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Abstract

It has been suggested that COVID-19 has a negative effect on sleep quality. Whether it is
caused by COVID-19 infection or other pandemic related factors remains to be determined.
Data from DeCODE’s Icelandic Health Study offers an opportunity for such analysis where
self applied sleep studies were conducted on 33 participants on two separate occasions and
of those 14 contracted COVID-19 in between the occasions.

The objectives were twofold, firstly to run traditional statistical analyses on sleep quality
variables. The variables of interest included measures of total sleep time, sleep efficiency,
rapid eye movement (REM) and deep sleep, arousal index, sleep latency and sleep apnea
severity. Both parametric and non-parametric analyses were conducted. The secondary
objectives were to extract features from 30 second signal epochs and train machine learning
models to classify whether the features are from studies before or after COVID-19.

The results of the paired t-tests, indicated significant difference in one variable: elevated
mean saturation. However, a power analysis showed that the paired t-tests had insufficient
power to detect the changes if present. The non-parametric test, aligned rank transform
(ART) followed by analysis of variance (ANOVA), found no significant differences for the
two studies in terms of any of the variables of interest. Therefore, it cannot be stated with any
confidence that COVID-19 has negative effects on sleep quality from the tests performed.

Three types of machine learning models, Decision Trees, Random Forest and Multilayer
Perceptron, were trained on six different datasets depending on the sleep stage. The datasets
consisted of five datasets with epochs from different sleep stages or wake (N1, N2, N3, REM
and wake) and the whole dataset consisting of all epochs. The performance of the Random
Forest classifier was consistently best for all datasets. The highest performance was achieved
with the deep sleep (N3) dataset with performance metrics high enough to be consistently
better than random guessing. These results might indicate changes in the morphology of
EEG signals between the two studies especially when trained on epochs from deep sleep and
should therefore warrant further investigation.
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Minnihattar ahrif COVID-19 4 maeldan svefn: Visbendingar
um breytingar a formfraedi heilarafrits

Katrin Hera Gustafsdottir

jtnf 2022

Utdrattur

Visbendingar eru um ad COVID-19 syking hafi neikvad ahrif 4 gedi svefns. Hvort pessi
neikvaedu dhrif séu vegna COVID-19 sykingar eda annarra COVID-19 faraldurs tengdra
pétta er enn 6ljést. Gogn fra Heilsurannsékn Islenskrar Erfdagreiningar bjéda uppa tekifzeri
til ad skoda pessi tengls ndnar. Framkvemdar voru sjalfuppsettar svefnmalingar 4 33
einstaklingum { tvigang. Af pessum 33 einstaklingum fengu 14 af peim COVID-19 & milli
svefnmalinga.

Markmid pessa verkefnis eru tvipatt. Annars vegar ad kanna med tolfredipréfum hvort
COVID-19 hafi dhrif 4 svefngaedi med tilliti til svefn lengdar, skilvirkni svefns, draumsvefns
(e. REM) og djupsvefns, uppvaknana, erfidleika vid ad festa svefn, sdrefnismettunar- og
hrotumalinga. Framkvaemd voru b&di stika- og stikalaus préf. Hinsvegar er markmidid ad
nota mismunandi tegundir af vitvélum til ad greina 30 sekinda buta(e. epochs) af heilarafriti
(e. electroencephalography). Merkjaeiginleikar heilarafrits voru dregnir ut ur hverjum bt
og nyttir til ad pjalfa vitvélar { ad pekkja hvort melingin hafi verid gerd fyrir eda eftir
COVID-19 sykingu.

Nidurstodur ur porudu t-profi bentu til pess ad ein breyta, medal surefnismettun, hafi hekkad
milli melinga med marktekum mun. Proéf til ad kanna tolfredilegan styrk parada t-profsins
var framkvaemt vegna smadar gagnanna og kom par { ljés vontun 4 tolfredilegum styrk
til a0 merkja mun ef hann er til stadar. Stikalausa pr6fid sem framkvemt var til vidbotar
kallast fervikagreining 4 gognum sem buid var ad stilla med tilliti til hddu pattanna(e. ART
ANOVA). Nidurstodur ur fervikagreinungunum syndu engan marktekan mun 4 neinum af
breytunum sem préfadar voru. Pvi var ekki hagt ad draga neinar dlyktanir um ahrif COVID-
19 4 svefngadi Ut frd pessum nidurstodum.

Prjar mismunandi gerdir af vitvélum voru pjalfadar, dkvordunartré (e. Decision Tree),
slembiskégur (e. Random Forest) og marglaga tauganet(e. Multilayer Perceptron), 4 sex
mismunandi gagnasettum. Gagnasettin samanst6du af eiginleikum heilarafritsbita Gr fimm
mismunandi svefnstigum (N1, N2, N3, REM og vaka) og einnig 6llum bitum dr 6llum
svefnstigum saman. Vitvélin slembiskégur syndi besta drangurinn med tilliti til allra ganga-
setta. Nidurstodurnar bentu til pess ad pjalfun 4 djupsvefnsgagnasettinu (N3) hlaust besti
drangurinn en drangurinn var négu gédur til ad teljast betri en flokkun af handahoéfi. Pad er
pvi ljést ad vert er ad gera frekari athugun 4 heilarafristgognum { sambandi vid breytingar 4
heilarafriti svefns eftir COVID-19 sykingu.
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Chapter 1

Introduction

There are currently six known types of human transmissible coronaviruses, of which two
types cause severe respiratory disease: SARS-CoV and MERS-CoV [1], [2]. The novel
coronavirus responsible for the 2020 COVID-19 pandemic, SARS-CoV-2, in its acute stage
causes infiltrated pneumonia, gastrointestinal symptoms, and in some cases neurological
complications. Coronaviruses have been known to cause neurological symptoms and that
includes SARS-CoV-2, the most common neurological symptom being loss of smell [3].
SARS-CoV-2 affects the respiratory and gastrointestinal tracts and evidence suggests that it
also invades the central nervous system (CNS) of the host. It has been suggested that the
coronaviruses’ entry into the CNS is by olfactory transmucosal invasion using the Angiotensin
converting enzyme 2 (ACE2) receptor and therefore bypassing the blood-brain-barrier [3],
[4]. The ACE2 receptor is expressed in the respiratory and intestinal tracts, heart, kidneys,
and brain of humans which makes those systems consequently vulnerable to SARS-CoV-
2 infection [5]. Respiratory failure in COVID-19 patients may not be exclusively due to
pneumonia as coronaviruses have been shown to infect the medullary cardiorespiratory
center of the brain and thus, causing respiratory failure [6], [7].

Two main routes to neuronal damage are proposed following SARS-CoV-2 infection:
hypoxic brain injury and immune-mediated damage. In terms of hypoxic damage, peripheral
vasodilatation, hypercapnia, hypoxia, and anaerobic metabolism have been postulated as the
main mechanisms. The main mechanisms in terms of immune-mediated damage, vastly
increased release of inflammatory cytokines and activation of T lymphocytes, macrophages,
and endothelial cells have been proposed [8]. Neurological symptoms include: dizzi-
ness, headache, acute cerebrovascular disease, impaired consciousness, psychiatric episodes,
lethargy, transverse myelitis, acute hemorrhagic necrotizing encephalopathy, encephalopathy,
encephalitis, epilepsy, ataxia, hypogeusia, hyposmia, neuralgia and Guillian-Barré syndrome
[9]-[14]. Thirty-seven severely ill COVID-19 patients with neurological complications, ex-
cluding ischemic infarcts, were found to have abnormal brain MRI scans with distinctive
lesion patterns [15]. Furthermore, hospitalized COVID-19 patients with neurological com-
plications were shown to have worse functional outcomes than those without neurological
complications. The COVID-19 patients with neurological complications had abnormal
functional outcomes 6 months after hospitalization including depression, anxiety, and sleep
difficulties and 47% of the subjects could not return to work 6 months after discharge from
hospital [16]. Itis therefore reasonable to assume that the long-term symptoms of COVID-19
may at least in part be due to irreversible neuronal damage, particularly for those needing
intensive care.

There has been growing concern regarding the persistent symptoms of COVID-19, in
particular the neurological symptoms [17]. The prevalence has not been fully determined, but
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studies suggest a prevalence ranging from 72% to 80% of COVID-19 survivors having at least
one persistent long-term symptom [18]—-[20]. The most common long-term symptoms were
fatigue, “brain fog”, dizziness, headache, attention disorder, hair loss and dyspnea [19], [21].
However, it is likely that the well-known post intensive-care syndrome accounts for some
of the long-term deleterious impairments suffered by hospitalized COVID-19 patients who
received mechanical ventilation due to respiratory failure [22]. Yet, not all who suffer from
long-term COVID-19 symptoms have received critical care and therefore, it can be argued
that post intensive-care syndrome is not the only explanation for the long-term symptoms of
COVID-19. A study found that there was little difference in long-term symptoms of non-
hospitalized COVID-19 patients compared to hospitalized patients, and all scored worse on
cognitive and quality of life assessments compared to a demographically matched reference
population [21].

The physiology of sleep is complex and is regulated by multiple neuronal tracts in the
brain. To initiate sleep the so-called ascending arousal system, an extensive network of
subcortical structures, needs to be inhibited. The inhibitory neurons of the ventrolateral pre-
optic area of the brain hinder the activation of the ascending arousal system, thus initiating
and maintaining sleep [23]. Since COVID-19 is causing neurological complications, it can
be reasoned that the higher rates of insomnia and sleep disturbances in COVID-19 survivors
could be in part due to the disruption of neural tracts in the brain involved in maintaining
sleep.

Studies suggest that COVID-19 has had diverse effects on those it afflicts. Some individ-
uals report no lasting symptoms while others suffer from a multitude of long-term problems.
According to a recent meta-analysis, 72% of COVID-19 survivors report having at least one
persistent long-term symptom [18]. Among the long-term symptoms reported were insom-
nia and other sleep disorders. Furthermore, 57% of subjects with long-term COVID-19
symptoms reported having problems with sleep, according to a systematic review [24].

Normal human sleep is commonly divided into two types of sleep: rapid eye movement
(REM) sleep and non-REM (NREM) sleep. REM sleep is associated with dreaming while
NREM sleep is further subdivided into progressively deepening sleep stages; N1, N2 and
N3, where N1 is the lightest sleep stage and N3 is deep sleep often referred to as slow wave
sleep. Normal sleep alternates between all sleep stages in cycles of 60-90 minutes throughout
the night where N3 and REM are most prominent in the beginning and end of the night,
respectively. Therefore, measuring how much time spent in each sleep stage is one of the
variables used to determine objective sleep quality [25], [26].

Polysomnography (PSG) is the golden standard for objective sleep measurements, and
it involves noninvasive electrodes placed on the subject measuring electroencephalogram
(EEG), electrooculogram (EOG), electrocardiogram (ECG), submental and leg electromyo-
gram (EMG) along with respiratory parameters [23]. EEG along with EOG and EMG is
used to quantify different sleep stages [27]. Due to technological advances, PSG, previously
only conducted in a laboratory environment, is now available for self application and home
use [28].

Each sleep stage can be identified by certain characteristics of the EEG and EOG signals.
At sleep onset the fast frequency and low-voltage alpha waves of wake give way to slower
alpha frequencies accompanied by rolling eye movements as the first and lightest sleep stage,
N1, takes over. N2 is characterized by theta waves and phenomena called K-complexes
and spindles. The deepest sleep stage, N3, has high amplitude and slow frequency delta
waves. REM sleep is so called because of the rapid eye movements and more erratic and fast
frequency of the EEG. Other signs to confirm REM sleep is the loss of muscle tone seen in



the EMG signals. The wake scoring refers both to brief arousals and longer periods of wake
during the night if present [25].

Sleep plays a vital role in physical and psychiatric health. The three main components
of good sleep hygiene are: duration, quality, and timing consistency [29]. Long-term
difficulties with sleep have been associated with a multitude of health problems such as:
obesity, hypertension, heart disease, stroke, diabetes, depression, anxiety, and increased risk
of death [30].

Sleep is a complex physiological function that is highly regulated in the central nervous
system on a molecular level. It is one of the universal rules in the animal kingdom, all
complex biological beings need sleep to some extent [31]. Lack of sleep has been shown to
have negative effects on health and cognitive function and has also been shown to weaken
the immune system and elevate the risk of cancer [31], [32].

Environmental factors in a pandemic could be a substantial contributor to higher rates
of insomnia and sleeping difficulties. Factors such as lack of direct sunlight due to home
confinement and depression caused by lack of social contact and pandemic related stress
could contribute to the increase in sleeping difficulties. During the COVID-19 surge in
Italy in March 2020, people in home confinement were experiencing poorer sleep quality
even though they spent more time in bed than usual [33]. The Insomnia Severity Index
was used in China to survey the subjective sleep status in a COVID-19 affected population
and 20% were found to have clinical insomnia [34] and over a third of health-care workers
in China had insomnia during the COVID-19 outbreak [35]. The pooled prevalence of
sleep disturbances in multinational pandemic affected populations was found to be 34% and
insomnia 23% according to a meta-analysis [36]. Health-care workers had higher rates of
insomnia compared to non-health-care workers [37]. Sleep disturbances have many causes,
and it is well documented that traumatic events impact sleeping patterns and can cause sleep
disturbances [38]. It can be argued that the COVID-19 pandemic is causing collective trauma
to whole societies which could be a possible contributor to the higher rates of insomnia [39].

The effects of viral infections on objective sleep are not well known, but subjective
measures from COVID-19 survivors suggest negative impact on sleeping patterns [16], [36].
It is therefore reasonable to assume that COVID-19 infection or COVID-19 related factors
have negative effects on subjective sleep but further research is needed to investigate whether
a relationship between objective sleep measures and long-term COVID-19 symptoms exists.

Viral infections, in particular influenza and human immunodeficiency virus infections
have been shown to change sleep in humans. Increased N3 in the second half of night,
increased night-time awakenings and changes in REM sleep patterns are among the effects
described [40], [41]. A bidirectional relationship has been proposed between sleep and the
immune system. When the immune system is activated by a pathogen it can either cause
enhanced sleep or disrupted sleep [42]. The main theory of why sleep is enhanced during
an immune response is to promote host defenses but, regarding why sleep disruption occurs,
the assumption is that it depends on the severity of the infection and type of pathogen [42].
Moreover, lack of sleep can increase susceptibility to infections due to neuroinflammation
and blood-brain-barrier leakage of antigens and inflammatory factors into the brain [43],
[44].

Machine learning in medicine has widely been found powerful to identify clinically
relevant patterns. Its uses vary from classification of medical images for diagnosing purposes
to aggregation of data to predict outcome, behaviour, disease prevention and treatment. Their
computational capabilities allow for concise pattern recognition and interpretation on large
heterogenous biomedical datasets [45]. Machine learning algorithms have been shown to
accurately detect sleep disorders such as obstructive sleep apnea [46] and detect seizure
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activity in EEG signals [47], [48]. Automatic sleep staging using various deep learning
methods has been well established with promising performance [49]. Since the standard
practice is for sleep experts to visually score sleep stages, it could be theorized that the EEG
signal, the main signal for sleep staging, may contain additional patterns undetectable by the
human eye. Such patterns might allows us to understand the microstructure of sleep further.

Various mathematical methods for extracting information from big datasets, generally
termed machine learning, have been described. Machine learning methods are commonly
divided into three types: supervised, unsupervised and reinforcement learning. Supervised
learning algorithms learn from a set of labelled feature vectors while unsupervised learning
algorithms use non-labelled features to discover patterns in the data. Reinforcement learning
involves the algorithm learning through trial and error over time using reward maximisation
[50]. Two subfields of supervised learning are classification and regression and the main
difference between them being that the target variable for classification is discrete while for
regression the target is continuous. The general supervised learning procedure is to fit the
feature data of the target variable to the model in a process called model training. Afterward,
its performance can be evaluated by predicting the target variable using unlabelled data not
used in the training. Classification models take in an unlabelled feature vectors and output
a discrete prediction of the target variable commonly termed class label. While regression
models also take in an unlabelled feature vector the prediction is not a class label but a real
valued continuous target variable [50], [51].

Three models are proposed for investigation of changes in EEG morphology: Decision
Tree, Random Forest and a neural network called Multilayer Perceptron (MLP). Decision
trees are weak learners but yet they are popular decision making tools. Their name is
derived from their growing nature. From the root node the input data is split according to
a decision criteria at each node. Eventually, the splits stop according to certain stopping
parameters [50]. Ensemble models are so called because they are constructed of a collection
of weak learners. One such model is the Random Forest which is a tree based classification
method where a combination of decision trees are deployed in tandem to form a majority
decision classification [52]. Neural networks get their name from their similarity to the
human nervous system. The endeavour of finding a mathematical description of the brain’s
ability to process information was the inception of neural networks in machine learning [50].
Neural networks are essentially models that perform series of functional transformations on
an input of independent variables. In the first layer the input variables are transformed into
linear combinations termed weights and biases. At each layer in the network the weights and
biases are passed through nonlinear activation functions [50].

Error metrics are important for evaluation of machine learning model performance.
The most important performance metrics are based on the confusion matrix, which is a
matrix depicting how many observations the model has correctly or incorrectly classified.
For binary classification problems the F1-score and AUC are the most robust performance
metrics because they are less likely to be affected by class imbalance. However, it is not wise
to rely too heavily on one performance metric and therefore studying the confusion matrix
and the derived metrics mentioned to gain information on the prediction behaviour of the
estimator is useful[53], [54].

The unique opportunity has presented itself in the data from DeCODE’s Icelandic Health
Study, where self administered sleep studies were conducted on individuals before and after
contracting COVID-19. This may reveal if long term effects of COVID-19 cause disruption
of normal sleep patterns.

The primary objective was to investigate whether there is a detectable difference in
sleep quality before and after COVID-19 infection. Both parametric and non-parametric



analyses were conducted to investigate whether a difference is present. Since there is
evidence that viral infections may affect certain aspects of sleep are evaluated such as sleep
duration, fragmentation and sleep stages. In particular, changes in REM and deep sleep have
been linked with viral infections and are thus specially analysed. Additionally, due to the
respiratory symptoms caused by COVID-19 the oxygen saturation measures are included in
the analysis. The main hypothesis is that COVID-19 causes shorter sleep time, decreased
sleep efficiency and poorer sleep quality in terms of REM and deep sleep as well as increased
sleep fragmentation (arousals). The hypothesis further postulates that the oxygen saturation
measures are lowered and mean heart rate elevated in response to COVID-19.

The secondary objective was to use the aforementioned machine learning methods on
EEG signal features to discern possible changes in the EEG signal. Classifiers are trained
on EEG signal epoch features from different sleep stages to predict whether features are
from a sleep measurement before or after COVID-19 infection. The aim is, therefore,
to investigate the possible effects of a COVID-19 infection on sleep quality by detecting
patterns in EEG signals that are otherwise undetectable by the human eye. Therefore, the
secondary hypothesis is that COVID-19 causes changes in the EEG signal morphology and
the microstructure of sleep.



Chapter 2
Methods

2.1 Cohort and Data Collection Methods

The cohort consisted of 33 participants in the Icelandic Health Study designed by DeCODE
(Reykjavik, Iceland) that had completed two separate one-night sleep studies in the time
period from December 2017 to September 2021. Of the 33 participants 14 were diagnosed
with COVID-19 in between the two studies. The Icelandic Health Study is a study designed
to understand the genetic risk factors of diseases in the Icelandic population. The study
includes several measurements ranging from sight, smell and hearing to a neurological
workup, exercise stress tests and sleep studies [55], [56].

The inclusion criteria set for this study was that the PSG needed to be scoreable by a
sleep technologists and at least 4 hours of sleep per recording. The initial cohort consisted
of 33 participants (n=66) but due to poor EEG signal quality, 10 of the 66 sleep studies were
not scoreable and thus excluded from analysis and further 8 studies were excluded because
either the first or second study had been previously excluded. The resulting cohort therefore
consisted of 24 participants (n=48), of which 11 had COVID-19 between studies. A cohort
flowchart can be seen in Figure 2.1. For the secondary objectives, 4 of the 11 measurement
pairs that had COVID-19 in between studies, one or both of the raw signal recordings were
lost and therefore only 7 of 11 study pairs were used in the machine learning part of the
thesis.

2.1.1 Self Applied Somnography

The measurement equipment used was the Self Applied Somnography (SAS) setup from Nox
Medical (Nox Medical, Reykjavik, Iceland) which can be seen in Figure 2.2a. As the name
implies the equipment is designed to be self applied and worn while sleeping at home. The
setup is equivalent to a type II polysomnography setup but with a simplified forechead EEG
and the chin EMG omitted. It further includes sound recording and breathing measurements;
oxygen saturation and pulse, airflow through the nose and breathing movements via thoracic
and abdomen belts. The simplification of the EEG equipment results in a reduction of power
in the signal, but has been shown to be adequate for sleep stage classification [57]. The
simplified forehead EEG is shown in Figure 2.2b. The forehead EEG includes four EEG
channels and four EOG channels.
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\
33 participants - 66
recordings in total

J

p
« |10 recordings excluded

1  due to poor quality
.
\ 4
\
31 participants -
56 recordings
J

8 recordings excluded
due to missing first or
second recordings

4
Final cohort:
24 participants - 48
recordings in total

Figure 2.1: Cohort flowchart including the two exclusion criteria.

(a) Self Applied Somnography (b) Simplified forehead elec-

full setup. troencephalography (EEG)
setup. The EEG channels are
labelled AF3, AF4, AF7, AF8.

Figure 2.2: Self applied somnography full body setup and electroencephalography configu-
ration. Figures from Nox Medical, Reykjavik, Iceland.
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Table 2.1: Overview of primary and secondary evaluation variables.

Primary Variables Secondary Variables
Total Sleep Time [min] Sleep Latency [min]
Sleep Efficiency [%] Arousal Index [arousals/hour]
N3 Stage [min] AHI
REM Stage [min] ODI
Mean Oxygen Saturation [%] | Oxygen Saturation below 90% [min]
Mean Pulse [bpm]

Abbreviations: REM, rapid eye movement; ODI, Oxygen desaturation
index; AHI, Apnea-hypopnea index; bpm, beats per minute.

2.2 Sleep Data Annotation

Annotation of the data was performed by expert sleep technologists in accordance with
version 2.6 of the American Academy of Sleep Medicine(AASM) scoring manual [58] using
Noxturnal software, version 6.2.2 (Nox Medical, Reykjavik, Iceland). In addition to sleep
stages, breathing events such as snoring, apneas and hypopneas were scored. After sleep
scoring summary values of total sleep time (TST), sleep efficiency (SE) and duration in each
of the sleep stages were calculated. Oxygen saturation and pulse measurements were also
processed and the average measures of oxygen saturation, time of oxygen saturation below
90% and pulse were automatically calculated over the sleep period. Other derived sleep
quality measures were sleep latency(SL) and arousal index (AI). SE is defined as the ratio
between total sleep time and time spent in bed and Al is a measure of sleep fragmentation.
It is defined as the number of arousals per hour of sleep [59], [60]. Sleep latency refers
to the time from trying to fall a sleep until first stage of light sleep is detected [61]. The
primary variables for evaluation were chosen to best reflect sleep quality and respiratory
health. The variables chosen as primary were TST, SE, duration in stages N3 and REM,
mean oxygen saturation and mean pulse. The secondary variables of evaluation were SL,
Al, apnea-hypopnea index (AHI), oxygen saturation index (ODI), and duration of oxygen
saturation being below 90%. AHI is defined as the number of apneas and hypopneas per
hour of sleep [62]. ODI is a measure of the number of oxygen saturation decreases by > 3%
per hour [63]. Table 2.1 summarizes the primary and secondary variables of evaluation in
the primary objectives of this thesis.

2.3 Statistical Analyses

The significance threshold in the statistical analyses was chosen to be <0.05 because of the
small number of study pairs (n=24). All statistical and power analyses in this thesis were
conducted in Python 3.9 [64] with the exception of the Alinged Rank Transform ANOVA
discussed in section 2.3.2 which was performed in R 3.6.3 [65].

2.3.1 Parametric Analysis

When investigating the possible changes between the sleep studies, a paired t-test was used.
Since the number of observations is small for all variables of interest, the likelihood of
detecting significant differences between the studies using the paired t-test is low due to
deficiency in analysis power [66]. Accordingly, a power analysis was conducted with p<0.05
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to evaluate both the power of the paired t-test and to investigate how big the dataset would
need to be to get at least 80 % power. The power analysis was performed using the Python
package pingouin [67].

2.3.2 Aligned Rank Transform Analysis of Variance (ART ANOVA)

As a non-parametric alternative, full factorial analyses of variance (ANOVA) were applied
with prior aligned rank transform(ART) of the data to facilitate its multifactorial nature. The
ART ANOVAs were done using ARTool package in R [68].

Non-parametric tests such as Mann-Whitney U and Wilcoxon are usually one-way and
therefore only take one factor into account per analysis. The aligned rank transform was
invented to bridge that gap and enable easier comparison for multifactorial data. The
procedure consists of alignment steps followed by a ranking step. The data in this study
has two factors, COVID-19 and measurement number. The levels of the COVID-19 factors
are before COVID-19 infection and after COVID-19 infection. The measurement factor
has the levels first or second measurement. Three ANOVAs are performed for each of the
primary and secondary variables. First, the data is aligned and ranked solely in regards to the
COVID-19 factor and will only measure the effect of that factor. For the second ANOVA the
data is aligned and ranked in regards to the measurement factor and the third ANOVA is with
regards to both factors which therefore measures the interaction effect of the two factors.

2.4 Machine Learning Methods

The data in this part of the study consists of the raw EEG signals from seven of the COVID-
19 affected subjects, where each subject had two nights worth of EEG signals comprising 4
channels. The data can therefore be split into two classes; No COVID-19 class consisting of
seven recordings from before contacting COVID-19 and COVID-19 class which consists of
epochs from seven recordings after contracting COVID-19. The machine learning methods
used in this thesis are three different supervised classification models: Decision Tree [69],
Random Forest [52] and Neural Network called Mulitlayer Perceptron [70].

2.4.1 Signal Preprocessing and Feature Extraction

The raw signals were exported from the Noxturnal software with a sampling frequency of
200 Hz. The signal was trimmed to fit the start and end of annotation from the scoring files
and split into 30 second epochs where only scored epochs were included. Each epoch was
assigned a sleep stage according to the annotation and a label of either no COVID-19 class
or COVID-19 class.

In addition to using the whole dataset, the dataset was also further split into five smaller
datasets according to their scored sleep stage (N1, N2, N3, REM and Wake). Therefore, six
datasets were trained with the three machine learning methods proposed. Table 2.2 outlines
the composition of the six datasets. The binary class distribution of each dataset gives a
benchmark for the prediction accuracy, their goal is to predict better than random guessing
and therefore the accuracy to beat is the class distribution.

Feature extraction of signals relates to extraction of descriptive information from raw
signals where each feature gives insight into a specific aspect of that signal. Features of
signals can be subdivided into four categories: time domain features, frequency domain
features, time-frequency domain features and nonlinear features [71]. In this thesis, the final
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Table 2.2: Total number of epochs and ratio of epochs in class after

COVID-19.
Dataset No. | No. COVID-19 class | % COVID-19 class
All epochs | 49250 26116 53.0%
NI epochs | 4668 2996 64.2%
N2 epochs | 19708 10516 53.4%
N3 epochs 9844 4612 46.9%
REM epochs | 10368 5628 54.3%
Wake epochs | 3540 2240 63.3%

Abbreviations: REM, rapid eye movement.

number of features extracted was 20 where most of the features were from the time domain
except two that were from the frequency domain.

2.4.1.1 Time Domain Features

Time domain features are descriptive of the morphology of the signal in real time and
are usually statistical measures. The time domain features extracted from the signals were
physical high, physical low, mean, standard deviation and variance, median, Fisher-Pearson
coeflicient of skewness and Fisher kurtosis of each epoch. All time domain features were
calculated using the Python packages numPy [72] and sciPy [73].

Signal envelopes are commonly used for amplitude analysis of signals [74]. The upper and
lower signal envelopes were calculated for each epoch using cubic spline interpolation and
the same time domain features were calculated for both envelopes. Cubic spline interpolation
is a method of fitting a set of continuous cubic polynomials to a set of points. In the case
of upper and lower signal envelopes the points to be fitted are the highest and lowest points,
respectively, of the signal in a particular window [75].

24.1.2 Frequency Domain Features

The frequency domain feature extracted was the Power Spectral Density(PSD) estimation
using Welch’s method. The method first segments the signal, uses finite Fourier transform
to form periodograms of each segment followed by averaging of all the periodograms. The
segmentation step is formulated in equation 2.1.

xm(n) 2wn)x(n+mR) n=0,1,.. M-1, m=0,1,...,K—-1 2.1

Where R is defined as the window hop size, K is the number of segments. Equation 2.2
shows the periodogram for the m-th segment.

N-1 2

Z xm(n)e—jZan/N

n=0

Py, m(wi) = — (2.2)

M

The formulation for the Welch estimate is shown in Equation 2.3.

K-1

A 1

§¥(wp) £ X Z Py, m(wi) (2.3)
m=0
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The Welch PSD estimate is thus the average of the periodograms over time [76], [77]. The
PSD was calculated for each epoch using the Python package SciPy. Further, the Absolute
Power and Spectral Entropy of each epoch was derived from the PSD. The Absolute Power
was calculated using composite Simpson’s rule which is an approximation of the area under
the PSD graph and is shown in Equation 2.4. The Spectral Entropy is a measure of how
uniform or complex the energy distribution of the signal is in the frequency domain [78].
The Spectral Entropy was calculated as the Shannon entropy of the PSD and is defined in
Equation 2.5 where p is the power at frequency f [47].

h —
'/Lﬂﬂdxzégﬁ{ﬂm+4f(£§£)+f®4 (2.4)

1
= l i 2.5
H(f) ;Pf 0g (pf) (2.5)

2.4.2 Models for Classification

All models in this thesis are trained and evaluated using the sklearn Python package which is
a open source tool for machine learning data analysis [79]. In section 2.4.3 the metrics used
for model performance evaluation are discussed. Each model has certain hyperparameters
that can be used to optimize for best performance. Hyperparameter tuning was done using the
function GridSearchCV where a grid search of all parameters was performed to determine
the parameters that result in the best performance of the models.

2.4.3 Model Performance Evaluation

The performance measures used in this thesis are accuracy, recall, precision, F1-score and
area AUC. For a binary classification problem the classes can be represented as positives and
negatives. True positives and true negatives represent when the model’s prediction is correct.
False positives and false negatives are the exact opposite, namely when a feature vector is
incorrectly predicted as either positive or negative and the actual class of the feature vector
contradicts the prediction. To maximize the performance of model the aim is to minimize the
false positives and negatives and therefore maximize the ratio of correctly predicted feature
vectors.

Accuracy is defined as the ratio of total true predictions of the total feature vectors in the
test set as shown in equation 2.6 [53].

| TP +TN 06
ccuracy = .
Y= TP+TN+FP+FN

Precision is the ratio of correctly predicted positives of total positive predictions. This
metric describes how many of those who were classified as positive are actually positive.
Recall is the ratio of correctly classified positives of the total number of observations in
the positive class [53]. Precision and Recall are defined as shown in equations 2.7 and 2.8,
respectively.

. TP
Precision = ——— 2.7
TP+ FP
TP
Recall = ——— (2.8)

TP+ FN
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Fl-score is usually a more useful metric than accuracy, especially in cases where the
distribution of classes is uneven [53]. The F1-score is based on Precision and Recall as can
be seen in Equation 2.9.

Flscore = 2. (Pre.ci.sion + Recall) 2.9)
Precision + Recall

AUC is a performance measure based on the Receiver Operating Characteristic (ROC)
curve which is the Recall(True Positive Rate) plotted against the False Positive Rate (FPR).
The formula for FPR is shown in Equation 2.10. The AUC is an approximation of the area
under the ROC curve [54] where random guessing has the AUC of 0.5 or 50%.

FP
FPR = —— (2.10)
FP+TN

2.4.3.1 Feature Importance

Feature importance of a model relates to identifying the features in the data that have
most impact on the prediction performance [80]. The method used to find the feature
importances is called permutation. The Python package sklearn offers a function called per-
mutation_importance for computing permutation average feature importances. Permutation
is a process where one feature at a time is randomly shuffled and the model subsequently
evaluated to look for negative effects on performance. The features that have the biggest
negative effect on the performance are the most important features [52].

2.4.4 Hyperparameter Tuning

To identify the hyperparameters that resulted in the best performance of each model a grid
search was performed using the function GridSearchCV. Before any model fitting the datasets
were randomly split into training and test sets and the test set size was chosen to be 20%.
Which means that 20% of each dataset is not used in the grid search or to fit the models so that
the model’s performance can be reliably evaluated by comparing predictions with the actual
labels of the test set. The cross validation used in the grid search to monitor performance
was 5-fold [81].

The method of cross validation grid search is computationally expensive and therefore
it was carried out on the Sleep Revolution computer cluster which reduced the computation
time considerably and allowed for a larger parameter grid. However, Random Forest performs
best with a large number of trees and MLP performs best with many iterations and hidden
layers and for that a grid search is time consuming even though it was performed on a
computer cluster. Therefore, instead of using the whole datasets when grid searching for best
parameters for Random Forest and MLP a random sample of 1000 was used.

Since this particular classification problem had never been applied to machine learning
there were no good guidelines for choosing hyperparameters for the models. The hyperpa-
rameters that were considered to be most important to each model and likely to have the most
effect on the performance were included in the grid search. The values for each parameter in
the grid were chosen to be of an adequately wide range and based on other similar projects
where machine learning is applied to classify EEG signal epochs [48], [82], [83].
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Table 2.3: Tree models hyperparameter grid.

Paramater Model:Type/[ Values] Description

RF: [100-300], stepsize: 100 | The number of tree estimators in the model
- only applicable in the ensemble tree
model Random Forest.

n_estimators

e . DT, RF: Gini Impurity, The impurity measure used as the
criterion . o
Entropy splitting criterion.
max depth DT: [3-15], stepsize:1 Maximum depth of a tree,
-aep RF: [50-200], stepsize: 50 limits the number of splits allowed.
DT, RF: [20-50], stepsize: 10 | Minimum sample size for a split,
min_samples_split if the sample size in the node is lower than this
parameter the node becomes a leaf.
DT, RF: Vn_features, log, Maximum number of features to
max_features . 1 .
consider when deciding a split.
DT, RF: [1, 4, 6, 10] Minimum number of samples allowed in a leaf

min_samples_leaf .
—Sampres._. node - stops a split if there are too few

samples left in the node.

RF: True, False Decides whether bootstrap samples of the data
is used to fit each tree in a forest or the whole
dataset is used to fit each tree estimator.

bootstrap

Abbreviations: RF, Random forest; DT, Decision tree.

2.4.4.1 Tree-based Hyperparameters

As previously discussed, Decision Tree and Random Forest models are both tree-based and
the hyperparameters used to tune them are the same. Since the Random Forest model is
made up of multiple Decision Trees it has a few additional hyperparameters to tune and two
were added in the tuning process. The additional parameters for the Random Forest models
are the number of tree estimators and whether each tree gets a random sample as input
(bootstrapping). Table 2.3 lists and explains the hyperparameters used to tune the tree-based
models and the parameter grid values.

2.4.4.2 Neural Network based Hyperparameters

Neural Networks are complex models and have several tunable hyperparameters. The main
parameters for the MLP relate to the mathematical model and structure of the hidden layer.
The number of neurons in the hidden layers, activation function of the neurons and how the
optimization of the weights is brought about. The activation functions most commonly used
are identity-, logistic sigmoid-, hyperbolic tangent and rectified linear unit (ReLLU) function.
The functions most useful in binary classification problems are the logistic sigmoid an
hyperbolic tangent functions and ReLLU is the most diverse of the activation functions and
therefore all three are used [84]. The solver parameter decides the numerical method for
optimization of the weights and the grid includes two stochastic gradient descent (SGD)
methods. A summary of the hyperparameters used to tune the MLP classifier is shown in
Table 2.4.
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Table 2.4: MLP model hyperparameter grid.

Paramater

Type/[ Values]

Description

hidden_layer_sizes

[(50, 50), (50, 100), (100, 100),
(50, 100, 100), (100, 100, 100)]

The number of hidden layers and neurons
in each hidden layer.

activation ReLU, Sigmoid, The activation function in the hidden layer.
Hyperbolic tan
solver Adam, SGD The solver used for weights optimization.
[1500, 2500] Maximum number of iterations - the solver
max_iter iterates until convergence determined by
the tolerance which is 1 - 1074,
. Constant, Adaptive The learning rate plan for weight updates -
learning_rate . -
either adaptive or constant.
[0.01, 0.1] The starting learning rates -

learning_rate_init

step sizes in the SGD weights optimizers.

Abbreviations: ReLLU, Rectified linear unit function; SGD,

Stochastic gradient descent.
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Results

The cohort’s demographic descriptors are summarized in Table 3.1. Of the 24 participants
in the final cohort, 11 were male and 13 were female. The mean age was 51 years and mean
BMI was 28.1 kg/m?. Hypertension had been diagnosed in 6 of 24 participants. Four of
the 11 participants that got COVID-19 were male. In total, three of the participants that got
COVID-19 fulfilled the criteria [85] of having long-term COVID-19 symptoms and of those
one was male.

3.1 Statistical Analyses

The paired t-test showed significant difference between studies in only one of the primary
variables for the COVID-19 group: Mean oxygen saturation. It showed an increase in mean
saturation between the two studies (p=0.04). All other variables, both primary and secondary
had p-values above the significance threshold. Table 3.2 shows the results of the paired t-test
for primary and secondary variables.

Table 3.3 show the power of the paired t-test for the primary and secondary variables of
both groups. Further, the results of the analysis to test for minimum sample size to guarantee
80% power is shown in Table 3.4 for all variables. The only variable that has sufficient power
is sleep latency in the control group. However, for the COVID-19 group sleep efficiency
would only need two more measurement pairs (N=13) to get 80% power.

3.1.1 Aligned Rank Transform ANOVAs
The ART ANOVAs were performed with regards the both factors, COVID-19 status and

measurement number. Subsequently, three ANOVAs were performed on all primary and

Table 3.1: Demographic descriptors
of the cohort.

Cohort Descriptors

% Male 46.0

Age [years] 51.0 £ 14.0
BMI [kg/m?] 28.1 £5.8
% Hypertension 17.0

Abbreviations: BMI, Body mass in-
dex.
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3.1. STATISTICAL ANALYSES

Table 3.3: Power analysis of paired t-test for primary variables for COVID-19
group and Controls.

Variable COVID-19(N=11) Controls(N=13)

[Power] [Power]
Total Sleep Time 0.10 0.13
Stage N3 0.20 0.19
Stage REM 0.08 0.14
Sleep Efficiency 0.73 0.05
Mean Oxygen Saturation 0.17 0.08
Mean Pulse 0.11 0.06
Sleep Latency 0.51 0.97
Arousal Index 0.08 0.24
Oxygen Saturation below 90% 0.05 0.36
ODI 0.17 0.12
AHI 0.19 0.12

Abbreviations: REM, rapid eye movement; ODI, Oxygen desaturation index;
AHI, Apnea-hypopnea index.

Table 3.4: Minimum number of samples needed to ensure 80% power of
paired t-test on primary variables for COVID-19 group and Controls.

Variable COVID-19(N=11) Controls(N=13)

[N samples] [N samples]
Total Sleep Time 164 125
Stage N3 59 77
Stage REM 269 114
Sleep Efficiency 13 6759
Mean Oxygen Saturation 74 349
Mean Pulse 141 1906
Sleep Latency 20 8
Arousal Index 328 56
Oxygen Saturation below 90% 4276 36
ODI 75 148
AHI 63 157

Abbreviations: REM, rapid eye movement; ODI, Oxygen desaturation index;
AHI, Apnea-hypopnea index.
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Table 3.5: Results from three ANOVAs performed on all variables with regards to factors
COVID-19, measurement and both COVID-19 and measurement factors together.

Variable Factor F-value | p-value
COVID-19 0.72 0.40
Total Sleep Time [min] Measurement 0.34 0.56
COVID-19:Measurement | <0.01 0.96
COVID-19 1.34 0.25
Stage N3 [min] Measurement 0.62 0.43
COVID-19:Measurement | 0.003 0.95
COVID-19 0.03 0.87
Stage REM [min] Measurement 0.78 0.38
COVID-19:Measurement 0.10 0.75
COVID-19 0.12 0.73
Sleep Efficiency [%0] Measurement <0.01 0.99
COVID-19:Measurement 0.01 0.91
COVID-19 1.44 0.24
Mean Oxygen Saturation [ %] Measurement 0.02 0.90
COVID-19:Measurement 0.16 0.69
COVID-19 0.01 0.90
Mean Pulse [bpm] Measurement 0.09 0.77
COVID-19:Measurement 0.04 0.84
COVID-19 <0.01 0.95
Sleep Latency [min] Measurement 0.78 0.38
COVID-19:Measurement 0.41 0.53
COVID-19 0.49 0.49
Arousal Index [arousals/hour] Measurement 0.44 0.51
COVID-19:Measurement 0.19 0.67
COVID-19 0.93 0.34
Oxygen Saturation below 90% [min] Measurement 0.06 0.80
COVID-19:Measurement 0.09 0.76
COVID-19 2.08 0.16
ODI Measurement 0.02 0.89
COVID-19:Measurement 0.03 0.86
COVID-19 0.76 0.39
AHI Measurement <0.01 0.98
COVID-19:Measurement | <0.01 0.97

Abbreviations: REM, rapid eye movement; ODI, Oxygen desaturation index; AHI, Apnea-
hypopnea index; bpm, beats per minute.

secondary variables: COVID-19 main effect, measurement main effect and interaction effect
of both COVID-19 and measurement factors. No significant difference was found in terms
of main or interaction effects of the factors. A possible trend towards decrease can be seen
in ODI with regards to the COVID-19 factor. Table 3.5 shows the result of the three ART
ANOVAss for the primary and secondary variables.
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3.2 Machine Learning Methods

In this section the results of the machine learning methods are presented. The machine
learning models were tested on six datasets, five different datasets made up of epochs from
the different sleep stages (N1, N2, N3, REM, Wake) and also the whole dataset with all
epochs from all sleep stages. In the following six sections the performance evaluation of
the three types of models, Desicion Tree, Random Forest and MLP on all six datasets are
presented along with confusion matrices and seven largest permutation feature importances
of the best performing model. The hyperparameters that resulted in the best performance of
the models for the six datasets can be found in Appendix A. All Python functions used in
signal processing, feature extraction and to train and test the machine learning methods can
be found in Appendix B.

3.2.1 Whole Dataset

The performance metrics for the three models trained with the whole dataset, consisting
of 49250 feature vectors are shown in Figure 3.1. The benchmark for accuracy was 53%,
that is if randomly sampled the likelihood of the sample being from the COVID-19 class is
53%. The Random Forest model, when fitted to the whole dataset, had the overall highest
performance metrics of the three models tested, with the Decision Tree a close second and
MLP performs worse than both tree based models. The Random Forest model had 64.1%
accuracy, 64.9% recall, 66.3% precision, 65.6% F1-score and 64.0% AUC. The parameters
that resulted in the best performance when the models were fitted to the whole dataset are
shown in Table A.1 in Appendix A. The confusion matrices for the three models can be seen
in Figure 3.2. The confusion matrices show a prediction bias towards the COVID-19 class
as the majority of the predictions of all models were for the COVID-19 class. For the best
performing model, Random Forest, the most important feature was lower envelope standard
deviation and the second most important feature was upper envelope standard deviation.
Figure 3.3 shows the mean importance of the seven most important features of the Random
Forest model when fitted to the whole dataset.

3.2.2 N1 Dataset

The N1 dataset is the second smallest dataset with 4668 feature vectors and 64.2 % belong
to the COVID-19 class which makes it the most imbalanced dataset. When tested all models
had similar performance measures with Random Forest performing slightly better in all
metrics. The performance metrics of all three models can be seen in Figure 3.4. The AUC
of the Random Forest, was 64.2% but around 60% for both Decision Tree and MLP. The
confusion matrices in Figure 3.5 show that the majority of predictions for all the models
is the COVID-19 class which consequently results in high recall for all models, especially
for Random Forest and MLP. The mean feature importances of the seven most important
features for the best performing model, Random Forest, are shown in Figure 3.6. The most
important feature was epoch maximum with almost double the importance of the second most
important feature, epoch minimum. Excluding the most important feature, epoch maximum,
the six other features have similar mean importances. The best hyperparameters that resulted
in the best performance for the three models are shown in Table A.2 in Appendix A.
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Figure 3.1: Performance statistics for Decision Tree, Random Forest and Multilayer percep-
tron classifiers trained on the whole dataset.

3.2.3 N2 Dataset

The N2 dataset is the largest of the sleep stage datasets and includes almost half of the whole
dataset, that is 19708 feature vectors. The class distribution is evenly balanced with 53.4% in
the COVID-19 class. After being fitted to the N2 dataset all the models performed similarly
in all metrics as seen in Figure 3.7. Nevertheless Random Forest had the highest performance
in all metrics except recall which was 65% and was best for the Decision Tree. The best
performing model, Random Forest had 65.2% accuracy, 64.8% recall, 67.8% precision,
66.3% F1-score and 65.2% AUC. The parameter grids used to tune the three models are seen
in Table A.3 in Appendix A. The confusion matrices show that all models have a similar
number of TP, but the Random Forest has the highest number of TN which results in the
slightly better performance metrics. Figure 3.8 shows the confusion matrices for the three
models. The seven most important features of the Random Forest, the best performing model,
fitted to the N2 dataset can be seen in Figure 3.9. The most important feature was upper
envelope skew and epoch minimum, but all seven most important features have similar mean
importance, that is many features have similar effect on the predictions of the model.

3.2.4 N3 Dataset

The N3 dataset consist of 9844 feature vectors and is adequately balanced with 46.9%
belonging to the COVID-19 class. Figure 3.10 shows the performance metrics for the
three models when fitted to the N3 dataset. The Random Forest classifier had the highest
performance in all metrics when fitted to the N3 dataset. It has 71.8% accuracy, 59.1%
recall, 75.9% precision, 66.4% Fl-score and 71.1% AUC. Decision Tree and MLP had
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Figure 3.2: Confusion matrices for the three models tested on the whole dataset.
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Figure 3.3: Seven highest feature importances of 20 features for the best performing model,
Random Forest, fitted to the whole dataset.
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Performance of classifiers on N1 dataset
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Figure 3.4: Performance statistics for Decision Tree, Random Forest and Multilayer percep-
tron classifiers trained on the dataset consisting of N1 epochs.

similar and slightly lower performance metrics compared to the Random Forest. The MLP
has the lowest performance metrics, particularly the 50.2% recall. The confusion matrices
in Figure 3.11 indicate a prediction bias toward the No-COVID-19 class for all of the models
but the more severe bias seen in the Decision Tree and MLP models. The largest feature
importance for the best performing model, Random Forest, was epoch minimum. The second
most important feature, with similar importance, was epoch standard deviation. The 7 most
important features for the Random Forest models can be seen in Figure 3.12. The parameter
grids used to tune the three models on the N3 dataset are shown in Table A.4 in Appendix A.

3.2.5 REM Dataset

The REM dataset consists of 10368 feature vectors and 54.3% are in the COVID-19 class.
When trained on the REM dataset all classifiers had similar performance but the Random
Forest classifier had better overall metrics. It had 66.0% accuracy, 69.8% recall, 69.9%
precision, 69.8% F1 score and 65.4% AUC. The performances of all three models are
displayed in Figure 3.13. The confusion matrices for the three models are shown in Figure
3.14. The confusion matrices show that the majority prediction for all models was the
COVID-19 class. The Random Forest hast the highest number of TP and TN which results
in the best overall metrics. The Decision Tree had the highest number of FP and MLP had
the highest number of FN. The feature importances reveal that the most important feature of
the Random Forest model was entropy with more than double the mean importance of the
second most important feature, epoch maximum. The seven most important features of the
Random Forest model can be seen in Figure 3.15. The hyperparameters that resulted in the
best performance of the models are in Table A.5 in Appendix A.
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Figure 3.5: Confusion matrices for the three models tested on the N1 dataset.
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Figure 3.6: Seven highest feature importances of 20 features for the best performing model,
Random Forest, fitted to the N1 dataset.
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Figure 3.7: Performance statistics for Decision Tree, Random Forest and Multilayer percep-
tron classifiers trained on the dataset consisting of N2 epochs.

3.2.6 Wake Dataset

The Wake dataset is the smallest dataset with 3540 feature vectors and it has the second most
class imbalance of all the datasets with the majority class being COVID-19 with 63.3% of
the feature vectors in the set. The performance metrics of the three models when trained
and tested on the Wake dataset can be seen in Figure 3.16. The Random Forest has the
best performance according to all metrics. The Random Forest has 73.7% accuracy, 84.7%
recall, 76.5% precision, 80.4% F1-score and 69.6% AUC. The confusion matrices in Figure
3.17 indicate that all three models show a prediction bias towards the COVID-19 class where
MLP has the most severe bias. The confusion matrix of the Random Forest model shows
how it had the highest number of both TP and TN and therefore the best performance. The
parameters that resulted in the best performance when the models are trained on the Wake
dataset can be seen in Table A.6 in Appendix A. The seven most important features for
the best performing model are shown in Figure 3.18. The most important features for the
Random Forest classifier is entropy. Two of the seven most important features have almost
negligible mean importance.
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Figure 3.8: Confusion matrices for the three models tested on the N2 dataset.
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Figure 3.9: Seven highest feature importances of 20 features for the best performing model,
Random Forest, fitted to the N2 dataset.
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Performance of classifiers on N3 dataset
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Figure 3.10: Performance statistics for Decision Tree, Random Forest and Multilayer Per-
ceptron classifiers trained on the dataset consisting of N3 epochs.
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Figure 3.11: Confusion matrices for the three models tested on the N3 dataset.
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Figure 3.12: Seven highest feature importances of 20 features for the best performing model,

Random Forest, fitted to the N3 dataset.
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Performance of classifiers on REM dataset
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Figure 3.13: Performance statistics for Decision Tree, Random Forest and Multilayer Per-
ceptron classifiers trained on the dataset consisting of REM epochs.
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Figure 3.14: Confusion matrices for the three models tested on the REM dataset.
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Figure 3.15: Seven highest feature importances of 20 features for the best performing model,

Random Forest, fitted to the REM dataset.
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Performance of classifiers on wake dataset
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Figure 3.16: Performance statistics for Decision Tree, Random Forest and Multilayer per-
ceptron classifiers trained on the dataset consisting of Wake epochs.
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Figure 3.17: Confusion matrices for the three models tested on the wake dataset.
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Figure 3.18: Seven highest feature importances of 20 features for the best performing model

fitted to the Wake dataset.
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Discussion

No significant effects of COVID-19 were found on clinical objective sleep quality parameters
for any of the variables tested, except for mean saturation in the COVID-19 group where the
oxygen saturation was slightly elevated between the two studies. This elevation is in direct
contrast to what was hypothesized as COVID-19 is primarily a respiratory infection and can
damage the lungs of the host [3], [86]. This might indicate that the change is due to other
factors such as weight loss or another sporadic effect.

Due to how small the dataset was, it was argued that the paired t-test would not be
powerful enough to detect differences and therefore, a power analysis was conducted. The
power analysis revealed insufficient power to detect a difference in all primary and secondary
variables for both COVID-19 subjects and controls, with the exception of sleep latency for
the control group. As mentioned, the main reason for this power deficiency is likely to be
the smallness of the dataset which consequently results in small effect size. Additionally,
a power analysis was performed to investigate how many more subjects would be needed
to ensure 80% power. Sleep efficiency in the COVID-19 group would have needed two
more measurement pairs to elevate the power to 80%. However, large clinically meaningful
differences could be visible at least as a trend in the data as seen in sleep efficiency of the
COVID-19 group and sleep latency for the controls group.

The non-parametric analysis alternative was ART ANOVA which revealed no significant
difference in terms of any of the factors, that is no differences were significant in terms of the
main effects of the COVID-19 factor or measurement factor, nor the interaction effect between
the COVID-19 and measurement factors. However, a possible trend towards decrease in ODI
can be seen in terms of the COVID-19 factor. These findings indicate that it cannot be
stated with any confidence that COVID-19 affects sleep quality in terms of the primary and
secondary variables evaluated, according to the tests conducted as primary objective of this
thesis.

The secondary objectives were to use three supervised machine learning methods, De-
cision Tree, Random Forest and MLP, to investigate whether it was possible to predict with
adequate confidence whether epoch features from different sleep stages were from a record-
ing before or after contracting COVID-19. The overall best performing dataset was the N3
dataset for the Random Forest classifier. The Random Forest was the overall best performing
classifier with AUC consistently 10% above and up to 21% above random guessing for all
datasets. The second best performance of the Random Forest classifier was when fitted
to the dataset consisting of wake epochs, where the AUC was around 69%. Change has
been described in sleep patterns after viral infections, especially in the REM and N3 stages
which could be the reason for the performance results for the models when fitted to the REM
and N3 datasets [40]—[42]. The good performance of the wake dataset relative to the other
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datasets (N1, N2) might be due to changes in the EEG activity that causes arousals and wake
periods during the night. Although up to 21% over random guessing is not considered high
performance by any measure, the fact that all the models consistently did better than random
guessing, one can postulate that some changes might be present in EEG morphology and
therefore it is worth further investigation.

The reasons for the performance inadequacies could lie either in the dataset, the models
or both. The datasets consisted of features from 30 second epochs of signals sampled at
200 Hz. It can be speculated that the features extracted were weak in terms of detecting
differences and other features might be better suited for detecting differences caused by
COVID-19. According to the feature importances the most important features for the best
performing models were frequently from the time domain and spectral entropy was the
frequency domain feature that consistently was among the seven most important features.
Therefore, these features need further analysis in future studies of these datasets and others.

4.1 Future Work

When working with small datasets the problem often is power of analysis, which means being
able to detect an effect if it exists. The obvious answer to this problem would be to gather
enough data to result in at least 80% power for clinically meaningful differences. However,
that is not always possible and therefore finding analyses where power is higher for a small
dataset should be an option to consider.

The next steps in the machine learning analysis would be to investigate the possible causes
for the changes detected. In this thesis the data consists of epochs from the same subjects in
both classes. By conducting the same experiment on a larger dataset with different subjects in
both classes and adding a control group, could confirm or disprove that the changes detected
are caused by COVID-19.

Since the features extracted from the EEG signal epochs did not result in robust model
performance the next steps could include the addition of more signals from each recording.
As discussed in section 2.1, the self applied PSG collects multiple signals from each subject
and therefore, instead of solely using the EEG signal more signals could be added to the
dataset. The signals that could be added are for example the breathing signals, i.e. oxygen
saturation, airflow and breathing belts. Moreover, the movements and EMG and other scored
events could further add to the possible performance and robustness of the models.

The 20 features extracted might not be ideal for this task and therefore, adding more
features from the frequency and time-frequency domains and using a feature selection method
could help boost the performances of the models. Methods such as Wavelet Transform have
been used to classify EEG epochs with adequate performance [47], [71], [87] and should be
considered in next steps.

Hyperparameter tuning was a limiting factor due to computational time and better per-
formances might be gained by widening the range of parameters and performing the grid
search on all samples in each dataset rather than a random subset of 1000.

4.2 Conclusion
The main objectives were to investigate whether COVID-19 affects sleep quality by analysing

objective sleep measures. The parametric test revealed that the mean saturation was signifi-
cantly elevated between studies. Due to insufficient power a non-parametric alternative test
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was performed an it did not find any significant difference between the two studies in terms
of any of the variables tested, including mean saturation. Therefore, it cannot be stated with
any confidence that COVID-19 has negative effects on sleep quality in terms of the variables
investigated.

The secondary objectives involved using machine learning methods to detect differences
in features from EEG signal epochs of different sleep stages from measurements before and
after COVID-19. The results indicate that a slight difference is consistently detected and
most prominently in the N3, REM and Wake datasets. Since changes in REM and deep sleep
have been described after viral infections, these findings should warrant further research into
effects of COVID-19 infections on EEG activity during sleep.
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Appendix A

Best Hyperparameters of Models

Table A.1: The best performing hyper-parameters used for the models trained on the whole

dataset. Parameter: Value

Decision Tree

Random Forest

MLP

criterion : ’gini’
max_depth : 13
min_samples_split : 30
max_features : ’log2’
min_samples_leaf : 4

n_estimators : 100
criterion : ’gini’
max_depth : 100
min_samples_split : 40
max_features : ’log2’
min_samples_leaf : 10
bootstrap : True

hidden_layer_size : (50, 100, 100)
activation : ’tanh’

solver : ’sgd’

max_iter : 1500

learning_rate : ’adaptive’
learning_rate_init : 0.01

Table A.2: The best performing hyper-parameters used for the models trained on the N1

dataset. Parameter: Value

Decision Tree

Random Forest

MLP

criterion : ’entropy’
max_depth : 12
min_samples_split : 40
max_features : ’sqrt’
min_samples_leaf : 6

n_estimators : 100
criterion : ’entropy’
max_depth : 100
min_samples_split : 30
max_features : ’sqrt’
min_samples_leaf : 1
bootstrap : False

hidden_layer_size : (50, 100, 100)
activation : ’relu’

solver:’sgd’

max_iter : 2500

learning_rate : ’constant’
learning_rate_init : 0.1
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Table A.3: The best performing hyper-parameters used for the models trained on the N2
dataset. Parameter:Value

Decision Tree Random Forest MLP

criterion : ’gini’ n_estimators : 200 hidden_layer_size : (100, 100)
max_depth : 9 criterion : ’gini’ activation : ’relu’
min_samples_split : 50 | max_depth : 150 solver : ’sgd’

max_features : ’log2’ min_samples_split : 50 | max_iter : 1500
min_samples_leaf : 4 max_features : ’sqrt’ learning_rate : adaptive’
min_samples_leaf : 4 learning_rate_init : 0.1
bootstrap:True

Table A.4: The best performing hyper-parameters used for the models trained on the N3
dataset. Parameter:Value

Decision Tree Random Forest MLP

criterion : ’entropy’ | n_estimators : 100 hidden_layer_size : (100, 100, 100)
max_depth : 11 criterion : ’gini’ activation : ’tanh’
min_samples_split:50 | max_depth : 50 solver : ’sgd’

max_features : ’log2’ | min_samples_split : 50 | max_iter : 1500
min_samples_leaf : 1 | max_features : ’log2’ learning_rate : adaptive’
min_samples_leaf : 4 learning_rate_init : 0.01
bootstrap : False

Table A.5: The best performing hyper-parameters used for the models trained on the REM
dataset. Parameter: Value

Decision Tree Random Forest MLP

criterion : ’entropy’ n_estimators : 100 hidden_layer_size : (50, 100)
max_depth : 14 criterion : ’gini’ activation : ’relu’
min_samples_split : 50 | max_depth : 50 solver : ’sgd’

max_features : ’log2’ min_samples_split : 20 | max_iter : 2500
min_samples_leaf : 4 max_features : ’log2’ learning_rate : ’adaptive’
min_samples_leaf : 1 learning_rate_init : 0.1
bootstrap : True
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Table A.6: The best performing hyper-parameters used for the models trained on the wake

dataset. Parameter: Value

Decision Tree

Random Forest

MLP

criterion : ’entropy’
max_depth : 12
min_samples_split : 30
max_features : ’log2’
min_samples_leaf : 4

n_estimators : 200
criterion : ’entropy’
max_depth : 150
min_samples_split : 20
max_features : ’log2’
min_samples_leaf : 4
bootstrap : False

hidden_layer_size : (100, 100, 100)
activation : ’relu’

solver : ’sgd’

max_iter : 1500

learning_rate : ’adaptive’
learning_rate_init : 0.01
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Appendix B
Code

Listing B.1: Function that reads an .edf file and returns signals signal headers and recording
header.

read_edf_file(path):

#Function takes in path to .edf file and returns raw signals, signal headers <

<—and headers
signals, signal_headers, header = pyedflib.highlevel.read_edf(path)

signals, signal_headers, header

Listing B.2: Function for getting timestamps for start and end of night from scoring analysis
of the study.

get_timestamps(path):

#Function takes in path to excel scoring files directory(filenames need to be«
< the participants identifier: 'ID.xls’)

#Returns start and end time of night for each study scoring in directory as a«
< dataframe with participant ID as index

os.chdir(path)

start_times = []
end_times = []
ID = []
resi_files os.listdir(path):
os.path.isfile(resi_files):
ID.append( (resi_files.rstrip(’_Svefnskorun.xls’)))
myworkbook=x1rd.open_workbook(resi_files)
ws= myworkbook.sheet_by_index(0)
start_times.append(xlrd.xldate_as_datetime(ws.cell_value(rowx«
— =3, colx = 1), 0))
last_row = ws.nrows -1
end_times.append(xlrd.xldate_as_datetime(ws.cell_value(rowx =«
< last_row, colx = 2), 0))
time_df = pd.DataFrame({’Start’ : start_times,
"End’ : end_times},
index = ID)
time_df

Listing B.3: Function for checkin for gaps in scoring in the scoring file.

get_gaps(score_frame) :
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#Function takes in path to csv scoring files directory(filenames need to be <
<—>the participants identifier: ’ID.csv’)

#Initialize lists
gap_start = []
gap_end = []
datetime_list = []
list_to_search = []
gap_ind = []

diff list = []
dur_list = []

#Trim to only get the list of starttimes of scored epochs
1st = score_frame.drop([®, 1])

Ist = 1st.iloc[:,1]
1st = 1st.reset_index()
Ist = 1st.drop(columns=[’index’])

#Substring of just the time in the format hh:mm:ss
for i in range(len(lst)):
list_to_search.append(lst[’Start Time’][i][0:8])

#Change to datetime format
for i in range(len(list_to_search)):
datetime_list.append(datetime.strptime(list_to_search[i], ’%H:%M:%S’))

for i in range(len(datetime_list) - 1):
#Calculate the difference in time between two subsequent scorings
diff = datetime_list[i + 1] - datetime_list[i]

#Check if gap between epochs is more than 30 sek
if diff.total_seconds() > 30:
gap_ind.append(i + 1)
gap_start.append(datetime_list[i] + timedelta(seconds=30))
gap_end.append(datetime_list[i + 1])
diff_list.append(datetime_list[i + 1] - (datetime_list[i] + timedelta«
— (seconds=30)))
dur_list.append((datetime_list[i + 1] - (datetime_list[i] + timedelta«
< (seconds=30))) / timedelta(seconds=30))

#Make datafram with start of gap, end of gap, index of first epoch in gap and«
< duration of gap in epochs
gaps = pd.DataFrame({’Start’ : gap_start,

"End’ : gap_end,

’Ind’ : gap_ind,

'Diff’ : diff list,

'Dur’ : dur_list})

return gaps

Listing B.4: Function for that takes in epochized signal and information of gaps in recording
and returns the epochized signal where the gaps have been removed.

def remove_gaps(epochized_signal, gaps):
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#Loop throug all gaps in the recording and remove them by using their indexes
only_sleep = epochized_signal.copy()
for i in range(len(gaps)):

start_index = int(gaps[’Ind’][i])

end_index = int(gaps[’Ind’][i] + gaps[’Dur’][i])

only_sleep = only_sleep.drop(only_sleep.index[start_index:end_index])

return only_sleep

Listing B.5: Function for extracting and preparing the EEG singal for further processing.

| def prep_EEG_signal(Signals, Signal_Headers, Header, Start_of night, End_of night«—

W

9

35

37

39

41

—, Fs):

#This function takes in the raw signal, the channel names and the recording <«
<——start and end analysis times and sampling frequency

#Prepares the signal by identifying the EEG channels and adding them to a «
<—list and cuts out irrelevant data from each channel(data that was not part <
—o0f the night and therefore not scored)

print(’Prepping signal...’)

#Initialize lists and counter i
channel_names = []

EEG_sleep = []

EEGsignal_list = []

i=20

indexes = []

#Make list with only channel names
for signal in Signal_Headers:
channel_names.append(signal[’label’])

#Search for the channels to be used and add their indexes to a list
for names in channel_names:
if names == ’AF3-E3E4’:
indexes.append (i)
elif names == ’'AF7-E3E4’:
indexes.append(i)
elif names == ’'AF8-E3E4’:
indexes.append (i)
elif names == ’'AF4-E3E4’:
indexes.append (i)
i=i+l
#Select only the channels to be used and put into a list
for i in indexes:
EEGsignal_list.append(Signals[i])

#Identify the indexes where scored recording starts and ends

start_index = int(((Start_of_night - Header[’startdate’]).total_seconds()) * «
—Fs)

end_index = int(((End_of_night - Header[’'startdate’]).total_seconds()) * Fs)

#make new list with only scored recording
for i in EEGsignal_list:

EEG_sleep.append(i[start_index:end_index])

#Add the names of the channels to be used to a list
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k=20

channel_use = []

for i in indexes:
channel_use.append(Signal_Headers[i][’label’])
k=k+1

#Return list of scored signals of the desired channels and the names of the «
<—channels used
return EEG_sleep, channel_use

Listing B.6: Function that splits the raw signal into epochs.

def epochize(data, channel_names, epoch_len, sampling_freq, start_timestamp):
#Function that takes in the raw prepped signal, preferred epoch length, «
—sampling frequency of the signal and start time of signal
#Returns dataframe with epochized signal (channel name as column header for <«
<—epochs) and timestamp of each epoch start

print(’Starting epochization...’)

#Find the lengt of the signal
1 = len(data)

#Find the number of data points
number = int(epoch_len * sampling_freq)

#initialize the epoch list

epochs = []

num_epochs = int(np.ceil(l / number))
#add the epochs to the list

for x in range(®, 1, number):

epochs.append(data[x:x+number])

#initialize a list of timestamps at the beginning of each epoch
timestamps_epoch_start = []

for i in range(®, num_epochs):
#make start timestamps for all the subsequent epochs and add to list
next_timestamp = start_timestamp + datetime.timedelta(seconds=epoch_len *«—
— 1)
timestamps_epoch_start.append(next_timestamp)
# make dataframe with timestamps and epoch
df = pd.DataFrame()
df[’Epoch start’] = timestamps_epoch_start

df[channel_names] = epochs

return df

Listing B.7: Function that makes the upper and lower signal envelopes for an epoch.

def upper_lower_signal_envelopes(epoch):
#Takes in an epoch
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#Calculates and returns the upper and lower signal envelopes using cubic <«
—spline

#Code from author A_A on StackOverflow (https://stackoverflow.com/questions«—
<—/34235530/how-to-get-high-and-low-envelope-of-a-signal)

upper = zeros(epoch.shape)
g_1 = zeros(epoch.shape)

#Define starting points for upper and lower envelopes as x and y coordinates.
upper_x = [0,]
upper_y = [epoch[0],]

lower_x = [0,]
lower_y = [epoch[0],]

#Detect peaks and valleys and add to coordinate lists.
for k in range(l,len(epoch)-1):
if (sign(epochl[k]-epoch[k-1])==1) and (sign(epoch[k]-epoch[k+1])==1):
upper_x.append (k)
upper_y.append(epoch[k])

if (sign(epoch[k]-epoch[k-1])==-1) and ((sign(epoch[k]-epoch[k+1]))==-1):
lower_x.append (k)
lower_y.append(epoch[k])

#Define the end point as the end of the epoch an append to coordinate lists
upper_x.append(len(epoch)-1)
upper_y.append(epoch[-1])

lower_x.append(len(epoch)-1)
lower_y.append(epoch[-1])

#Interpolate using the set of upper peak coordinates and lower valley «—
<>coordinates using cubic spline.

upper_i = CubicSpline(upper_x,upper_y)

lower_i = CubicSpline(lower_x,lower_y)

#Make envelope values

for i in range(®,len(epoch)):
envelope_upper[i] = upper_i(i)
envelope_lower[i] = lower_i(i)

return envelope_upper, envelope_lower

Listing B.8: Function that calculates the Welch PSD

def

welch_PSD(epoch, fs, filter_order):

#Function that calculates power spectra of epoch with Welch’s method - takes «
<—in epoch, sampling frequency and filter order

#Returns frequencies(F), power spectral density(PSD) and absolute power using«
— Simpson’s rule to estimate the area under the curve

window_size = int(fs * filter_order)
F, PSD = signal.welch(epoch, fs, nperseg=window_size)

# Frequency resolution
freq_res = F[1] - F[0] # =1/ 4 = 0.25
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# Compute the absolute power by approximating the area under the curve with <
—simpsons rule
abs_power = simps(PSD, dx=freq_res)

return F, PSD, abs_power

Listing B.9: Function that calculates the entropy from PSD.

def s_entropy(PSD):

#Function takes in power spectral density

#Returns spectral entropy

normPSD = PSD / PSD.sum(axis=-1, keepdims=True)

spectral_entropy = -(normPSD * np.log2(normPSD)).sum(axis=-1)

return spectral_entropy

Listing B.10: Function that finds features for all epochs of an epochized signal.

def find_features(epochized_signal, sampling_freq):

#Function that finds epochwise features - takes in one datafram of epochized «
<—»signal and the sampling frequency of the signal

#Returns dataframe with features of each epoch

print(’Starting featurization...’)

#find how many epochs there are in the signal
1 = len(epochized_signal)

#initialize all lists
dataframe = pd.DataFrame()

mini = []
maxi = []
med = []
var = []
std = []
cov = []

skew_list = []
kurt_list = []

upper_mean = []
lower_mean = []
upper_std = []
lower_std = []
upper_var = []
lower_var = []
upper_skew = []
lower_skew = []
upper_kurt = []
lower_kurt = []
PSD = []

abs_power []

entropy = []

#loop through epochs and calulate the features and add to relevant feature «
—list
for i in range(®, 1):
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mini.append(np. (np. (epochized_signal[’'n’][i])))
maxi.append(np. (np. (epochized_signal[’'n’][i])))
med.append(np.median(epochized_signal[’n’][i]))
std.append(np.std(epochized_signal[’'n’][i]))
var.append(np.var(epochized_signal[’'n’][i]))
skew_list.append(skew(epochized_signal[’n’]1[i]))
kurt_list.append(kurtosis(epochized_signal[’n’][i]))

APPENDIX B. CODE

upper, lower = upper_lower_signal_envelopes(epochized_signal[’'n’][i])

upper_mean. append (np .mean (upper))
lower_mean.append(np.mean(lower))

upper_std.append(np.std(upper))
lower_std.append(np.std(lower))
upper_var.append(np.var (upper))
lower_var.append(np.var(lower))
upper_skew. append(skew(upper))
lower_skew.append(skew(lower))
upper_kurt.append(kurtosis(upper))
lower_kurt.append(kurtosis(lower))

_, PSDlist, power

= welch_PSD(epochized_signal[’n’][i], sampling_freq, 4)
abs_power . append (power)
entropy.append(s_entropy(PSDlist))
PSD.append (PSDlist)

#add the epochs to the feature dataframe
dataframe = epochized_signal

#add all feature
dataframe[’Epoch
dataframe[’Epoch
dataframe[’Epoch
dataframe[’Epoch
dataframe[’Epoch

list as columns to the feature dataframe
min’] = mini

max’] = maxi

median’] = med
var’
std’
dataframe[’Skewness’]

] = var
] = std
= skew_list

dataframe[’Kurtosis’] = kurt_list

dataframe[’Upper
dataframe[’Lower
dataframe[’Upper
dataframe[’Lower
dataframe[’ Upper
dataframe[’Lower
dataframe[’ Upper
dataframe[’Lower
dataframe[’Upper
dataframe[’Lower

env
env
env
env
env
env
env
env
env
env

mean’] = upper_mean
mean’] = lower_mean
std’] = upper_std

std’] = lower_std

var’] upper_var

var’] = lower_var
skew’] = upper_skew
skew’] = lower_skew
kurtosis’] = upper_kurt
kurtosis’] = lower_kurt

dataframe[’Abs Power’] = abs_power
dataframe[’Entropy’] = entropy

dataframe

Listing B.11: Feature extraction pipeline. Function that works from the directory where
the recordings are and makes the dataset with labelled feature vectors for all epochs of all

recordings.
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| def make_feature_file(edf_path, scoring_pathl, scoring_path2, epoch_len, fs, <
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—time_dfl, time_df2):

#Function that takes in the path to the edf file directory, path to scoring «
—files of first and second measurement, epoch length, sampling frequency, <
—time dataframes for both recordings

#Wirites all epochs of all signal channels for all participant recordings in <«
<»cohort into a .csv file and each epoch i labelled with the sleep stage the «
—epoch belongs to and whether the epoch is from a measurement before or «
—after Covid-19 infection

#Explanation of data structure and directories

#in edf_path:

#’ID1_1.edf’
#’ID1_2.edf’
#’ID2_1.edf’
#’1ID2_2.edf’
#...

#in scoring_pathl:
#’ID1_Svefnskorun_1.edf’
#’ID2_Svefnskorun_1.edf’
#...

#1in scoring_path2:
#’ID1_Svefnskorun_2.edf’
#’ID2_Svefnskorun_2.edf’

#set counter and initialize dataframe
i=20

supreme_df = pd.DataFrame()

#set directory

os.chdir(edf_path)

#Loop thorugh recordings
for edf_files in os.listdir(edf_path):
#make sure only the edf files are read

if edf_files.find("checkpoint") == -1:
signals, signal_headers, header = read_edf_file(edf_files)
print("File successfully loaded: ", edf_files, "!!!!")

#Check if the number 1 is not in the name of the file to distinguish «
—between what time dataframe to get timestamps from and what scoring file to«
<> open

if (edf_files.find("1") == -1):

[start_time, end_time] = [time_df2.loc[edf_files.rstrip(’'_2.edf’)«
—][’Start’], time_df2.loc[edf_files.rstrip(’_2.edf’)][’End’]]

scoring = pd.read_csv(scoring_path2 + edf_files.rstrip(’_2.edf’) «
—+ ’_Svefnskorun_2.csv’, sep = ’;’)

print(’Length of scoring list:’, len(scoring))

#Check if the ID

bool_C19 = True

else:

[start_time, end_time] = [time_dfl.loc[edf_files.rstrip(’_l.edf’)«
—][’Start’], time_dfl.loc[edf_files.rstrip(’_1.edf’)][’End’]]

scoring = pd.read_csv(scoring_path2 + edf_files.rstrip(’_l.edf’) «
<—+ ’_Svefnskorun_1l.csv’, sep = ’;’)

print(’Length of scoring list:’, len(scoring))

bool_C19 = False
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, Start_time)
, end_time)

("Start time for this recording is:
50 ("End time for this recording is: "
(’Covid? ’,bool_C19)

#Prepare the signal
54 EEG_sleep, channel_names = prep_signal(signals, signal_headers, <«
—header, start_time, end_time, fs)
(’Signal prep successful’)

#Epochize each channel of EEG signal
58 gaps = get_gaps(scoring)
60 df_AF3 = remove_gaps(epochize(recording_df[’AF3’].to_numpy(), "n", <
<—epoch_len, fs, start_time), gaps)
df_AF7 = remove_gaps(epochize(recording_df[’AF7’].to_numpy(), "n", <
<—epoch_len, fs, start_time), gaps)
62 df_AF8 = remove_gaps(epochize(recording_df[’AF8°’].to_numpy(), "n", <
<—epoch_len, fs, start_time), gaps)
df_AF4 = remove_gaps(epochize(recording_df[’AF4’].to_numpy(), "n", <
<—epoch_len, fs, start_time), gaps)
64
(’Epochization successful’)

66 (’Annotate data...’)
scoring_labels = scoring.iloc[2:,0]
68 df_AF3[’Scoring’] = scoring_labels
df_AF7[’Scoring’] = scoring_labels
70 df_AF8[’Scoring’] = scoring_labels
df_AF4[’Scoring’] = scoring_labels
72
(’Annotate data...’)
74 #Label the epochs from second measurement as class l(after Covid-19) «
<—and epochs from the first measurement as class 0(before Covid-19).
bool_C19:
76 1= (df_AF3)
covid = [1] * 1
78 df_AF3[’C19’] = covid
df_AF7[’C19’] = covid
80 df_AF8[’C19’] = covid
df_AF4[’C19’] = covid
82 bool_C19 = False
84 1= (df_AF3)
no_covid = [0] * 1
86 df_AF3[’C19’] = no_covid
df_AF7[’C19’] = no_covid
88 df_AF8[’C19’] = no_covid
df_AF4[’C19’] = no_covid
90 (’Annotation of data complete’)
92 #Combine all channel epochs into one dataframe

dataframe_all_epochs = pd.concat([df_AF3, df_AF7, df_AF8, df_AF4], <
<——ignore_index = True)

94

#Find features for all epochs in the dataframe
96 feature_df = find_features(dataframe_all_epochs, fs)

(’Features extracted’)

98

#Wlrite the dataframe to data.csv
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#If it is the first recording then the header=True else header=Fales

if i ==
with open(’data.csv’, ’a’) as f:
feature_df.to_csv(f, header=True)
else:
with open(’data.csv’, ’a’) as f:
feature_df.to_csv(f, header=False)
print(’ <
N _ _ _ _ _ _ _ _ ____ _
=)

#Add to recording counter
i=1+1

print(’I'I!DONE!'!!’)

Listing B.12: Function that makes a dataset based on sleep stage. Takes in the whole dataset
and what sleep stage dataset we want.

def make_dataset(DF, stage):
#Takes in whole dataset and sleep stage: ’N1’°, ’N2’, ’N3’, 'REM’ or ’Wake’.
#Returns a dataset of only epoch features from the desired stage.
dataset = DF.loc[DF[’Scoring’] == stage].iloc[:,1:]
return dataset
Listing B.13: Function that splits a dataset into test and training sets.
def split(dataset, test_size, whole_dataset = False):
#If the whole dataset is being split, both the scoring and labels need to be «
—removed from the feature set
if whole_dataset == False:
X=dataset[dataset.iloc[:,1:].columns.tolist()] # Features

y=dataset[’C19’] # Labels

else:
X=dataset[dataset.iloc[:,2:].columns.tolist()] # Features
y=dataset[’C19’] # Labels

# Split into training and test sets, random_state to always use the same <
—randomization

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size«
<, random_state = 42) # 80% training and 20% test

return X_train, X_test, y_train, y_test

Listing B.14: Function that performs the grid search for the Decision Tree classifier and
returns the best estimator, best parameters and permutation feature importances.

def

decision_tree_gridsearch(X_train, y_train, X_test, y_test):
#Define parameter grid
param_grid = {’criterion’:[’gini’,’entropy’],

'max_depth’: np.arange(3, 15),
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"max_features’: [’sqrt’, ’'log2’],
‘min_samples_split’: [20, 30, 40, 50],

'min_samples_leaf’: [1, 4, 6, 10]}
#Grid search defined with 5-fold cross validation and maximizing the fl_macro«
< score
dt_gridsearch = GridSearchCV(DecisionTreeClassifier(), param_grid, cv = 5, «
<—scoring="f1_macro’)

dt_gridsearch.fit(X_train, y_train)
#Computing feature importances with permuation
important_features = permutation_importance(dt_gridsearch.best_estimator_, <«
—X_test, y_test,
n_repeats=30,
random_state=0)

dt_gridsearch.best_estimator_, dt_gridsearch.best_params_, <«
—important_features

Listing B.15: Function that performs the grid search for the Random Forest classifier and
returns the best estimator, best parameters and permutation feature importances.

random_forest_gridsearch(X_train, y_train, X_test, y_test):
rand_sample = X_train.copy()
rand_sample[’y_train’] = y_train
rand_sample = rand_sample.sample(1000, random_state=42)
X = rand_sample.iloc[:,:-1]
y = np.ravel(rand_sample.iloc[:,-1:])
param_grid = {’n_estimators’: np.arange(100, 300, 100),
"criterion’:[’gini’, ’entropy’],
'max_features’: [’sqrt’,’log2’],
'max_depth’: np.arange(50, 200, 50),
'min_samples_split’: [20, 30, 40, 50],
'min_samples_leaf’: [1, 4, 6, 10],
"bootstrap’: [True, Falsel}
rf _gridsearch = GridSearchCV(RandomForestClassifier(), param_grid, cv = 5, <
<>scoring="£f1_macro’)
rf_gridsearch.fit(X, y)
important_features = permutation_importance(rf_gridsearch.best_estimator_, <
—X_test, y_test,
n_repeats=30,

random_state=0)

rf_gridsearch.best_estimator_, rf_gridsearch.best_params_, <
—important_features
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Listing B.16: Function that performs the grid search for the MLP classifier and returns the
best estimator, best parameters and permutation feature importances.
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MLP_gridsearch(X_train, y_train, X_test, y_test):
rand_sample = X_train.copy()
rand_sample[’y_train’] = y_train
rand_sample = rand_sample.sample(1000, random_state=42)
X = rand_sample.iloc[:,:-1]
y = np.ravel(rand_sample.iloc[:,-1:])
param_grid = {’solver’: [’sgd’, ’adam’],
’activation’: [’logistic’, ’tanh’, ’relu’],
'max_iter’: [1500, 2500],
’learning_rate’ : [’adaptive’, ’constant’],
"hidden_layer_sizes’: [10, 50, 100],

"learning_rate_init’ : [0.01, 0.1]}

cols = X.columns

scale = StandardScaler()

X_gs = scale.fit_transform(X)

X_gs = pd.DataFrame(X_gs, columns=cols)

mlp_gridsearch = GridSearchCV(MLPClassifier(), param_grid, scoring=’fl_macro’«
—)

mlp_gridsearch.fit(X_gs, y)

important_features = permutation_importance(mlp_gridsearch.best_estimator_, <
—X_test, y_test,

n_repeats=30,

random_state=0)

mlp_gridsearch.best_estimator_, mlp_gridsearch.best_params_, <«
<——important_features

Listing B.17: Function that fits a model with best parameters to the training set and predicts
and calculates, prints and returns the performance metrics of the estimator

model_fit(best_params, X_train, y_train, X_test, y_test, what_model):
#Fits the correct model to the training data(DT=Decision Tree, RF=Random <«
—Forest, MLP=Multilayer Perceptron)
what_model == ’DT’:

clf = DecisionTreeClassifier()

clf.set_params(**best_params)

clf.fit(X_train, y_train)

what_model == ’RF’:

clf = RandomForestClassifier()

clf.set_params(**best_params)

clf.fit(X_train, y_train)
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what_model == "MLP’:

clf = MLPClassifier(Q)

clf.set_params(**best_params)

clf.fit(X_train, y_train)
#Predict
y_pred = clf.predict(X_test)
#Claculate and preint performance metrics
accuracy = metrics.accuracy_score(y_test, y_pred)
recall = metrics.recall_score(y_test, y_pred)
precision = metrics.precision_score(y_test, y_pred)
fl = metrics.fl_score(y_test, y_pred)
confusion_matrix = metrics.confusion_matrix(y_test, y_pred)
auc = metrics.roc_auc_score(y_test, y_pred)

(’Classifier: Decision Tree’)

("Accuracy:", accuracy)
(’Recall: ’, recall)
(’Precision:’, precision)

("F1 score:",fl)
(’Confusion matrix: ’)
(confusion_matrix)
(’AUC: 7, auc)
[accuracy, recall, precision, f1, confusion_matrix, auc]
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