
Improving application programming interface endpoints
for the Icelandic meteorological office as a part of the
European plate observing system data portal project

A thesis submitted for the degree of

Bachelor of Science

Examiner

Davið S. Guðjónsson

Students

Alexander P. Robertson

Bjarmi A. Eiðsson

Instructors

Dr. Grischa Liebel

Dr. Jacqueline C.

Mallett

Department of Computer Science

Reykjavik University

Iceland

May 27, 2022

this page is intentionally left blank

Abstract

The Icelandic Meteorological Office (IMO), a governmental institution under

Iceland’s Ministry of the Environment, Energy, and Climate, is an active

participant in the European Plate Observing System (EPOS). The IMO provides

data to the EPOS Data Portal through their representational state transfer

application programming interface named ”epos”.

The IMO would like its endpoints to be rewritten and improved, focusing on

reliability and performance with some additional improvements that would aim

to provide the user with more options in terms of data selection. Secondary

improvements aim to provide the user with more options in terms of data

selection.

This thesis covers: the improvement of three ”epos”-endpoints: Hazard Maps,

Volcano Reports, and Volcano Observatory Notices for Aviation; the testing

methods used for the improved endpoints; the testing results and comparison

between the old and new endpoints; and finally a discussion about the improve-

ment process and suggested future improvements.

Keywords: Icelandic meterological office, IMO, European plate observing sys-

tem, EPOS, application programming interface, API, testing, endpoints, meteo-

rology, computer science

i

Contents

1 Introduction 1

Background . 1

2 Requirements 3

Hazard Maps . 3

VONA . 5

Volcano Reports . 6

Technical Stack . 6

Connexion . 6

Docker . 6

Flask . 7

OpenAPI . 7

PostgreSQL . 7

Redis . 7

3 Design 8

API . 8

Dependencies . 9

4 Methodology 9

Programming . 10

Testing . 10

5 Results 11

API Requirements . 11

Endpoint Requirements . 11

Documentation Requirements . 11

API Documentation Improvements . 12

API Code Improvements . 12

6 Improvement Suggestions 15

Database . 15

Documentation . 15

7 Conclusion 16

References 17

Appendix I: Code 19

Appendix II: IMO Reports 30

ii

List of Figures

1 EPOS functional architecture, showing how the NRIs, TCSs and EPOS ERIC

work together to form the EPOS delivery framework. Source: [3]. . . . 2

2 Hazard map showing a scenario akin to Hekla erupting in early 2000.

Source: [5]. 5

3 Connexion API component diagram. 8

4 RTT to IMO’s website at 94.142.156.174 (www.vedur.is). 10

5 Swagger 2.0 UI, showing the old hazard maps documentation. Source:

[20]. 13

6 OpenAPI 3.0 UI, showing the new hazard maps documentation. 13

7 An example of a VONA report. Source: [23]. 30

8 An example of the first page of a Volcano weekly status report. Source:

Davið Steinar Guðjónsson at the Icelandic Meteorological Office. . . . 31

iii

List of Tables

1 API endpoint functional requirements. 4

2 API endpoint non-functional requirements. 4

3 Endpoint functional requirement results. Requirements are marked as

either: 1, implemented; or 0, not implemented. 11

4 Endpoint non-functional requirement results. Requirements are marked

as either: 1, implemented; or 0, not implemented. 12

5 Hazard maps documentation requirement results. Requirements are marked

as either: 1, implemented; or 0, not implemented. 12

6 Documentation requirement results for volcano reports and VONA. Re-

quirements are marked as either: 1, implemented; or 0, not implemented. 12

7 API benchmark of endpoints without query parameters, showing average-

and standard-deviation time in ms of 1000 requests with 10ms delay

between requests. 15

8 API benchmark of endpoints with query parameters, showing average- and

standard-deviation time in ms of 1000 requests with 10ms delay between

requests. 15

iv

List of Listings

1 Postman response-time measurement script, used to benchmark API per-

formance. Written in Javascript. 19

2 Original volcano reports PostgreSQL query. 21

3 Improved volcano reports PostgreSQL query. 25

4 The VONA endpoint controller. 29

v

1 Introduction

The Icelandic Meteorological Office (IMO) is a governmental institution under

Iceland’s Ministry of the Environment, Energy, and Climate. The IMO is an active

participant in the European plate observing system (EPOS) and provides data to

the EPOS Data Portal through their application programming interface (API) named

”epos”.

The IMO would like its endpoints to be rewritten and improved, focusing on

reliability and performance with some additional improvements that would aim to

provide the user with more options in terms of data selection. This project

focuses on three endpoints: Hazard Maps, Volcano Reports, and Volcano Observatory

Notices for Aviation. The current design and implementation of the API is over

five years old and consists of 15 endpoints that will be improved by the product

of this project.

To meet IMO’s needs we put down three goals for this project: standardizing the

architecture of the ”epos” API endpoints, focusing on modularity, readability,

and reliability; providing API documentation that is informative and easy to use;

and implementing caching to improve the response time of the API.

In this thesis, we iterate the process of how the API was improved. From

the requirements- and technical stack definitions, to the design phase and work

methodology, after which we discuss performance- testing and comparison between

the old API and the improved version. Furthermore, we take a look at the improved

documentation UI and which requirements were met and why some requirements where

not. Lastly, we will provide improvement suggestions for those who will be

continuing to improve the API. But first, a short background of IMO and EPOS,

which are precursors to how this project came to be.

Background

The IMO is a governmental institution under Iceland’s Ministry of the Environment,

Energy and Climate. IMO´s mission is split into five statements and as per their

website[1] these statements are:

• ”Monitoring, analyzing, interpreting, informing, giving advice and counsel,

providing warnings and forecasts and, where possible, predicting natural

processes and natural hazards.”

• ”Issuing public and aviation alerts about impending natural hazards, such as

volcanic ash, extreme weather and flooding.”

• ”Conducting research on the physics of air, land and sea, specifically in

1

the fields of meteorology, hydrology, glaciology, climatology, seismology

and volcanology.”

• ”Maintaining high-quality service and efficiency in providing information in

the interest of economy, of safety affairs, of sustainable usage of natural

resources and with regard to other needs of the public.”

• ”Ensuring the accumulation and preservation of data and knowledge regarding

the long-term development of natural processes such as climate, glacier

changes, crustal movements and other environmental matters that fall under

IMO‘s responsibility; undertaking of risk assessments for natural hazards as

requested by the government.”

One of IMO’s roles is representing Iceland in EPOS. ”EPOS, the European Plate

Observing System, is a multidisciplinary, distributed research infrastructure

that facilitates the integrated use of data, data products, and facilities from

the solid Earth science community in Europe.”[2]

The aforementioned data and data products are produced by National Research

Infrastructures and data centers (NRIs), such as the IMO, that guarantee quality-

checked data and products which are then consumed by EPOS’s Thematic Core Services

(TCS). This is referred to as the functional architecture of the system and is

depicted in figure 1.

Figure 1: EPOS functional architecture, showing how the NRIs, TCSs and EPOS ERIC
work together to form the EPOS delivery framework. Source: [3].

2

A certain service of interest, that falls under the umbrella of the Integrated

Core Services Central Hub (EPOS ERIC), is the EPOS Portal. The portal is an

interactive tool that serves data published by the EPOS TCSs that is currently in

its beta stage of development and is scheduled to start in the operational phase

in 2023[4].

When the portal has reached the operational phase, IMO will be providing

access to its improved ”epos” API through 15 endpoints, three of them being the

aforementioned, Hazards Maps, Volcano Reports, and Volcano Observatory Notices

for Aviation; that are the focus of this thesis.

2 Requirements

The requirements pertaining to the API came from IMO through our contact, Davið

Steinar Guðjónsson, and are depicted in tables 1 and 2. The requirements focus

on appropriate content delivery and request response times.

All the endpoints offer data on JSON format and the additional requirements

for GeoJSON and CoverageJSON comes from EPOS as it is being used to display

geographical data in the EPOS data portal.

In the following subsections we will review parameter/documentation require-

ments for the endpoints that are defined with the OpenAPI specification (see the

section on the technical stack for more information). These requirements follow

the same ”Low-Medium-High”-priority schema as the endpoint requirements, seen in

tables 1 and 2, and are all labelled as ”High” priority.

Hazard Maps

Hazard maps show the likelihood that different places in the country will be

affected by different types of tephra deposits thicker than their specific thresh-

olds. An example of this is depicted in figure 2, where we see a hazard map of a

scenario that is similar to the Hekla eruption in early 2000.

The endpoint should support a single HTTP verb; GET, and should accept three

optional parameters:

• Volcano: Search by a volcano identifier is done via the ”volcano” query param-

eter. Accepts: Icelandic names, Smithsonian Institution-, and International

Civil Aviation Organisation code.

• Hazard Types: The selection of different hazard types is done via the

”hazard_type” query parameter. Accepts: ”tephra fallout” and ”volcanic

SO2”.

3

Table 1: API endpoint functional requirements.

ID Description Priority

FR1 When receiving a GET request with no
query parameters, the endpoints must
respond with the newest instance of

metadata

High

FR2 When receiving a GET request with
query parameters, the endpoints must

only respond with metadata that
matches the query parameters

High

FR3 Endpoints must not return metadata
spanning a longer time range than a

single year (52 weeks).

High

FR4 The endpoints must be able to respond
with metadata in JSON format

High

FR5 The endpoints should be able to
respond with metadata in GeoJSON

format

Medium

FR6 The endpoints should be able to
respond with metadata in CoverageJSON

format

Low

Table 2: API endpoint non-functional requirements.

ID Description Priority

NFR1 The endpoints must respond to
requests with a response time under

500ms

High

NFR2 When receiving request without query
parameters the endpoints should

respond with a response time under
40ms

Medium

NFR3 When receiving request with query
parameters the endpoints should

respond with a response time under
150ms

Medium

4

	Introduction
	Background

	Requirements
	Hazard Maps
	VONA
	Volcano Reports
	Technical Stack
	Connexion
	Docker
	Flask
	OpenAPI
	PostgreSQL
	Redis

	Design
	API
	Dependencies

	Methodology
	Programming
	Testing

	Results
	API Requirements
	Endpoint Requirements
	Documentation Requirements

	API Documentation Improvements
	API Code Improvements

	Improvement Suggestions
	Database
	Documentation

	Conclusion
	References
	Appendix I: Code
	Appendix II: IMO Reports

