend/processgraph/percentage_finder.py 41 0 100%

backend/processgraph/textread.py 81 9 89%

Total 264 27 90%

In Table 1: Unit test coveragewith data exported from pytest with the coverage of the image

processing module we wrote.

2.7.2 Accuracy testing

For accuracy testing a python script was written to test a set of chart images where the data to

create those charts are known and used to measure the accuracy of the program. The set that

was created contains both charts that have good charts with large slices in a pie and each slice

 13

has a distinctly different colour from the rest, so the program does not confuse two slices

together. But the set also contains data with very many slices and colours that are alike to test

and measure how the program performs with data that is known to be challenging. Doing

these kinds of tests helps determine if changes that are made to the program have negative or

positive or even negligible impact on the performance of the program. Analysing

performance is crucial when developing this kind of program since the results can be hard to

predict. It can be evaluated with the formula

Equation 1: Accuracy metric

Φ = 1 − ∑|∆𝑋𝑖|

𝑁𝑆

𝑖=1

where NS number of all slices in a pie and ∆X is the normalized difference between the actual

size and the calculated size of a given slice. The team created this formula and chose to use

this as a metric to determine accuracy. The team thought of more complex ways to calculate

the accuracy, but the conclusion was that this metric was simple and worked as intended. To

evaluate if a calculation by the program is good or not, this formula does a decent job. If the

evaluation is 1, then the result was perfect and if the result is lower it means that the

calculation was not perfect and the further the result goes below 1 the worse the calculations

were to the true value.

Number Labels Accuracy

1 12_entries 0,7

2 fiveshadesofRED_20values_appart 0,8

3 bogatest 1

4 fiveshadesofRED_10values_appart -0,17

5 fiveshadesofgray 0,6

6 rokk_stig 0,98

7 8_entries 0,96

8 11_entries 0,73

9 10_entries 0,88

In the table above we have 9 different types of pie charts created in excel and the accuracy of

our program which is calculated with Equation 1: Accuracy metric mentioned above.

Conclusions that can be drawn from the tests are that colours that are very similar in value do

 14

not lead to good results and when the number of slices become close to 10 you start losing

accuracy, given that each slice is similar in size. One entry can be seen becoming negative

and the explanation behind that the error between each slice can be so big that the total sum

of errors is greater than one and that leads to a result that becomes negative. This is one of the

downsides of the formula, but the results still tell us that this graph performed extremely

badly in our program. Even though accuracy measurements are not supposed to become

negative the usability of this accuracy metric is not obsolete. All the images tested can be

found in Test images and the data use can be found in Test data in the appendix.

3 Risk analysis

There are many risk factors to be taken into consideration when it comes to a project of this

scale. Many things can go wrong so to minimize those risk the team did a detailed risk

analysis. When new risks are discovered, they are assigned two variables, probability, and

severity both on the scale 1-5. Then those two variables are multiplied together to produce

the total risk points of the risk. These total risk points are then used to evaluate the expected

impact to the project for each risk separately. For each risk there must be a way to minimize

its likelihood of happening, and how to respond to mitigate the effects on the project if the

risk becomes a reality.

𝑙𝑖𝑘𝑒𝑙𝑦ℎ𝑜𝑜𝑑 ∗ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝑡𝑜𝑡𝑎𝑙 𝑟𝑖𝑠𝑘 𝑝𝑜𝑖𝑛𝑡𝑠

Table 2: Risk analysis

Risk Description Mitigation Prevention P S T R

Complexity of

project is too

high

The complexity of the

project exceeds the skill

level of the team.

Lower the number of

necessary criteria for

definition of done.

Continuous analysis of

the complexity of the

project and keeping the

project on track.

3 5 15

Person responsible: Hákon

Event log:

28/02/22: Teacher at RU explained the complexity of the original project and convinced the team that it was too

much for brief time and lack of experience of the team.

Workload in

other courses

Workload in other courses

causes the team to have less

time for the project.

Try to keep up with

the other courses.

Make up for lost time

once workload

decreases.

4 3 12

Person responsible: Finnbogi

Event log:

 15

28/03/22: Final exams put a total halt on the project.

Sickness A team member gets sick

and cannot work on the

project.

Make up for lost

time by putting in

hours outside of the

set schedule.

Constant communication

between team members

so everyone knows who

is doing what.

4 2 8

Person responsible: Gísli

Event log:

21/02/22: Gísli got COVID and had to work from home.

02/05/21: Gísli was sick and not able to participate

Unexpected

bugs

Bugs that occur that will

take time to resolve.

Test everything

before pushing to

main branch.

Pair up to figure out the

bug and resolve it.

4 2 8

Person responsible: Hákon

Event log:

21/03/22: Bug while finding percentages, the colours in the labels had impact on the result.

06/04/22: Colour indicator of labels was detected as text.

14/04/22: Random spots on image were being treated as text.

04/05/22: Docker version of Pytesseract had issues with reading some text.

Stuck on a

problem

A team member gets stuck

on a problem and cannot

continue until it is resolved.

The team discusses

the problem and

solves it together.

Regular discussions of

the project and what

each member is doing,

keeping everyone on the

team informed on each

other’s tasks.

4 2 8

Person responsible: Finnbogi

Event log:

15/03/22: the size and complexity of the OpenCV library halted progress.

14/04/22: Pytesseract had some unexplainable issues which caused a headache.

Loss of code A part of the code gets lost

due to any reason

The team writes the

code back from

memory and tries to

bring back the

functionality

Constant commits to a

version control system.

2 4 8

Person responsible: Gísli

Event log:

No events.

A dependency

gets deprecated

A library we are using gets

updated and breaks our

program.

Read the docs for the

updated library and

fix our code to work

with the latest

version.

Have a fixed version

number for each

dependency.

1 5 5

Person responsible: Hákon

 16

Event log:

No events.

Absence of

team member

Team member cannot

attend meetings due to

unforeseen circumstances.

Absent team member

tries to remotely

partake in the

meeting via discord

or teams.

Keep in mind dates and

times of meetings before

making other plans.

3 1 3

Person responsible: Finnbogi

Event log:

No events.

A dependency

has

vulnerability

A vulnerability is

discovered in a library

being used in the program

Update to the latest

version of the library

if that vulnerability

has been patched.

The team keeps up to

date on vulnerabilities of

the libraries in use.

1 2 2

Person responsible: Gísli

Event log:

No events.

4 Product backlog

Table 3: Product backlog

Product backlog item Priority Estimated hours Status

Set up and planning

Create a general plan for the project. A 20 Done

Have a meeting with the CEO of Grid. A 5 Done

Set up our equipment at the Grid offices. A 5 Done

Research what libraries to use for the project. A 5 Done

Get acquainted with the team at Grid. B 5 Done

Frontend

Decide on frontend framework. A 15 Done

Limit uploads to only accept images. A 10 Done

Add a functionality to upload a photo. A 15 Done

 17

Add a preview of the currently selected photo. B 10 Done

Add ability to pick chart type. B 10 Done

Add ability to pick output format. B 10 Done

Setup docker image for frontend. B 10 Done

Host frontend on AWS EB. B 20 Done

Backend API

Decide on backend framework. A 15 Done

Set up a basic API. A 20 Done

Create API endpoint to receive images. A 15 Done

Backend returns xlsx file. C 5 Done

Backend returns csv file. C 5 Done

Backend returns JSON string. A 5 Done

Validate file type received. A 5 Done

Setup docker image for backend. B 20 Done

Host backend on AWS EB. B 20 Done

Image processing

Functionality to detect circles. A 30 Done

Functionality to detect rectangles. B 30 Done

Mask out certain shapes. A 20 Done

Upscale an image under a certain size. B 10 Done

Remove noise from an image. A 5 Done

Threshold an image for easier text reading. A 5 Done

Text detection and reading

Detect location and contents of text in image. A 40 Done

Locate nearby colours from text location. A 50 Done

 18

Assign contents of text to a colour value. A 25 Done

Combine adjacent words. B 20 Done

Read axis of a regular bar chart C 100 Unfinished

Colour detection / Percentage finder

Find all non-white pixels in an image. A 40 Done

Group together pixels of the same colour. A 40 Done

Calculate the ratio of each group of coloured

pixels.

A 20 Done

Connect labels and percentages based on

shared colour.

A 30 Done

Implement detection for regular bar graphs C 50 Unfinished

Progress report and presentation

Write a risk analysis. A 50 Done

Write a progress report. A 60 Done

Write a system Overview. A 60 Done

Create a user guide. A 5 Done

Crate an operating manual. A 20 Done

Create presentations. A 60 Done

Documenting and improving code

Documenting the code. A 20 Done

Write unit tests for image processing. B 10 Done

Write unit tests for text detection. B 10 Done

Write unit tests for colour detection. B 10 Done

Improving code. A 100 Done

 19

5 Progress report

In this section there is an overview of all the sprints the group performed and the planning,

backlog, review, burndown, and retrospective for each sprint. In the burndowns the y-axis is

displayed in weeks and days, 1 week is 5 days and 1 day is 8 hours.

5.1 Project burndown

Figure 11: Project burndown

Table 4: Total time spent

Team member Time spent

Finnbogi Jakobsson 336 hours

Gísli Þór Gunnarsson 323 hours

Hákon Hákonarsson 319 hours

Total 979 hours

 20

Figure 12: Work distribution

More detailed charts on work distribution can be found under in Work distribution by work

type under the appendix.

5.2 Sprint overview

5.2.1 Sprint 0

The first sprint was focused on creating a plan for the project and making everything ready to

begin working on the project, so we decided to call it sprint 0.

5.2.2 Sprint 1

This sprint focused researching and deciding frameworks and tools as well as doing the

report for the first status meeting.

5.2.3 Sprint 2

This sprint focused on getting started coding by setting up a basic front- and backend for the

product as well as establishing a connection between the two.

5.2.4 Sprint 3

During this sprint the team focused on getting started coding by setting up a basic front- and

backend for the product as well as establishing a connection between the two.

 21

5.2.5 Sprint 4

This sprint was short because Reykjavík University’s final exams were during the second

week of this sprint. Nevertheless, satisfactory progress was made in the project during the

first week and a functional version was developed which could detect all the colour ratios in a

pie chart.

5.2.6 Sprint 5

During this sprint the team manged to finish implementing the pie chart algorithm although

some more testing is required. This was done by detecting the labels and assigning them to

the correct pie slices.

5.2.7 Sprint 6

During this sprint, the team added more image processing to make it easier for the program to

read text and calculate the percentages of each slice by removing unneeded elements form the

images.

5.2.8 Sprint 7

In this final sprint the team added a function to detect stacked bar charts, finished creating

unit tests and then implemented a code freeze on the 5th of May. During the last week and a

half, the team focused on finishing the report and presentation of the project.

6 Known bugs

6.1 Text algorithm

Most serious bug is the text detection algorithm. It sometimes adds extra characters to labels

and in other cases does not detect the label, so we had to place a “default” label which is just

a number.

6.2 Dark coloured background

The algorithm assumes that the background is white. Which means that all images with any

background colour other than white will lead to very incorrect results.

6.3 Size check of uploaded file

There is not a check for file size in the backend so a user could generate a very large image

and what would happen is unknown since it has never been tested.

 22

6.4 Graphs that are not made in Excel

All the graphs used in the project are created in Excel, so the results are biased towards excel.

So other graphs, especially those who do not have a similar format to Excel, will not perform

as well with the system.

6.5 GET transmo-api.grid.is/finn/bogi

We do not know why but it returns {“Finn”:“bogi”}.

6.6 Removal of colour icons

The removal of colour icons next to labels in images does not always work. It is hard to

finetune.

7 Conclusion

7.1 Final product

The team has created a working proof of concept that they are proud of. The product is

hosted with the frontend and backend separately and everything works end to end, which is a

great accomplishment, especially since the image processing works on graphs and returns

usable data. The final product can detect both stacked bar chart and pie charts with good

accuracy when good images are used as input. A user can request through the frontend to

receive a csv (comma separated values) or a excel spreadsheet and the user can supply the

program a total sum of the whole graph and the program will calculate the value of each

slice. The final design for the frontend is simple but functional as can be seen in Figure 10:

Final look of the frontend in chapter 2.6. For enterprise users or companies, the program also

has an API to receive requests to the image processing directly which could be a sold in the

future if other companies have interest in the product. The parameters on the API can be seen

in Figure 8: API in chapter 2.5.

7.2 Retrospective

This chapter serves as a retrospective for the whole project. After finishing the project, the

team sat down and had a conversation about what went well and what could have gone better.

The team is overall satisfied with the project although there were some difficulties during the

development. There are some things the team would like to have done differently but due to

time constraints and lack of experience with computer vision and machine learning the team

had to find a more reasonable approach.

 23

7.2.1 What went well

The team was satisfied with how quickly the end-to-end flow was setup which then was

continuously improved upon. Setting up continuous deployment went smoothly thanks to

assistance for employees at Grid which helped the team set up AWS Elastic Bean stalk

deployment of the front- and backend services which used the latest build from the teams’

repositories master branches. The communication in the team was good, by having regular

meetings and always staying in touch outside of those meetings, the team managed to keep a

good flow of the project going.

7.2.2 What could have gone better

In the beginning of the project, it took some time for the team to get started on the project,

this loss of valuable time could have been avoided if the team had looked for guidance from

more experienced personnel earlier on in the lifespan of the project. The team would have

liked to use the product backlog more properly and kept a better track on their time spent,

there were occasions where the team implemented a feature and forgot to add the time spent

on the task which had to be fixed later.

7.2.3 Future development

As the finished product from this project is a prototype there is still a lot that can be done,

implementing the ability to handle more types of graphs is at the top of the list. Adding a

neural network to the solution that would be able to detect the type of graph given would

improve the user experience and reduce the number of inputs from the user. There can some

improvements be made in the text reading portion of the project since there are still some

issues that the team didn’t manage to solve, if that is more pre-processing of the image or

adjusting some parameters in the Pytesseract function calls which could provide better

results.

 24

8 Appendix

8.1 Sprints

8.1.1 Sprint 0

From the 27th of January 2022 to 6th of February 2022

The first sprint was focused on creating a plan for the project and making everything ready to

begin working on the project, so we decided to call it sprint 0.

8.1.1.1 Sprint planning

• What? Get settled in the Grid offices and meet with the product owner to discuss the

requirements of the software.

• How? Going to the Grid offices and setting up our work are and meeting the product

owner.

• Who? All team members.

8.1.1.2 Sprint backlog

Table 5: Sprint 0 backlog

Sprint backlog item Prioritization Estimated

hours

Finished

Create a general plan for the project. A 20 X

Have a meeting with the CEO of Grid. A 5 X

Set up our equipment at the Grid offices. A 5 X

Get acquainted with the team at Grid. B 5 X

8.1.1.3 Sprint Review

All went well and the team is set up in the offices, the team has a good idea on what to do for

the project after discussing requirements with the product owner

8.1.1.4 Sprint timesheet

Table 6: Sprint 0 time spent

Team member Time spent

Finnbogi Jakobsson 12 hours

 25

Gísli Þór Gunnarsson 15 hours

Hákon Hákonarsson 13 hours

Total 40 hours

8.1.1.5 Sprint retrospective

Everything worked very well, the one thing that the team could improve is taking advantage

of the in-house resources at the grid office and of the knowledge the people who work there

have.

8.1.2 Sprint 1

From the 7th of February 2022 to 20th of February 2022

This sprint focused researching and deciding frameworks and tools as well as doing the

report for the first status meeting.

8.1.2.1 Sprint backlog

Table 7: Sprint 1 backlog

Sprint backlog item Prioritization Estimated

hours

Finished

Decide on backend framework. A 15 X

Decide on frontend framework. A 15 X

Research what libraries to use for the project. A 5 X

Write a risk analysis. A 20 X

Write a progress report. A 20 X

Write a system Overview. A 20 X

Create presentations. A 20 X

8.1.2.2 Sprint planning

• What? To get started on the report and decide on frameworks and set up the

development environments needed.

 26

• How? Discuss and research what frameworks would work best for this type of project

and decide on how to store the product backlog and user stories.

• Who? All team members.

 27

8.1.2.3 Sprint review

The team decided to use a Vue.js framework to manage the frontend which will be connected

to a Django backend. OpenCV was chosen due to it being open source and having good

documentation and community support. GitHub was chosen for the version control and to

manage the product backlog. The team started work on the report with focus on the risk

analysis, project description and the product backlog.

8.1.2.4 Sprint burndown

Figure 13: Sprint 1 burndown

Table 8: Sprint 1 time spent

Team member Time spent

Finnbogi Jakobsson 49 hours

Gísli Þór Gunnarsson 37 hours

Hákon Hákonarsson 46 hours

 28

Total 132 hours

8.1.2.5 Sprint retrospective

The sprint went fine overall. After the first progress meeting, the team tried to fix all the

mistakes which were present in the report and presentation and decided to continue the report

in Word instead of Overleaf.

8.1.3 Sprint 2

From the 21st of February 2022 to 6th of March 2022

This sprint focused on getting started coding by setting up a basic front- and backend for the

product as well as establishing a connection between the two.

8.1.3.1 Sprint planning

• What? To set up a basic front- and backend and establish a connection between them

with HTTP requests.

• How? By reading the required documentation to familiarise ourselves with the

frameworks and then implementing a basic front- and backend.

• Who? All Team members.

8.1.3.2 Sprint backlog

Table 9: Sprint 2 backlog

Sprint backlog item Prioritization Estimated

hours

Finished

Add a functionality to upload a photo. A 15 X

Limit uploads to only accept images. A 10 X

Add a preview of the currently selected

photo.

B 10 X

Set up a basic API. A 20 X

Create API endpoint to receive images. A 15 X

Validate file type received. A 5 X

Backend returns csv file. C 5 X

 29

8.1.3.3 Sprint review

The team managed to complete all tasks except “Setup the machine learning OpenCV

environment” due to rescoping of the project. In the second half of the sprint Hákon spoke

with Gylfi, a professor at RU to get some pointers on how to approach the computer vision

part of the project and got some interesting and quite depressing feedback. Gylfi pointed out

that doing computer vision “from scratch” is way too ambitious for a BSc project. He made

us realise that this will be harder than we anticipated. He recommended that we would scale

down and simplify the project and gave us some ideas on how to do so.

• Start with analysing pie-charts and use colour histograms and use an algorithm that

counts the number of pixels in each slice. That way we can compare the size of each

slice and give a percentage back in a table.

• If we were to continue with OpenCV or some computer vision. Then at least

implement some UI that makes the user draw bounding-boxes around the Y-axis, X-

axis, and the chart itself. That would at least simplify one big step of the process.

• Things that Gylfi mentioned to look at: RCNN, Faster RCNN, OCR (Tesseract OCR),

YOLO algorithm, segmentation of images by colour, colour histogram and some

algorithm called fill-out I think that checks if neighbouring pixel is the same colour.

 30

8.1.3.4 Sprint burndown

Figure 14: Sprint 2 burndown

 31

Table 10: Sprint 2 time spent

Team member Time spent

Finnbogi Jakobsson 28 hours

Gísli Þór Gunnarsson 12 hours

Hákon Hákonarsson 40 hours

Total 80 hours

8.1.3.5 Sprint retrospective

The sprint did not go as planned. After the realization that the project was too complex the

morale of the team took a big hit which caused the efficiency of the team to dramatically

decrease. The team will try to improve this as soon as possible too waste as little time as

possible.

8.1.4 Sprint 3

From the 7th of March 2022 to 20th of March 2022

For sprint 3 the team wanted to implement CI/CD and get the backend hosted on AWS

Elastic Beanstalk. To do so we had help from an employee at Grid who has expertise in these

matters.

8.1.4.1 Sprint planning

• What? To set up CI/CD for the backend and be able to extract data from pie graphs.

• How? Get assistance from an expert from Grid for setting up CI/CD and read up on

algorithms that can count numbers of colours of each pixel.

• Who? All Team members.

8.1.4.2 Sprint backlog

Table 11: Sprint 3 backlog

Sprint backlog item Prioritization Estimated

hours

Finished

Find all non-white pixels in an image. A 40

Setup docker image for backend. B 20 X

 32

Host backend on AWS EB. B 20 X

Write a risk analysis. A 10 X

Write a progress report. A 10 X

Create presentation. A 10 X

8.1.4.3 Sprint review

The team managed to implement CI/CD and the backend is now hosted on AWS Elastic

Beanstalk which always has the latest version of the service and is open to HTTP requests.

Making a simple pie-chart detection algorithm must be moved over to sprint 4 since the team

was not able to finish it, but some progress was made.

8.1.4.4 Sprint burndown

Figure 15: Sprint 3 burndown

 33

Table 12: Sprint 3 time spent

Team member Time spent

Finnbogi Jakobsson 31 hours

Gísli Þór Gunnarsson 28 hours

Hákon Hákonarsson 5 hours

Total 64 hours

8.1.4.5 Sprint retrospective

At the start of the sprint the team was still suffering from morale loss after last sprint but that

was fixed during the sprint, and everything should be getting back on track.

8.1.5 Sprint 4

From the 21st of March 2022 to 3rd of April 2022

Sprint 4 was short because Reykjavík University’s final exams were during the second week

of this sprint. Nevertheless, satisfactory progress was made in the project during the first

week and a functional version was developed which could detect all the colour ratios in a pie

chart.

8.1.5.1 Sprint planning

• What? Develop a program which takes an image of a pie chart as an input and output

the fraction of each slice.

• How? By reading the required documentation to familiarise ourselves OpenCV and

then developing a program to read pie charts.

• Who? All Team members.

 34

8.1.5.2 Sprint backlog

Table 13: Sprint 4 backlog

Sprint backlog item Prioritization Estimated

hours

Finished

Find all non-white pixels in an image. A 40 X

Group together pixels of the same colour. A 40 X

Calculate the ratio of each group of coloured

pixels.

A 20 X

8.1.5.3 Sprint review

All tasks on the product backlog were completed but some improvements can still be made.

8.1.5.4 Sprint burndown

Figure 16: Sprint 4 burndown

 35

Table 14: Sprint 4 time spent

Team member Time spent

Finnbogi Jakobsson 14 hours

Gísli Þór Gunnarsson 26 hours

Hákon Hákonarsson 31 hours

Total 71 hours

8.1.5.5 Sprint retrospective

The overall sprint went well given the reduced time available from the team due to final

exams.

8.1.6 Sprint 5

From the 4th of April 2022 to 17th of April 2022

During this sprint the team manged to finish implementing the pie chart algorithm although

some more testing is required. This was done by detecting the labels and assigning them to

the correct pie slices.

8.1.6.1 Sprint planning

• What? Finish the developing the pie chart algorithm.

• How? By creating a way to detect labels and combining them with the ratios of the

slices

• Who? All Team members.

 36

8.1.6.2 Sprint backlog

Table 15: Sprint 5 backlog

Sprint backlog item Prioritization Estimated

hours

Finished

Detect location and contents of text in an

image.

A 40 X

Locate nearby colours from text location. A 50 X

Assign contents of text to a colour value. A 25 X

Connect labels and percentages based on

shared colour.

A 30 X

8.1.6.3 Sprint review

The team completed all tasks although some could be improved on in future sprints.

 37

8.1.6.4 Sprint burndown

Figure 17: Sprint 5 burndown

Table 16: Sprint 5 time spent

Team member Time spent

Finnbogi Jakobsson 10 hours

Gísli Þór Gunnarsson 54 hours

Hákon Hákonarsson 52 hours

Total 116 hours

8.1.6.5 Sprint retrospective

Had some issues with the Pytesseract library not working as expected but managed to figure

out a solution which will be improved upon in future sprints.

 38

8.1.7 Sprint 6

From the 18th of April 2022 to 1st of May 2022

During this sprint, the team added more image processing to make it easier for the program to

read text and calculate the percentages of each slice. This was done two separate ways, by

first removing everything from the image sent to the colour detection function except the pie

or stacked bar and then calculating the percentages of each colour. The second function

implemented was to remove the pie from the image and then read the text to reduce the risk

of errors.

8.1.7.1 Sprint planning

• What? Implement and improve image processing to make colour and text detection

easier.

• How? By reading relevant documentation and trying different approaches to

processing.

• Who? All Team members.

8.1.7.2 Sprint backlog

Table 17: Sprint 6 backlog

Sprint backlog item Prioritization Estimated

hours

Finished

Functionality to detect circles. A 30 X

Functionality to detect rectangles. B 30 X

Mask out certain shapes. A 20 X

Remove noise from an image. A 5 X

Threshold an image for easier text reading. A 5 X

Improving code. A 80

Upscale an image under a certain size. B 10 X

8.1.7.3 Sprint review

During this sprint all the tasks except finishing improving the code since there were still some

known bugs which needed fixing.

 39

8.1.7.4 Sprint burndown

Figure 18: Sprint 6 burndown

Table 18: Sprint 6 time spent

Team member Time spent

Finnbogi Jakobsson 89 hours

Gísli Þór Gunnarsson 55 hours

Hákon Hákonarsson 64 hours

Total 208 hours

8.1.7.5 Sprint retrospective

Everything went well during this sprint and no major improvements were needed.

8.1.8 Sprint 7

From the 2nd of May 2022 to 15th of May 2022

In this final sprint the team added a function to detect stacked bar charts, finished creating

 40

unit tests and then implemented a code freeze on the 5th of May. During the last week and a

half, the team focused on finishing the report and presentation of the project.

8.1.8.1 Sprint planning

• What? Finish the project.

• How? By finishing coding and writing the report.

• Who? All Team members.

8.1.8.2 Sprint backlog

Table 19: Sprint 7 backlog

Sprint backlog item Prioritization Estimated

hours

Finished

Documenting the code. A 20 X

Add ability to pick chart type. B 10 X

Add ability to pick output format. B 10 X

Setup docker image for frontend. B 10 X

Host frontend on AWS EB. B 20 X

Backend returns xlsx file. C 5 X

Backend returns JSON string. A 5 X

Write unit tests for image processing. B 10 X

Write unit tests for text detection. B 10 X

Write unit tests for colour detection. B 10 X

Improving code. A 20 X

Write a risk analysis. A 20 X

Write a progress report. A 30 X

Write a system Overview. A 40 X

Create a user guide. A 5 X

Crate an operating manual. A 20 X

Create presentations. A 30 X

 41

8.1.8.3 Sprint review

The team completed all tasks, and the project is in a good state to hand in.

8.1.8.4 Sprint burndown

Figure 19: Sprint 7 burndown

Table 20: Sprint 7 time spent

Team member Time spent

Finnbogi Jakobsson 91 hours

Gísli Þór Gunnarsson 88 hours

Hákon Hákonarsson 72 hours

Total 251 hours

8.1.8.5 Sprint retrospective

Everything went well during this sprint and no major improvements were needed.

 42

8.2 Test images

Figure 20: 12_entries

Figure 21: fiveshadesofRED_20values_appart

 43

Figure 22: bogatest

Figure 23: fiveshadesofRED_10values_appart

 44

Figure 24: fiveshadesofgray

Figure 25: rokk_stig

 45

Figure 26: 8_entries

Figure 27: 11_entries

 46

Figure 28: 12_entries

8.3 Test data

Table 21: 12_entries

finnbogi 33

gilli 25

hakon 42

hallgrimur 34

gunnar 51

sigurjon 74

hjalmar 24

eirikur 86

sarah 45

gudny 23

linda 75

gudbjorg 83

Table 22: fiveshadesofRED_20values_appart

api 10

banani 10

charlie 10

delta 10

echo 10

 47

Table 23: bogatest

api 10

banani 10

charlie 10

delta 10

echo 10

Table 24: fiveshadesofRED_10values_appart

api 10

banani 10

charlie 10

delta 10

echo 10

Table 25: fiveshadesofgray

api 10

banani 10

charlie 10

delta 10

echo 10

Table 26: rokk_stig

finnbogi 33

gilli 25

hakon 42

Table 27: 8_entries

finnbogi 33

gilli 25

hakon 42

hallgrimur 34

gunnar 51

sigurjon 74

hjalmar 24

eirikur 86

 48

Table 28: 11_entries

finnbogi 33

hakon 42

hallgrimur 34

gunnar 51

sigurjon 74

hjalmar 24

eirikur 86

sarah 45

gudny 23

linda 75

gudbjorg 83

Table 29: 10_entries

finnbogi 33

hakon 42

hallgrimur 34

sigurjon 74

hjalmar 24

eirikur 86

sarah 45

gudny 23

linda 75

gudbjorg 83

 49

8.4 Work distribution by work type

Figure 29: Finnbogi, time spent by work type

Figure 30: Gísli, time spent by work type

Finnbogi

Development Documentation Investigation Testing

Gísli

Development Documentation Investigation Testing

 50

Figure 31: Hákon, time spent by work type

Hákon

Development Documentation Investigation Testing

	1 Introduction
	1.1 Background
	1.2 Project description

	2 System design
	2.1 System flow
	2.2 Tech stack
	2.2.1 Front-end
	2.2.2 Back-end web service
	2.2.3 Back-end image processing

	2.3 System overview
	2.4 Image processing
	2.4.1 Three problems
	2.4.2 Detecting slices in a pie
	2.4.3 Finding text in an image
	2.4.4 Combining text and pie slices

	2.5 API: application programming interface
	2.6 Wireframes of the frontend
	2.7 Testing
	2.7.1 Unit testing
	2.7.2 Accuracy testing

	3 Risk analysis
	4 Product backlog
	5 Progress report
	5.1 Project burndown
	5.2 Sprint overview
	5.2.1 Sprint 0
	5.2.2 Sprint 1
	5.2.3 Sprint 2
	5.2.4 Sprint 3
	5.2.5 Sprint 4
	5.2.6 Sprint 5
	5.2.7 Sprint 6
	5.2.8 Sprint 7

	6 Known bugs
	6.1 Text algorithm
	6.2 Dark coloured background
	6.3 Size check of uploaded file
	6.4 Graphs that are not made in Excel
	6.5 GET transmo-api.grid.is/finn/bogi
	6.6 Removal of colour icons

	7 Conclusion
	7.1 Final product
	7.2 Retrospective
	7.2.1 What went well
	7.2.2 What could have gone better
	7.2.3 Future development

	8 Appendix
	8.1 Sprints
	8.1.1 Sprint 0
	8.1.1.1 Sprint planning
	8.1.1.2 Sprint backlog
	8.1.1.3 Sprint Review
	8.1.1.4 Sprint timesheet
	8.1.1.5 Sprint retrospective

	8.1.2 Sprint 1
	8.1.2.1 Sprint backlog
	8.1.2.2 Sprint planning
	8.1.2.3 Sprint review
	8.1.2.4 Sprint burndown
	8.1.2.5 Sprint retrospective

	8.1.3 Sprint 2
	8.1.3.1 Sprint planning
	8.1.3.2 Sprint backlog
	8.1.3.3 Sprint review
	8.1.3.4 Sprint burndown
	8.1.3.5 Sprint retrospective

	8.1.4 Sprint 3
	8.1.4.1 Sprint planning
	8.1.4.2 Sprint backlog
	8.1.4.3 Sprint review
	8.1.4.4 Sprint burndown
	8.1.4.5 Sprint retrospective

	8.1.5 Sprint 4
	8.1.5.1 Sprint planning
	8.1.5.2 Sprint backlog
	8.1.5.3 Sprint review
	8.1.5.4 Sprint burndown
	8.1.5.5 Sprint retrospective

	8.1.6 Sprint 5
	8.1.6.1 Sprint planning
	8.1.6.2 Sprint backlog
	8.1.6.3 Sprint review
	8.1.6.4 Sprint burndown
	8.1.6.5 Sprint retrospective

	8.1.7 Sprint 6
	8.1.7.1 Sprint planning
	8.1.7.2 Sprint backlog
	8.1.7.3 Sprint review
	8.1.7.4 Sprint burndown
	8.1.7.5 Sprint retrospective

	8.1.8 Sprint 7
	8.1.8.1 Sprint planning
	8.1.8.2 Sprint backlog
	8.1.8.3 Sprint review
	8.1.8.4 Sprint burndown
	8.1.8.5 Sprint retrospective

	8.2 Test images
	8.3 Test data
	8.4 Work distribution by work type

