
M.Sc. Thesis

Reykjavík University - Department of Computer Science

Supervisor:
Björn Þór Jónsson

Associate Professor

Árni Már Jónsson
Master of Science

June 2006

Practical Performance Considerations
for the Prefetching B+-tree

PRACTICAL PERFORMANCE CONSIDERATIONS

FOR THE PREFETCHING B+-TREE

by

Árni Már Jónsson

Thesis submitted to the Department of Computer Science at Reykjavík
University in partial fulfillment of the requirements for the degree of

Master of Science

June 2006

Thesis Committee:

Dr. Björn Þór Jónsson, supervisor
Associate Professor, Reykjavík University, Iceland

Dr. Philippe Bonnet
Associate Professor, DIKU, Denmark

Heimir Þór Sverrisson, M.Sc.
Assistant Professor, Reykjavík University, Iceland

Copyright
Árni Már Jónsson

June 2006

Abstract

In recent years the relative speed difference between CPUs and main-memory has be-
come so great that many applications, including database management systems, spend
much of their time waiting for data to be delivered from main-memory. In particular,
B+-trees have been shown to utilize cache memory poorly, triggering the development
of many cache-conscious indices. While early studies of cache-conscious indices used
simulation models, the trend has recently swung towards performance measurements on
actual computer architectures. This thesis is part of this trend towards the deployment of
cache-conscious structures “in the field”. We study the performance of the pB+-tree on
the Itanium 2 processor, focusing on various implementation choices and their effect on
performance.

Útdráttur

Afkastamunur milli örgjörva og aðalminnis hefur aukist síðustu ár. Þessi munur er orðinn
svo mikill að mörg hugbúnaðarkerfi, þ.á.m. gagnasafnskerfi, eyða miklum tíma í að bíða
eftir að gögn séu sótt í aðalminni. Sér í lagi hefur verið sýnt að leitarvísirinn B+-tré
notar skyndiminni á mjög óhagkvæman hátt, sem hefur hrundið af stað þróun á minnis-
vænum leitarvísum. Fyrri rannsóknir á minnisvænum leitarvísum hafa einkum notast
við hermilíkön til afkastamælinga, en í nýlegum rannsóknum hafa afköst verið mæld á
raunverulegum tölvukerfum. Þessi ritgerð er hluti af þessari þróun sem hefur það að mark-
miði að koma minnisvænum leitarvísum í almenna notkun. Við mælum afköst á leitar
vísinum pB+-tré, sérstaklega með tilliti til útfærsluatriða og áhrifa þeirra á afköst.

Acknowledgements

This work was partially supported by Rannís Research Fund Grant 04004031 and a Grad-
uate Research Fund FS Grant.

We would like to thank Michael Samuel, Anders Uhl Pedersen and Philippe Bonnet of
DIKU, for access to their implementation of the pCSB+-tree, and for the use of their
Itanium 2 server, without which much of this work would not have been possible.

Publications

Parts of this work have been accepted for publication in the Proceedings of the First
International Workshop on Performance and Evaluation of Data Management Systems
[6].

Contents

1 Introduction 1
1.1 The Main-Memory Bottleneck . 1

1.1.1 Cache-Conscious Indices . 2
1.2 Contributions . 2
1.3 Thesis Outline . 3

2 The Memory Bottleneck 4
2.1 Cache-Memory . 4
2.2 The Memory-Wall . 6
2.3 Techniques . 8

2.3.1 Data Placement . 8
2.3.2 Compression . 8
2.3.3 Prefetching . 9

3 Index Structures 10
3.1 Cost Model Preliminaries . 10
3.2 The B+-tree . 11
3.3 The T-tree . 13
3.4 The CSS-tree . 14
3.5 The CSB+-tree . 15
3.6 The Prefetching B+-tree . 17
3.7 The Fractal Prefetching B+-Tree . 19
3.8 The Prefetching CSB+-Tree . 20
3.9 Index Comparison . 21

4 Experimental Setup 23
4.1 Hardware Setup . 23

4.1.1 Cache Structure . 23
4.1.2 Prefetching . 24
4.1.3 Data Alignment . 24

4.2 Workloads . 25
4.2.1 Tree construction . 25
4.2.2 Index operations . 26

4.3 Performance Metrics . 26
4.3.1 Running Time . 26
4.3.2 Stall Cycle Breakdown . 27

viii CONTENTS

4.3.3 Source-Code/CPU Event correlation 27
4.4 Software . 27

4.4.1 Compiler . 29
4.4.2 pB+-Tree implementation . 29
4.4.3 Experimental Framework . 31

5 Implementation Choices 33
5.1 Prefetching Hints . 33
5.2 The Prefetching Loop . 35
5.3 Node Prefetching . 37
5.4 Search Algorithm and Comparison . 40

6 Prefetching Performance 42
6.1 Query Performance . 42
6.2 Scan Performance . 43

6.2.1 Leaf Pointer Array Update Cost 44
6.2.2 Prefetching . 44

7 Conclusions 47

References 48

List of Figures

2.1 The average of miss rates for various SPEC CPU2000 benchmarks. 6
2.2 The layout of 3 versions of the Itanium 2 processor. 7

3.1 An example B+-tree. 12
3.2 A T-tree which can hold up to 4 keys per node. 13
3.3 Memory layout of a Full CSS-tree. 15
3.4 A Full CSB+-tree. 16
3.5 An Example Binary Search Implementation in the CSB+-tree. 17
3.6 Cache-performance of different index structures for a single query. 22

4.1 Framework directory structure. 31

5.1 Comparison of locality hints for queries. 34
5.2 Comparison of locality hints for scan. 35
5.3 Pseudo-code for Duff’s device. 36
5.4 Comparison of loop unrolling options. 36
5.5 Stall cycle analysis for loop unrolling. 37
5.6 Performance of Linear prefetch policies. 39
5.7 Performance of Linear prefetch policies. 39
5.8 Performance of Linear prefetch policies. 40
5.9 Performance of search with different search and key comparison methods. 41

6.1 Performance gains of using prefetching. 43
6.2 Memory bandwidth used during scans. 45

List of Tables

3.1 Parameters and equations used in the cache-performance analysis. 11

4.1 Itanium 2 processor cache size, integer load latency and associativity. . . 25
4.2 Itanium 2 processor prefetch hints. 25
4.3 A description of CPU stall cycle categories and their related events. . . . 28
4.4 Difference in measuring runtime with getrusage and pfmon. 28
4.5 Compile time parameters. 30

5.1 Implementation options and choices. 33
5.2 Prefetch fault hint speedup. 1M records, 1M queries, 10 scans. 34

6.1 Prefetching speedup for different trees using memcmp key comparison. . 43
6.2 Prefetching speedup for different trees using optimized key comparison . 44
6.3 Update overhead for chunked leaf pointer array. 45

Chapter 1

Introduction

For the last 20 years CPU speeds have been increasing at a much faster rate than memory
speeds. As a consequence, many modern applications spend much of their time waiting
for data to be fetched from memory. Database Management Systems (DBMSs) are no
exception, and recent studies [2, 5] show that less than half the CPU time used by com-
mercial DBMSs is spent on useful computations. One of the main components of DBMSs
are indices, which historically have been optimized to minimize disk I/O. DBMSs do quite
well in hiding the disk I/O latency, but with the growing gap between CPU and memory
speeds, index performance is becoming increasingly bound by memory speeds. This has
triggered the development of many memory based or “cache-conscious” indices, which
use memory more efficiently. The main contribution of this thesis is an implementation
of one such index, the “Prefetching B+-tree” (pB+-tree), and measurements of its perfor-
mance on a modern server CPU.

1.1 The Main-Memory Bottleneck

Modern computers are based on the von Neumann architecture [29], which separates the
processing unit (CPU) and storage (main-memory). The trend in the last two decades has
been that CPU speed is increasing at a rate of about 60% per year, whereas main-memory
speed has only been increasing by about 10% per year [13]. The relative speed difference
has become so great, in fact, that in many applications CPUs spend much of their time
waiting for data to be delivered from main-memory [22].

The common method of dealing with this main-memory bottleneck is the use of cache
memory (or cache), which is a limited size, high-speed memory stored on the same chip
as the CPU [28].

When referenced data is found in the cache, it can be read very quickly by the CPU.
Otherwise, its “cache-line” must be transferred from main-memory into the cache (termed
a “cache miss”). Cache misses take much longer than reading data (e.g., on Pentium 4 a
cache miss can cost as many as 276 CPU cycles [33]). Typical modern architectures have

2 Introduction

two or three layers of cache memory, successively smaller and faster as they are closer to
the CPU.

Two key techniques have been used to reduce the effects of cache misses. First, by im-
proving the locality of memory accesses, fewer misses are seen as data brought into the
cache is utilized well. Second, many architectures allow the compiler (or application pro-
grammer) to prefetch data into the cache, reducing the performance degradation due to
cache misses.

1.1.1 Cache-Conscious Indices

Database Management Systems (DBMSs) are not exempt from the main memory bottle-
neck. In their seminal paper, Ailamaki et al. [2] showed that less than half of the CPU
time for commercial DBMSs is spent on computations. A recent follow-up study showed
that this situation is not improving [5], indicating that commercial DBMSs are not being
engineered to cope with the main-memory bottleneck.

Indices—predominantly B+-trees—are a key performance component of DBMSs. Un-
fortunately, however, B+-trees have been shown to utilize cache memory poorly [9], trig-
gering the development of many cache-conscious indices. The CSS-tree [26] and CSB+-
tree [25] improve cache performance by not storing pointers to all the children of a node,
effectively compacting the index structure and improving locality. The pB+-tree [9] has
nodes that are several cache-lines in width and uses prefetching to avoid perceived cache
latency during index traversal. In [27] it was shown that these two techniques are com-
plementary: the CSB+-tree can be implemented using wide nodes and node prefetch-
ing.

While early studies of cache-conscious indices primarily used simulation models, the
trend has recently swung towards performance measurements on actual computer archi-
tectures. In [27], the CSB+-tree was implemented and measured using the Itanium 2
processor. In [8] the pB+-tree was also measured using the Itanium 2 processor. Ulti-
mately, of course, the goal of this work is the integration of cache-conscious indices into
DBMSs.

1.2 Contributions

This thesis presents the following contributions:

• A survey of the main-memory bottleneck and methods to reduce its effect

• A survey of cache-conscious indices and an analytical model of their cache-performance

• An experimental framework used to automate performance measurements

• An implementation of the pB+-tree, optimized for the Itanium 2 processor

• Experimental results showing performance benefits of implementation and archi-
tecture specific optimizations

1.3 Thesis Outline 3

• Experimental results showing that prefetching has considerable performance bene-
fits

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 surveys the growing gap
between main-memory and CPU speeds, along with techniques used to reduce its effect.
Chapter 3 reviews common tree indices, both disk-based and main-memory based, as well
as an analysis of their cache-performance. Chapter 4 presents the experimental setup and
the experimental framework used. Chapter 5 describes the implementation of the pB+-
tree and experimental results showing the performance effects of various implementation
and architecture specific optimizations. Chapter 6 describes the results of experiments
showing the performance effects of prefetching. Chapter 7 concludes.

Chapter 2

The Memory Bottleneck

As mentioned in the introduction, modern computers are based on the von Neumann ar-
chitecture [29], which separates the CPU and main-memory. This separation has created
the so-called von Neumann bottleneck, because (for many workloads) CPUs are now ca-
pable of processing data much faster than it can be delivered from main-memory. The
term was coined by John Backup in his 1977 ACM Turing award lecture [3]:

Surely there must be a less primitive way of making big changes in the
store than by pushing vast numbers of words back and forth through the von
Neumann bottleneck. Not only is this tube a literal bottleneck for the data
traffic of a problem, but, more importantly, it is an intellectual bottleneck that
has kept us tied to word-at-a-time thinking instead of encouraging us to think
in terms of the larger conceptual units of the task at hand. Thus programming
is basically planning and detailing the enormous traffic of words through the
von Neumann bottleneck, and much of that traffic concerns not significant
data itself, but where to find it.

There are many techniques used which reduce the effect of this memory-bottleneck. In
this chapter we will cover the fundamentals of cache-memory [13], the most important of
these. We will also present the main results of a short paper by Wulf and McGee from
1995 [31], which argues that (even given very optimistic assumptions) in a few years
many programs will be limited by memory performance— they will have hit a memory-
wall. Lastly, we will describe some software techniques which reduce the effect of the
memory-bottleneck.

2.1 Cache-Memory

Cache-memory (or simply cache) is a small, high speed memory. Unlike the main-
memory, which is situated across the memory-bus, it is stored on the same chip as the
CPU. The cache has much lower latency then the main-memory, since it is closer to the
CPU, and runs on the same clock frequency. The cache copies the most frequently used

2.1 Cache-Memory 5

data from main-memory, so that it does not need to be transferred over the memory-bus
as often.

The disk, main-memory and cache form a memory-hierarchy, where each level has less
capacity than the level below, but lower latency. In addition, most modern CPUs have up
to 3 levels of cache, where the topmost level is situated closer to the CPU core than the
others.

Each new generation of computers has both increased the capacity and decreased the
latency of main-memory. In the 1970s the main computer performance bottleneck of
computers was moving data between the disk and main-memory. In those days CPUs did
not have any on-chip cache, since the speed difference between CPUs and main-memory
was very small. The trend in recent years has been to increase the speed of CPUs and
the capacity of main-memory, with main-memory speeds growing at a lower rate. This is
what has created the memory-bottleneck, and necessitated the development of the on-chip
cache.

The smallest amount of data moved between main-memory and cache is the cache-line.
It is a continuous piece of data, usually ranging from 8 to 512 bytes, depending on the
computer architecture. The cache-memory has much lower capacity than main-memory,
and a replacement policy is used to decide which cache-line is thrown out to make room
for a new one. The replacement policy must predict which cache-line in the cache is
least likely to be used in the future. As with most other memory and cache structures,
the most popular replacement is least-recently-used, which replaces the cache-line which
was least recently used. Other replacement policies include least-frequently-used, which
replaces the least referenced cache-line, and random, which selects cache-lines to replace
at random.

When a line in the cache is modified, the changed data data must eventually be reflected
at the level below. The write policy of a cache controls when the lower level is updated. A
write through policy updates the lower level after each write. A write back policy updates
the lower level only when the cache-line is replaced, and only if it has been modified.
Under that policy the cache-line has a dirty bit which is set when it is modified.

When a memory location is accessed, the CPU must check whether it is in the cache. The
number of locations it needs to check in order to detect this is called the associativity of
the cache. A fully associative cache needs to check every location, and a direct associative
cache needs to check only one. An n-way set associative cache needs to check n locations.
A cache with higher associativity has higher latency than cache with lower associativity,
since more locations need to be checked. On the other hand, higher associativity implies
that there is more choice of cache-lines to replace, thus increasing the probability of con-
temporaneously used data being in the cache. However, increasing associativity beyond a
certain point has decreasing performance improvements. Figure 2.1 shows how increased
associativity decreases the miss rate, and that a fully associative cache is only marginally
better than an 8-way associative cache. The data used to plot Figure 2.1 was obtained by
Cantin and Hill [7], by measuring the miss-rate of various SPEC CPU2000 benchmark
programs, and averaging them.

Hill and Smith [14] classify cache-misses into 3 categories:

6 The Memory Bottleneck

 0.0001

 0.001

 0.01

 0.1

 1

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

M
is

s
R

at
e

Cache Size

Cache Performance for SPEC CPU2000 Benchmarks

Direct
2-way
4-way
8-way

Full

Figure 2.1: The average of miss rates for various SPEC CPU2000 benchmarks.

• Compulsory misses occur when the cache-line is first referenced.

• Capacity misses occur when the cache-line being accessed has been replaced be-
cause the cache was full.

• Conflict misses occur when the cache-line accessed has been replaced because of
limited associativity, but would be found in a fully associative cache.

Out of these 3 types of misses, only compulsory misses are unavoidable. The number
of capacity misses can be reduced by increasing the size of the cache, and the number
of conflict misses can be reduced by increasing the associativity of the memory; a fully
associative memory has none.

Modern CPUs have up to 3 levels of cache, each positioned closer the CPU core. Figure
2.2 shows the layout of 3 versions of the Itanium 2 processor. The Itanium 2 processor
has 3 levels of cache, and the latest generation has 2 CPU cores. It is noteworthy that
2/3 of the die area is occupied by cache, which shows what an important role it plays in
modern computing.

2.2 The Memory-Wall

Wulf and McKee published a short paper in 1995 [31] which reflected on the trend of
diverging CPU and memory speeds and its effect on program performance. The previous
decade had showed that CPU and memory speeds were diverging at an alarming rate.
The question they tried to answer was when this would become a serious performance
issue. The authors made very optimistic assumptions about future developments, and yet

2.2 The Memory-Wall 7

a) b) c)

Figure 2.2: The layout of 3 versions of the Itanium 2 processor.
a) Madison with 6M L3 b) Madison with 9M b) Montecito (dual core) with 24MB L3.

came to the conclusion that in the near future, programs would generally become memory
bound.

The paper first presents a simple equation for the average memory access time, assuming
there is only one level of cache. If tc is the access time for the cache-memory, tm is
the access time for main-memory, and p is the cache-memory hit-rate, then the average
memory access time tavg is given by:

tavg = p× tc + (1− p)× tm

Then, some optimistic assumptions are made. First, that there are no conflict or capacity
misses; in other words, the cache is perfect. Second, that tc is constant in terms of CPU
cycles. Lastly, that 20% of all instructions access memory.

As tc and tm diverge, tavg will grow, and when tavg ≥ 100%
20%

= 5 programs will hit a
“Memory-Wall” . At that time their performance will be entirely dependent on main-
memory speed, since the CPU will spend more time on the memory instructions than the
remaining 80%.

To put this into perspective, the authors took then current estimates of CPU and memory
speed trends. Given these trends, the appropriate values for the variables were tc×4 = tm,
tavg = 1 and p = 0.99. CPU speeds were assumed to increase at a rate of 80% per year
and main-memory speeds at 7% per year. Given these, pavg will become 1.53 in 5 years,
8.25 in 10 years and 98.8 in 15 years. These numbers can of course be adjusted, as the
authors do, but they still come to the conclusion that the “Memory-Wall” was only 10-20
years away in 1995.

The main assumption that there is a fixed hit-rate is questionable, since there are programs
which access very little memory. In a follow-up article by McKee [22], it is indeed noted
that some applications, such as multimedia applications, are not affected much by memory
speeds. But others, such at transaction processing applications and high-performance
computing (HPC), see up to 65% and 95% CPU waiting time, respectively.

8 The Memory Bottleneck

2.3 Techniques

Many techniques have been proposed, which help in reducing the effect of the memory
bottleneck. In this section we will discuss a few software techniques which make appli-
cations more cache-conscious, and one hybrid software/hardware technique. For a more
detailed survey of both software and hardware based techniques, we refer to a survey by
Machanick [20].

2.3.1 Data Placement

Since the smallest amount of data moved between main and cache-memory is a cache-
line, it makes sense to use as much of the data as possible before it is replaced. Data
should also be accessed such that frequently used data does not map to the same cache-
lines, given a cache with small associativity.

Chilimbi et al. [11] discuss two techniques to achieve this. Clustering tries to place con-
temporaneously accessed data in the same cache-line, and coloring tries to avoid conflict
misses by placing contemporaneously accessed data in cache-lines which do not map to
the same set.

In [11] two tools are presented which programs can use for better data placement. The
ccmorph tool is a data re-organizer which uses the topology of a linked-data-structure
(LDS) to place contemporaneously accessed nodes into the same cache-lines and places
those cache-lines into non-conflicting regions of the memory. ccmorph needs to be run
periodically, and is useful for infrequently updated data-structures. It does, however, place
some restrictions on the usage of the data-structure, since all pointers within it can change.
Another tool, ccmalloc, is a memory allocator which can cluster contemporaneously ac-
cessed data. To use it, the programmer, when allocating memory, supplies a pointer to
data which is likely to be accessed contemporaneously. ccmorph then tries to place the
new data in the same cache-line as the existing data. Using these techniques, the authors
achieved up to 42% speedup for the lighting simulation software RADIANCE [30].

2.3.2 Compression

Sometimes it is possible to store more data per cache-line by compressing it. For example,
it is possible to store only one address in a doubly-linked list by storing the bitwise XOR
of the address of the previous and next elements. The pointer to either neighbor can
be computed by XOR-ing the XOR field with the address of the current node. With
this scheme it is only possible to traverse the list by having the address of at least two
consecutive elements.

It is also possible to compress pointers in pointer-intensive programs by allocating ele-
ments from a pool, and restricting that pool to hold a limited number of items. The point-
ers are then simply indices to slots in the memory pool, thus needing fewer bits.

2.3 Techniques 9

In tree data structures, it might be possible to eliminate child pointers by restricting their
placement in memory. The CSB+-tree e.g., eliminates most pointers by forcing children
of the same parent to be stored sequentially in memory. Each parent then only needs to
store a pointer to the first child, instead of storing one pointer to each one.

2.3.3 Prefetching

Prefetching is a technique which may help reducing the time the CPU sits idle waiting
for data to be fetched from main-memory. If the memory subsystem is able to process
many memory requests at once, a program can request data to be moved to the cache
before it is needed. Then, when the data is needed, it is already in the cache or on its
way there. This reduces the perceived memory latency. Prefetching is most effective
when the program is able to overlap useful computations and prefetching. To achieve
this, the program needs to know in advance which data is going to be needed, and be able
to perform other computations while the data is being prefetched. Prefetching can easily
be applied to regular access patterns such as array iterations, but is harder to apply to less
regular access, such as linked list traversal. The position of elements in a linked list is
only known when the element linking to it has been fetched, making it hard to prefetch
more than one element at a time.

Prefetching is usually performed explicitly by issuing so-called prefetch instructions. The
CPU sends a request to the memory subsystem to move a certain cache-line to cache.
Some CPUs, like the Pentium-4 [15] issue prefetch instructions when they detect that a
program reads memory with regular strides, in which case they prefetch data they predict
the program will soon read.

A hybrid software/hardware technique has been proposed [32], where a special purpose
logic-controller is placed at each cache and memory level. It is designed to prefetch
linked-lists. The logic-controller is placed in each level of the memory hierarchy. When
an application needs to prefetch a linked-list it gives the micro-controller a pointer to the
first item in the list, along with instructions on how to iterate over it and how many items
to send up the memory hierarchy. The data dependency of linked-lists is a good example
of the pointer-chasing problem, where it is impossible to prefetch the next node before the
node pointing to it is in the cache. By placing the iteration logic in the memory controller,
the addresses of the nodes do not need to be seen by the CPU before the next node is
fetched.

Chapter 3

Index Structures

Indices are a very important component of database systems. They allow data to be
searched efficiently and are at the core of most database operations. Historically, index
structures have been designed with disk-based storage in mind, but with the growing gap
between memory and CPU speeds other more cache-efficient index-structures have been
proposed.

In this chapter we will describe the B+-tree, which is the most popular tree-based in-
dex structure; all but one of remaining trees described in this chapter are based on the
B+-tree. Those are the main-memory based CSS-tree [26] and the CSB+-tree [25], the
main-memory based pB+-tree [9] and the related disk based but cache-sensitive fpB+-tree
[10].

The discussion of each tree structure is followed by an analytical cost model describing
its cache-performance. We open the chapter with cost model preliminaries and conclude
it with a comparison based on these cost models, using parameters characteristic of a
modern CPU.

3.1 Cost Model Preliminaries

We define the cache-performance of each tree as the number of CPU cycles spent waiting
for data to transferred from main-memory to cache during a single query, in terms of a
single cache-miss latency1. All trees are assumed to be completely in main-memory but
not in the cache and nodes are assumed to be cache-line aligned.

There are many different parameters used in the cache-performance cost models, both tree
dependent and architecture dependent. This includes parameters such as the number of
records in the tree and how many keys fit in a single cache-line. We also use two equations
which help simplify the analysis, as discussed below. A description of the parameters can
be found in Table 3.1.

1 Note that we do not necessarily count how many cache-misses occur, since some of the trees can
overlap cache-misses resulting in reduced waiting time.

3.2 The B+-tree 11

Parameter Definition
N Number of items in the index
T1 Cache miss latency in CPU cycles
Tnext Latency of an additional pipelined cache miss in CPU cycles
p Maximum number of key/pointer pairs in a cache-line
t Maximum number of keys in a cache-line
b Number of cache-lines per disk page
H(b, L) Height of tree with branch factor b and L leafs
D(h) Average node height of a full binary tree of height h

Table 3.1: Parameters and equations used in the cache-performance analysis.

For each tree, we need to know its height, based on its branch factor and number of leafs.
The tree height H for a tree with branch factor b and L leafs is:

H(b, L) = dlogb(L)e+ 1 (3.1)

We assume that binary search is used by all the trees during queries. Binary search reads
memory in an unpredictable way. All reads of a binary search cause a cache-miss (assum-
ing data is not already in cache), except for the very last ones, since they may be to the
same cache-line. To compute the cache-performance of binary search we need to know
how many cache-lines it accesses on average. If items are the size of a cache-line, the
number of cache-lines accessed is simply the average node height of the corresponding
recursion tree. Equation 3.2 gives the average node height D(h) of a full binary tree,
where h is the height of the tree and 2h − 1 is the number of nodes in the tree. If items
are smaller than a cache-line, several items will be fetched from the same cache-line at
the bottom of the recursion tree. By using the number of cache lines in Equation 3.2,
rather than the number of items, we can obtain the try number of cache misses. We do not
handle the case where items are larger than a cache-line.

D(h) =

∑h
i=1 2i−1 × i

2h − 1
=

(h− 1)× 2h + 1

2h − 1
(3.2)

3.2 The B+-tree

General Description

Since the main computing bottleneck used to be disk-access times, early index structures
were designed with disk-access in mind. The B+-tree [4, 12] has become one of the most
popular indexing structure used. It is optimized for disk-access, and guarantees at least
50% space utilization. Its development was motivated by the drawbacks of an earlier
tree-based index structure, the Indexed Sequential Access Method (ISAM), which could
not adapt well to changing data distribution. The ISAM tree structure is fixed at creation

12 Index Structures

Non-leaf nodes

Leaf nodes

21 25

31 63

37 69

10 14 19 23 25 26 29 32 36 37 42 50 60 64 67 80 90

Figure 3.1: An example B+-tree.

time, optimized for the initial tree data. Additional data is inserted into a linked-list of
pages, connected to the appropriate leaf. Under certain conditions, the query performance
degrades to the performance of a sequential search. The structure of the B+-tree, however,
changes with changing data, and there is a guaranteed upper bound (logarithmic) on tree
height, and thus query performance.

Leafs and nodes are the size of a disk page, which allows them to be fetched from disk in
a single I/O. Leafs and nodes, except for the root, are guaranteed to be at least half-full.
Each node contains n ∈ [t, 2t− 1] sorted keys, and n + 1 pointers. Each key is associated
with two pointers, pointing at the left and right subtree of that key. All keys in the left
subtree are less than or equal to the key, and all keys in the right subtree are larger. This
information is used to guide queries down to the correct leaf. Leafs store a sorted array of
key and tuple pairs. Figure 3.1 shows an example of a B+-tree.

Tree Operations

Queries start at the root. A binary search is performed on each node to select which node
to visit next. This is done until a leaf is found, where one more binary search is performed
to find the tuple corresponding to the query key.

The B+-tree supports efficient range scans, in both ascending and descending order, by
linking each leaf with its immediate neighbors. Since all tuples are stored in leafs, all
keys and their tuples can be enumerated (in sorted order) by simply reading the leafs left-
to-right (or right-to-left), following the neighbor link to the next leaf when needed. Range
scans are thus performed by finding the smallest (or largest) key in the tree which falls
inside the query range, and reading the leafs left-to-right (or right-to-left), following the
neighbor links when appropriate until a key outside the query range is encountered.

Insertion is performed by first finding the leaf where the insertion key would be, if it were
a part of the tree. The key and tuple are then inserted into the leaf, possibly needing to
shift data around to make space for the new data, since the key/tuple array needs to be
sorted. If, however, the leaf cannot hold more keys a new leaf is allocated. Half of the
keys and tuples in the first leaf are moved over to the new one. The insertion key is then
inserted into one of the two leafs. In addition, a pointer to the new leaf is inserted into
the leaf parent, along with the appropriate split key. If the parent is also full a similar
split operation is performed on the parent, including allocating a new node, moving keys
and pointers over to that and updating the next parent above. This is done until a non-full
parent is encountered. If the root needs to be split the tree height increases by one.

3.3 The T-tree 13

10 11 12

4 5 6

7 8 91 2 3 13 14

15 16

18 19 20

17

21

Figure 3.2: A T-tree which can hold up to 4 keys per node.

Deletion is analogous to insertion, but trickier. When a leaf underflows as the result of
a deletion, one of two things needs to be one. Either items need to be moved to this
leaf to another on the same level, or two leafs must be merged. The parents need to be
updated accordingly, and if they underflow as a result, a similar data distribution needs to
be performed there. The algorithm is rather involved but is described in [24, 17, 21].

Cache Performance

The number of cache-misses M+
B for a single B+-tree query can be computed my multi-

plying the height of tree (Eq. 3.1) by the number of cache-misses per node (Eq. 3.2) as
follows:

M+
B = H(bp, dN/te)×D(dlog2(b)e) (3.3)

3.3 The T-tree

General Description

The T-tree [19] was originally proposed as a better alternative to main-memory indexing
than the AVL-tree [1]. Like the AVL-tree, it is a balanced binary tree, but has more than
one element per node. This reduces the number of rotations during updates, since nodes
are created and deleted less frequently. Keys in nodes are adjacent and stored in order.
The left subtree of each node contains keys less than or equal to the smallest key in the
node, and the right subtree contains keys larger than the largest key in the node. An
example of a T-tree with nodes which can hold up to 4 keys can be found in Figure 3.2.
The search algorithms always uses 2 keys (or 1 key when there is only 1 key per node)
per node to decide whether to search either subtree or the current node.

The branch factor of the tree is only 2, which makes it much deeper than an equivalent
B+-tree. Only two keys per node are used to guide the search, so much data is not used, re-
sulting in poor utilization of cache-lines. The tree was proposed when memory speed was
similar to CPU speed, so reducing the number of CPU instructions was more important
than optimizing memory access.

14 Index Structures

Cache Performance

When computing the number of cache-misses during a T-tree query, we assume that each
node is one cache-line wide, and full. We also assume that the tree is full, i.e. all nodes
have 2 children. When looking at a full T-tree, it looks very much like the recursion tree
for binary search. T-tree does in fact behave very much like binary search, in the respect
that the search does not always move down to leafs, and the branch factor is 2. So in order
to find the number of cache-misses we simply compute the average node depth for the
corresponding binary-search recursion tree using Equation 3.2. The T-tree and recursion
tree structures are the same. The number of cache-misses incurred during a T-tree query
is given by Equation 3.4.

MT−tree = D(H(2, dN/te) (3.4)

3.4 The CSS-tree

General Description

The “Cache-Sensitive Search Tree” (CSS-tree) [26] and the more recently proposed “Cache-
Sensitive B+-tree” (CSB+-tree) [25] are main-memory indices. They are similar to the
B+-tree, but with nodes and leafs the size of a cache-line. The main idea behind them
is that all or most pointers can be eliminated, thus making better use of each cache-line,
although this comes at the expense of more expensive tree updates.

The CSS-tree has no pointers. It is stored consecutively in memory, in a breadth-first
order, except for leafs which are stored after the nodes. The memory layout of the tree
can be seen in Figure 3.3. Since the size of each level is known, it is possible to compute
the address of any leaf or node without pointers. There are two variants, the Full CSS-tree
and the Level CSS-tree.

The Full CSS-tree is an m + 1-ary search tree, where m is chosen such that a single node
is the size of a cache-line. Each node stores m keys, but no pointers. The Level CSS-
tree is similar, but instead of storing m keys per node, only m − 1 keys are stored. It
uses slightly more memory, since the branch factor is less, resulting in deeper trees. This
results in fewer key comparisons than for an equivalent Full CSS-tree, so it might be more
efficient when comparisons are more expensive compared to a cache-access.

Tree Operations

Search proceeds in the same manner as in B+-trees, except that child pointers need to be
computed. Because of the strict memory layout, the CSS-tree cannot handle incremental
updates. Updates can be batched and performed periodically, but the tree has to be rebuilt
each time.

3.5 The CSB+-tree 15

0

1 2 3 4 5

6-10 11-15 64-68 69-73 74-78

16-40 41-64

... ...

Figure 3.3: Memory layout of a Full CSS-tree.
Note that the numbers are not keys, but memory addresses. Adapted from [26].

Since the node size is known at compile-time, and the number of keys is fixed, it is
possible to write a specialized binary-search which only handles that number of keys.
The implementation described in [26] implements binary search by using nested if-than-
else statements, thus eliminating a one add and division operation in each iteration of the
binary search loop.

Cache Performance

The number of cache-misses Mcss for a single query on a CSS-tree is equal to the tree
height. Note that the branch factor of the tree is 2p, since the the size of pointers and keys
are assumed to be the same.

Mcss = H(2p, dN/te) (3.5)

3.5 The CSB+-tree

General Description

The CSB+-tree [25] is a variant of the B+-tree. The node format is the same as the CSS-
tree, except that it stores one or more pointers in each node. There are two variants, the
Full CSB+-tree and the Segmented CSB+-tree.

The Full CSB+-tree stores one pointer per node. Sibling nodes and leafs (called a node-
group) are stored contiguously in memory. Having a pointer to the node-group is enough
to find the address of all leafs or nodes within it. The memory allocated for a node group
is large enough to hold the maximum number of siblings. Since all siblings are stored
together, half of them (on average) need to shifted during splits.

16 Index Structures

22

7 30

3 13 19 25 33

2 5 73 12 16 1913 20 22 24 27 3025 31 36 3933

Figure 3.4: A Full CSB+-tree.
Nodes within a dotted square are stored contiguously in memory. Adapted from [25].

The n Segmented CSB+-tree stores n ≥ 1 pointers per node. Node groups are split into
n groups, and the pointers point to the start of each. The memory allocated for a group
is large enough to hold just that group, so when a leaf is split, new memory needs to be
allocated to hold the extra leaf or node, and the entire group has to be copied to the new
memory. Less data has to be moved around during splits, compared to the Full CSB+-
tree, but there is extra overhead involved in allocating and deallocating memory. Figure
3.4 has an example of a Full CSB+-tree, which is in fact equivalent to a 1-Segmented
CSB+-tree.

Tree Operations

Searching the tree is the same as for the B+-trees. As do insert and delete operations, ex-
cept that node splitting needs extra work, because of the grouping of sibling nodes.

An interesting code expansion technique for implementing the node search function of
the tree search is proposed in [25]. The CSS-tree node search function only has to handle
a single number of keys, whereas the CSB+-tree search function has to handle multiple
number of keys. A separate piece of search code is written to handle each possible number
of keys. A label is placed at the start of each piece, and pointers to each label are placed
in an array, which is indexed according to the number of keys that piece of code handles.
This is a feature supported by the GCC compiler called Labels-As-Values. Implementing
the search this way has the benefit of avoiding the overhead of a function call. A code
snippet demonstrating this technique is shown here:

Cache Performance

The number of cache-misses in the CSB+-tree is very similar to the CSS-tree, since the
node format is nearly identical. The only difference is that the branch factor is slightly

3.6 The Prefetching B+-tree 17

static void* jump_table[] = { &&key_10, &&key_11, &&key_12 };

void search(void* node, size_t n_keys)
{

goto *jump_table[n_keys];
key_10:

// search node, assuming it has 10 keys
goto search_end;

key_11:
// search node, assuming it has 11 keys
goto search_end;

key_12:
// search node, assuming it has 12 keys

search_end:
}

Figure 3.5: An Example Binary Search Implementation in the CSB+-tree.

smaller. Therefore, Equation 3.5 is a good approximation of the number of cache-misses
when querying a CSB+-tree.

3.6 The Prefetching B+-tree

General Description

The Prefetching B+-tree (pB+-tree) [9] is another main-memory indexing method, which
is almost identical to the B+-tree. It uses prefetching (see Section 2.3.3), which allows it
to have nodes wider than a cache-line, without having to wait an entire cache-miss latency
for each cache-line accessed. Wider nodes result in shallower trees, and the benefits of
having a shallow tree usually outweigh the prefetching overhead.

Many modern CPUs have parallel memory systems. They can fetch multiple cache-lines
from main-memory at the same time. Programs can instruct the CPU to fetch a given
cache-line by issuing so-called prefetch instructions. Multiple prefetch instructions can
be executed at the same time. For example, the Alpha 21264 CPU has a 150 cycle cache-
miss latency. It can, however, fetch 15 cache-lines at the same time, meaning that a
cache-line can be delivered to cache every 10 cycles. If a program knows what cache-line
it will need 150 cycles later, it can prefetch it and 150 cycles later it is available in cache.
This way the perceived cache-miss latency is 0 cycles, even though the actual cache-miss
latency is unchanged.

Node Layout and Prefetching

The pB+-tree nodes and leafs contain the same data as in the B+-tree. The data layout
is slightly changed: all keys are stored before tuples and pointers. The query and insert
algorithms are also modified: before accessing a leaf or a node, all of its cache-lines are
prefetched. Storing keys before other data enables a binary-search to proceed as early

18 Index Structures

as possible. Prefetching is performed left-to-right, such that keys are delivered to cache
before tuples and pointers as only keys are needed by the binary-search.

Scans

Range scans can benefit greatly from prefetching. Range scans involve finding the first/last
key of a range, and scanning the leafs in one direction until a key outside the range is
found. This requires minimal computation in the tree. When computation time is small
compared to the cache-miss latency, it is generally better to prefetch farther ahead then
when computation time is significant. However, the node width limits how far ahead the
scan is able to prefetch. It cannot easily prefetch more than one leaf ahead, since the
address of the next leaf is not available until the header of the current leaf is in cache.
This data-dependency is an example of the pointer-chasing problem. To be able to get the
address of further leafs faster, the pB+-tree uses a jump-pointer array.

Leaf Pointer Arrays

There are three ways of implementing a jump-pointer-array, the internal jump-pointer
array, the flat jump-pointer array and the chunked jump-pointer array. The flat jump-
pointer array stores pointers to leafs in a flat array. Leafs can be prefetched arbitrarily far
ahead since the pointers to them are readily available in the array. The drawback of this
method is that updating the array can be expensive, since on average half the array needs
to be shifted on a leaf split. The problem is partly remedied in the chunked jump-pointer
array. It works in a similar fashion, except that the array is split into chunks, and the
chunks form a linked list. When a leaf is split, only the chunk which contains a pointer
to it needs to be updated. Pointers within each chunk are kept as evenly distributed as
possible, minimizing the number of pointers that need to be shifted on a leaf split. This
method, however, sets a limit on how far ahead leafs can be prefetched. The internal jump-
pointer array uses information already in the tree. Leaf parents already contain pointers to
each leaf which can be used for leaf prefetching. During a range scan, the parent of each
leaf encountered is used, thus pointers to the next few leafs are immediately available.
The internal jump-pointers cannot handle prefetching leafs arbitrary far ahead, but this
approach requires less space and has no extra update cost.

Cache Performance

The cache-performance of the pB+-tree is dependent on the time it takes to prefetch a leaf
or a node, and the tree height. Both of these are dependent on the node width. So, in
order to compute the memory stall time, we first find the node width which gives the best
performance. The relevant parameters are T1 and Tnext. The stall time, in terms of a full
cache-miss latency, for a pB+-tree with nodes of optimal width w, is found be evaluating
Equation 3.6 for reasonable values of w, and selecting the one which gives the smallest
value for MpB+ :

3.7 The Fractal Prefetching B+-Tree 19

MpB+ = min
w

(H(wp, dN/wte)× (T1 + (w − 1)× Tnext)× (1/T1)) (3.6)

For each level in the tree we assume that we incur a full cache-miss latency for the first
prefetch, which costs T1 CPU cycles, and each additional prefetch costs Tnext CPU cycles.
Note that he optimal node width w may be different for different values of N . To find an
optimal node width which is adequate for a range of values for N , it is possible to simply
compute the optimal node width for different values of N (each of a different magnitude)
and compute their average.

3.7 The Fractal Prefetching B+-Tree

General Description

The Fractal Prefetching B+-tree (fpB+-tree) [10] is an attempt to make the disk based
B+-tree cache-efficient by combining it with the pB+-tree. On the outside it looks like a
B+-tree, with nodes the size of a disk page. However, inside each page, instead of a flat
array of keys, pointers and tuples, there is a pB+-tree, called the inpage-tree. The fpB+-
tree is called fractal, since it is self-similar in a sense, having a tree within a tree.

There are two approaches to implementing the fpB+-tree. They differ in which data is
selected into which pages. The first one, called disk-first, starts with a traditional B+-tree.
It then builds the in-page trees from the data within each page. Since an in-page tree takes
more space than an array of key/pointer or key/tuple pairs, each page is not completely full
before building the in-page trees. This approach makes it very straightforward to modify
existing B+-tree implementations into fpB+-trees. The other method, called cache-first,
begins by building a cache-optimized tree, similar to the pB+-tree. Nodes from this tree
are then placed in pages, such that I/O is minimized when using the fpB+-tree. When
placing nodes within the pages, there are two optimization goals. The first is to group
sibling leaf nodes into the same page, to minimize I/O during range scans. The second
is to group a parent and its children in the same page. These goals cannot always be
achieved simultaneously. The disk-first approach is more relevant to this thesis, and is
described further.

The disk-first approach is a straightforward modification of a regular B+-tree. The con-
tiguous array of key/pointer and key/tuple pairs is simply replaced by a pB+-tree storing
the same data. The query and update procedures for the sorted array are replaced by the
corresponding procedures for the pB+-tree.

The fpB+-tree can also prefetch leaf pages during scan operations. This is done with an
external jump-pointer array, in a similar way as the pB+-tree, but at a different granular-
ity.

20 Index Structures

Cache-Performance

In order to compute the number of stall cycles for the fpB+-tree, we need to know how
many leafs the inpage-tree can hold, which then decides the fpB+-tree branch factor. In
a similar manner to the pB+-tree, we compare different node widths, and select the one
which gives the best overall performance.

Let N be the number of inpage-tree nodes and leafs a single fpB+-tree node can hold. We
can find the maximum number of leafs L it can hold, given node width w by solving for
L in Equation 3.7:

∞∑
i=1

k(i, L) ≤ N <
∞∑
i=1

k(i, L + 1) (3.7)

Where k(i, L) defines how many leafs or nodes level i of a tree with L leafs has, with
i = 1 being the leaf level (which by definition holds L leafs), and i = 2 is the lowest node
level, and so forth. k(i, L) is defined as:

k(i, L) =

L i = 1,

0 k(i− 1, L) = 1,⌈
k(i−1,L)

wp

⌉
otherwise.

In order to find the inpage-tree node width which gives best overall cache-performance
we first find L for the given node width, which in turns gives us the fpB+-tree height, and
thus the overall cache-performance.

3.8 The Prefetching CSB+-Tree

General Description

Pointer elimination and prefetching as described in this chapter are complementary tech-
niques [9]. It is possible to increase the node width of the CSB+-tree and prefetching
nodes like the pB+-tree does, resulting in the “Prefetching CSB+-Tree” (pCSB+-tree).
That way, you get better performance than the pB+-tree, since the branch factor is slightly
higher. The cost of splitting node groups compared to the CSB+-tree are, however, even
more expensive since nodes are wider.

Cache Performance

The cache-performance of the pCSB+-tree can be found using the same method as pB+-
tree and doubling the branch factor.

3.9 Index Comparison 21

3.9 Index Comparison

In this section we compare the cache-performance of the indexing methods discussed in
this chapter using a simulation. We assign values to the parameters of Table 3.1 which
reflect the Itanium 2 processor (which is used by Chen [8]). The Itanium 2 processor has
64-bit pointers, so we use 8 byte keys, since we assume keys are the same size as pointers.
The values are these:

• Cache-line size = 128 bytes

• T1 = 189cycles

• Tnext = 24cycles

• p = 128/(8 + 8) = 8bytes

• t = 128/(8 + 0) = 16bytes

• b = 32(16KB)

Figure 3.6 shows the results. The x-axis shows the number of items in the tree while
y-axis shows the time spent waiting for data to be fetched from main-memory in terms
of a single cache-miss latency. Note that the x-axis is logarithmic. The number of cache
misses is computed using the equations derived for each indexing method described in
the previous sections.

Note that the cache-performance does not necessarily reflect the actual performance of
each index, since it only measures CPU cycles wasted waiting for data to be transferred
from main-memory to cache. Cycles spent doing actual work are not considered, since
we assume that the CPU speed is high relative to the performance of the memory subsys-
tem.

The B+-tree has the worst cache performance. The branch factor is 32 ∗ 8 = 256, much
higher than for the other trees, so its height increases less frequently. The average number
of cache-misses when querying a leaf is 11, and 12 for nodes. The cache-performance
increases by that whenever the height increases.

The T-tree grows more frequently since its branch factor is only 2, making it essentially
a binary search tree. Therefore, the cache-performance decreases steadily, but it still
performs better than the B+-tree.

The fpB+-tree has better cache-performance than the B+-tree; the cost of leaf and node
search in terms of cache-misses is only about 25% compared to the B+-tree. The branch
factor is slightly smaller, since it has to store the non-leaf levels of the inpage-tree, which
is why the height increases slightly earlier than the B+-tree.

Like the T-tree, the CSS- and CSB+-trees have nodes the size of a single cache-line. The
number of cache-misses is equal to the tree height, but since the branch factor is higher
than for the T-tree, it has better cache-performance.

The pB+-tree cache-performance does not change as regularly as most of the other trees.
This is because the optimal node width may be different for each number of items. There

22 Index Structures

 0

 5

 10

 15

 20

 25

 30

 35

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
yc

le
s

sp
en

t w
ai

tin
g

fo
r

da
ta

Number of items in tree

B+-Tree
T-Tree
fpB+-Tree
CSS/CSB+-Tree
pB+-Tree
pCSB+-Tree

Figure 3.6: Cache-performance of different index structures for a single query.
Measured in units of a full cache-miss latency.

is a compromise between tree height and cache-performance of leaf and node search, and
the best combination of node width and resulting tree height is chosen. It is interested
to note that the cache-performance is similar to the CSS- and CSB+-trees, which cannot
handle updates as efficiently.

Combining prefetching with pointer elimination results in the best cache-performance of
all the trees, but by a narrow margin. In order to compute its cache-performance, we
simply use the same method used for the pB+-tree, but with double the branch factor,
since it has no keys, and keys and pointers are of the same size.

Chapter 4

Experimental Setup

This chapter describes our experimental setup. Section 4.1 describes the hardware setup,
including a discussion of the Itanium 2 processor memory subsystem. Section 4.2 de-
scribes the workloads used. Section 4.3 describes the metrics used in our experiments,
and Section 4.4 describes the software setup.

4.1 Hardware Setup

The experiments are performed on a dual Itanium 2 processor server, running at 900MHz,
with 4GB of main-memory. The CPUs are 2nd generation Itanium processors (code name
McKinley). They run at a higher frequency than their predecessor and have lower cache
latencies. The server runs Debian GNU/Linux 2.4.25-mckinley-smp.

For our experiments, the characteristics of the memory subsystem are of primary impor-
tance, so the remainder of this section gives an overview. A good reference manual for
the Itanium 2 processor is available from Intel [16].

4.1.1 Cache Structure

The Itanium 2 processor has 3 levels of cache. The first-level cache is split between data
and instructions, but the second- and third-level caches are unified. The caches are set-
associative, with varying associativity. The details of each cache is shown in Table 4.1,
including the latency of an integer load. The L1D cache uses a write through replacement
policy, and the L2 and L3 cache use a write back replacement policy.

All caches use the not-recently-used replacement algorithm (NRU) which works as fol-
lows. Each cache-line has an associated bit which is set when it is accessed. In the case
of replacement, the first cache-line with an unset bit is chosen. When all bits have been
set, they are all reset, so there is always a replacement candidate.

The Itanium 2 processor has two levels of fully associative translation lookaheadbuffers
(TLBs), with separate TLBs for instructions and data. The first level TLBs have 32 entries,

24 Experimental Setup

and only contain translations for data in L1D and L1I. The second level TLBs have 128
entries, and contain translations for data in L2 and L3.

The miss penalty for the first level data TLB is 4 cycles. The level 2 data TLB miss
penalty is 25 cycles if the data is in L2, but 31 cycles if the data is in L3. If the data is in
main-memory, the penalty is 20 cycles plus the main-memory latency.

The CPU is connected to the main-memory via a double pumped 200MHz bus, which
allows it to transfer data twice per bus cycle. The bus width is 128 bits, which means the
bandwidth could theoretically reach 6.4GB/s.

4.1.2 Prefetching

The Itanium 2 processor instruction set includes a prefetch instruction, which has three
different types of prefetching hints:

Exclusive hint: The exclusive hint controls whether the cache-line should be marked as
dirty, in which case it is written back to the cache-level below when replaced. This
hint should only be used when it is likely that the cache-line will be modified, e.g.,
when searching a leaf during tree insert.

Fault hint: The fault hint controls whether the cache-line should be fetched if the page
it belongs to is not in the TLBs. The fault hint should be avoided for speculative
prefetches, but should be appropriate for the index operations of the pB+-tree, since
the probability of using a cache-line is high.

Locality hint: The locality hint controls how high up the cache-hierarchy the cache-line
is placed, as well as whether the NRU bit is set.

The exclusive and fault hints are either set or unset, but the locality hint has four different
values, which are shown in Table 4.2. In the table, a check-mark (

√
) in the Alloc column

indicates that the cache-line is brought into the corresponding cache-level, while a check-
mark in the NRU column indicates that the NRU bit is set for that cache-line. Integer load
instructions have similar locality hints, and they may set the NRU bits for cache-lines
when issued, even if the cache-line was prefetched without setting the NRU bit.

Note that L1D has a different cache-line size than L2 and L3, and this has implications
when prefetching with the t1 hint. In that case the 128 byte cache-line being prefetched
is brought into L2 and L3, but only the first 64 bytes are brought into L1D.

4.1.3 Data Alignment

Data alignment is very important when working with integer data on the Itanium 2 pro-
cessor. All integer stores and loads must be aligned within an eight-byte window. If an
unaligned integer data operation is issued, the CPU will throw an exception and call a
handler inside the OS. The handler will issue an equivalent set of 1 and 2 byte operations.
This means that the overhead of an unaligned load is very high compared to an aligned
load. We have therefore used aligned memory allocation in our implementation, taking

4.2 Workloads 25

Cache Size Line size Integer Load Latency Associativity
L1I 16K 64 bytes 1 cycle 4
L1D 16K 64 bytes 1 cycle 4
L2 32K 128 bytes 5 cycles 8
L3 1.5MB 128 bytes 12 cycles 12

Table 4.1: Itanium 2 processor cache size, integer load latency and associativity.

L1D L2 L3
Hint Alloc NRU Alloc NRU Alloc NRU
t1

√ √ √ √ √ √

nt1
√ √ √ √

nt2
√ √ √

nta
√

Table 4.2: Itanium 2 processor prefetch hints.

care to align the key- and pointer-arrays to 8-byte boundaries. Most program will not have
to worry about this, since modern compilers have automatic alignment for primitive types
such as integers and floating point numbers.

4.2 Workloads

Each experiment consists of two steps. First a pB+-tree is constructed, either by repeated
inserts or bulkloading. Second, the operation to be measured is run repeatedly; the oper-
ation may be either a point query, an insert, or a full scan of the index. We describe these
steps more precisely in the following.

4.2.1 Tree construction

There are two different methods to construct trees for measurements, depending on the
experiment, using insertion or bulkloading. The keys used in the tree construction can
range in size from four bytes to arbitrarily long keys. In both cases, keys are generated
ahead of the operation.

Keys used with repeated insertion are randomly generated. An array large enough to hold
all the keys is created. The value of each byte of the key is set to the output of the C
function rand() typecast to a byte. srand() is called before with a user-defined random
seed.

For bulkloading, keys are generated inserted in lexicographical order. Bulkloading is
performed by repeated insertions along the right-most path of the tree. The fill-factor is
set by the user, to 100%, 67% or 50%. For the higher fill-factors, the node split is modified
to copy less than half of the nodes to the new sibling node.

26 Experimental Setup

Note that pointers are always assumed to to be 8 bytes, while no data is stored in leafs,
only keys.

4.2.2 Index operations

Point queries always request a record that is in the index. Query keys are chosen by
inserting all keys in the tree into an array and shuffling the array. The keys are then used
in the shuffled order; of more queries are issued than there are keys in the tree, the array
is used multiple times.

Insert operations are performed exactly as described above for tree construction. Essen-
tially, they are implemented with a point query, followed by an insert to the leaf.

Scans are always full index scans. They descend the index along the left-most path, and
then traverse the leaf level, using the jump-pointer array for prefetching.

4.3 Performance Metrics

There are two performance metrics used in our experiments. The primary metric is the
running time, measured using the getrusage system call.

For a more detailed analysis of the running time, we use pfmon (version 2) 1 and construct
detailed stall cycle breakdown. Furthermore, sometimes, we have used the HPC-Toolkit
for a detailed correlation of the CPU events with the source code for better understanding
of the performance results.

4.3.1 Running Time

The simplest metric is the time it takes for an operation to complete. To measure this we
use the getrusage system call. Unlike measuring the wall clock time time, it reports the
user time allocated to the process. It is implemented by counting the number of timeslices
the OS allocates to the process. If there are many context switches per time unit on the
system, the measurement can become skewed. We address this in our experiments by
making sure that there are no heavy processes running at the same time, and running each
experiment multiple times. Additionally, weshow that having no other heavy processes
running results in accurate measurements, by comparing the results of getrusage to those
of pfmon. We also make sure that no I/O operations are performed by making sure that
all data is stored in main-memory, because I/O time might not be measured since the OS
could overlap performing the I/O and running other processes.

1 Available at http://www.hpl.hp.com/research/linux/perfmon/pfmon.php4.

4.4 Software 27

4.3.2 Stall Cycle Breakdown

The Itanium 2 processor has 4 performance counters, each of which can be associated
with one of over 200 events in the CPU. These can be used to group CPU cycles into
different stall categories, depending on what caused the stall. Jarp [18] has suggested a
methodology for this grouping, which we have adapted. The stall categories, the associ-
ated performance counters, and a description of the stall cause can be found in Table 4.3,
which is borrowed from [23].

To sample the values of the performance counters we use pfmon. It collects the values
of performance counters while running a program, and outputs their values when the
measured program terminates. We run it with the parameter -u, which causes the CPU to
only increment the counters when in user space.

One important feature of pfmon is that it can start profiling the first time a certain function
is called. The experimental software uses this functionality by calling an empty function
before an operation starts, to avoid measuring program startup time and tree construction.
In order to avoid measuring the overhead of cleaning up data structures the program is
forcefully terminated when the operation finishes.

It is possible to use pfmon instead of getrusage to measure the time it takes for an opera-
tion to finish, as the clock frequency of the CPU is found in the device file /proc/cpuinfo
and can be used to convert the number of cycles into seconds. In order to compare the
running times given by getrusage and pfmon, as well as to verify that the stall cycle break-
down is a good representation of program activity we ran the following experiment. We
bulkloaded 1M keys of varying size into a pB+-tree and queried it 1M and 10M times.
Both leafs and nodes were 5 cache-lines wide. The results, which are shown in Table 4.4,
shows that as the error does not grow with increased running time or key size (and is never
more than ±1.01%) the two methods of measuring running time are comparable.

4.3.3 Source-Code/CPU Event correlation

The HPC-toolkit2 is a set of tools used to analyze the performance of programs. It includes
tools to correlate CPU events with source code using symbol table information. The Ita-
nium 2 processor contains a Data Event Address Register, which contains the instruction
pointer when the last memory related event occurred. When this register is sampled at
regular intervals it can be used to approximate the distribution of data events across the
source code, which is useful for understanding how much time is spent in different parts
of the program and where cache-misses occur.

4.4 Software

The experimental software we use consists of an implementation of the pB+-tree, written
in C, and a set of scripts used to automate the process of running the experiments and gen-

2 Available at http://hipersoft.cs.rice.edu/hpctoolkit.

28 Experimental Setup

Category: description Formula

D-cache stalls: Stalls incurred waiting for data to be
delivered to cache.

BE_EXE_BUBBLE_GRALL -
BE_EXE_BUBBLE_GRGR +
BE_L1D_FPU_BUBBLE_L1D

Instruction miss stalls: Stalls incurred waiting for
instructions to be delivered to cache.

FE_BUBBLE_IMISS∗

Branch misprediction: Stalls incurred when the
pipeline is flushed because of a branch misprediction.

BE_FLUSH_BUBBLEḂRU +
FE_BUBBLE.BUBBLE∗ +
FE_BUBBLE.BRANCH∗

RSE stalls: There are 96 registers available for stack
variables, but if too many are used, a backing store
simulates more registers. These stall occur when there
are no free stack registers, and data is moved back and
forth between the CPU and the backing store.

BE_RSE_BUBBLE.ALL

FPU stalls: Stalls in the floating point micro-pipeline. BE_EXE_BUBBLE.FRALL +
BE_L1D_FPU_BUBBLE.FPU

GR Scoreboarding: Integer register dependency
stalls.

BE_EXE_BUBBLE_GRGR

Front-end Flushes: Cycles lost due to flushes in the
front-end.

FE_BUBBLE_FEFLUSH∗

Busy: Unstalled CPU cycles. CPU_CYCLES minus the sum of the
above

Table 4.3: A description of CPU stall cycle categories and their related events.
∗ Counters starting with FE_ must be scaled with the reduction factor

BACK_END_BUBBLE_FE
FE_BUBBLE_ALLBUT _IBFULL

.

Key Size Queries pfmon getrusage Difference
8B 1M 2.3852 2.3999 -0.61%
16B 1M 3.0847 3.0952 -0.34%
32B 1M 3.2904 3.2690 0.65%
64B 1M 4.2625 4.2832 -0.48%
128B 1M 6.6641 6.7017 -0.56%
8B 10M 23.8571 24.1001 -1.01%
16B 10M 30.8538 30.9927 -0.45%
32B 10M 32.3458 32.3262 0.06%
64B 10M 42.7491 42.9741 -0.52%
128B 10M 66.8485 66.9771 -0.19%

Table 4.4: Difference in measuring runtime with getrusage and pfmon.

4.4 Software 29

erating graphs of the results. We refer to the set of scripts as the experimental framework.
Section 4.4.1 describes the compiler and compiler flags used. Section 4.4.2 describes the
pB+-tree implementation and Section 4.4.3 describes the experimental framework.

4.4.1 Compiler

We use version 8.0.066 of Intel’s C Compiler for Linux, which has very good support for
the Itanium 2 processor. We used the following compiler flags:

-O2 Enables non-aggressive optimizations. Recommended for most applications.

-Ob2 Allows the compiler to control function inlining. Inlined functions are copied to
the place where they are called, thus saving the overhead of a function call.

-fno-alias Tells the compiler to assume no aliasing in the program. Aliasing is when
two pointers point to the same memory, and changing one might potentially affect
data in the other, so the compiler must be careful not to reorder stores and loads in
expressions containing pointers.

-ip Enables single-file inter-procedural optimizations.

More aggressive optimizations were tested, but resulted in a performance loss.

4.4.2 pB+-Tree implementation

We have implemented the pB+-tree in the C programming language. The code base is
split into two parts, a library which implements the pB+-tree and a command line program
which sets up performs experiments on the pB+-tree.

Compile Time Parameters

Many tree parameters must be defined at compile-time using macros. A small script
builds binaries for all configurations of these parameters. The binary names include what
parameter configuration they were built with. The parameter values are separated with
underscores (_) and the relative ordering is always the same. Table 4.5 describes these
parameters and the set of possible values. Parameters are listed in the same order as they
would be in the binaries.

Neither the Unrolling nor the Prefetch policy parameters are applicable if prefetching is
not used. The binaries built are: non-prefetching using binary and sequential search, and
prefetching binaries, using all combinations of remaining parameters.

For each binary, there is a corresponding debug binary. The debug binaries are compiled
without optimizations, and use many internal tests to verify the consistency of the tree
during tree operations. They also include many unit tests which are used to black-box test
the tree. As the name suggests, they are only useful for debugging and are much slower
than the non-debug binaries.

30 Experimental Setup

Parameter Values Meaning
Prefetching pre Use prefetching

<none> Do not use prefetching
Search bin Use binary search

lin Use sequential search
Unrolling duff Use unrolled prefetch loop

<none> Use regular prefetch loop
Prefetch all Use Linear prefetch policy
policy half Use Binary prefetch policy

half2 Use Half-Linear prefetch policy
pat Use Half-Binary prefetch policy

Table 4.5: Compile time parameters.

Node and Leaf Allocation

Two methods are used to allocate leafs and nodes. The first methods is to have a pool of
memory and allocate memory from that. If the pool fills up, its size is doubled. Using
this method, node and leaf pointers are integers, representing the index of their slot in the
memory pool. The pointers can be 16, 32 or 64-bit. The second method is to let the user
specify an allocation function, which could simply be malloc/free or a cache-line aligned
version. Using this method, node and leaf pointers are 64-bit pointers. Whether or not
to use a memory pool, and which memory pool pointer size to use, are compile-time
parameters.

Using the memory pool might be useful if the tree were to be used as the inpage-tree in
an fpB+-tree implementation. In that case, the memory available to the tree is limited to
an area inside a disk-page sized node and all pointers need to be relative.

Internally, the main difference between using the memory pool or a user-defined alloca-
tion function, is that memory-pool pointers need to be translated to physical addresses
each time a leaf or a node is used, which incurs some overhead. The memory pool al-
location method is not used in any experiments in this work. Instead we use the system
function memalign for all experiments. memalign returns aligned memory. Allocated
memory is 128 byte aligned, which is the cache-line size of the L2 and L3 caches.

Leaf/Node Structure

Each leaf consist of a 40 byte header, an array of keys, and an array of tuples, in that order.
The header contains 4 fields. The number of keys, pointers to its immediate neighbors,
and a union of two structs. The two structs contain information about the leaf’s position
inside a flat or a chunked leaf pointer array, if one of them is used for tree scans.

Each node consists of a header, an array of keys, and an array of pointers, in that order.
The header contains 4 fields. The number of keys, the level the node is at, and pointers to
its immediate neighbors. Of these, only the key field is strictly necessary. The other fields
are used to validate the tree structure, and the right-neighbor pointer is also used by the

4.4 Software 31

<top-level directory>
|--code/
| |--Makefile
| |--compile.sh <compiles different configurations of the pB+Tree>
| |--bin/ <compiled binaries>
| |--libpbtree/ <pb+tree code>
| |--pbtree/ <experiment code>
| |--temp/ <temporary compilation files>
|
|--experiments/

|--sfm_main.pl <performs a single experiment>
|--run_opt_node_width.pl <finds optimal node width>
|--run_experiment.pl <runs all experiments in a given directory>
|--run_report.pl <generates a report of experiment results>
|--output/ <experiment results>

Figure 4.1: Framework directory structure.

internal leaf-pointer array. The header is 24 bytes if the pointers are 64-bit, 16 bytes if
they are 32-bit, and 12 bytes if they are 16-bit.

The key, tuple and pointer arrays in the leafs and nodes are 8-byte aligned, relative to
the start of the node, since the overhead of performing non-aligned integer operations
on the Itanium 2 processor carries heavy performance penalties as discussed in Sec-
tion 4.1.3.

4.4.3 Experimental Framework

We use a small experimental framework to run experiments, gather relevant performance
metrics and report results. This section gives an overview of how it works and how to use
it.

The framework consists of PERL scripts which communicate with various software. The
framework depends on 4 software packages for complete functionality. They are Gnuplot
4.13, PdfLatex4, pfmon5 and PERL6. The directory structure used is shown in Figure 4.1,
with descriptions of the contents of each directory. It it split into 2 main parts. The code
part contains all the pB+-tree software and build tools while the experiments part contains
everything else including the experiment definition scripts.

We define an experiment as a set of workloads whose results are plotted into a single
graph. Once an experiment has been defined it is simple to run it and create a report
with graphs. Assume the directory exp_1 contains a file describing an experiment. The
following commands are used to perform the experiment and create a report, assuming
that the user starts in the top-level directory:

3 Available at http://www.gnuplot.info/
4 Available at http://www.tug.org/applications/pdftex/
5 Available at http://www.hpl.hp.com/research/linux/perfmon/pfmon.php4.
6 Available at http://www.perl.com/

32 Experimental Setup

% cd experiments
% perl run_experiment exp_1/
% perl run_report exp_1_results/ exp1_report "Exp1 results"

The second step runs the experiment and places all results in the folder exp_1_results.
The third step creates two files, exp1_report.pdf and exp1_report.tar.bz2.
The first file contains the graphs showing the experimental results, and the second one
contains the data files created during the experiment and all Gnuplot and Latex scripts
used to make the graphs.

The framework can be downloaded at http://datalab.ru.is/csi. It includes
the pB+-tree implementation, the experiment framework, all experiment definitions used
to produce the results in this work, and documentation describing the syntax of the exper-
iment definition files.

Chapter 5

Implementation Choices

We implemented the pB+-tree based on the description in [9] and adapted it to the Ita-
nium 2 processor. During this work, we realized that we had many implementation op-
tions, which might affect performance significantly. Rather than choosing arbitrarily, we
have implemented those options; this section analyzes the performance trade-offs. The
options we have identified are shown in Table 5.1. As the table shows the options concern
the prefetching hints, the implementation of the prefetching loop, and the implementation
of the search algorithm. The table furthermore summarizes the results of our experiments;
in the remainder of this section, we study each category in turn and present our perfor-
mance results.

5.1 Prefetching Hints

In [8], it is argued that the faulting hint should always be used (set to “yes”). If it is not
used and the cache-line address is not found in the TLB, then all prefetching instructions
are canceled, and the first access incurs a TLB miss latency (see Section 4.1.1), and all
cache-lines accessed incur a full cache-miss latency. It does appear to that it is beneficial
to use this hint as 1) the access pattern is very predictable, and 2) the associated cost of a
miss is high.

Category Options Choice
Fault hint Yes / No Yes
Locality hint t1 / nt1 / nt2 / nta Query: t1

Insert: nta
Scan: t1

Prefetch loop Regular / Unrolled Unrolled
Node prefetching Linear / Half-Linear / Search: Linear

Binary / Half-Binary Scan: Half-Lin.
Search algorithm Linear / Binary Binary
Comparison Memcmp / Optimized Optimized

Table 5.1: Implementation options and choices.

34 Implementation Choices

Key/Node size Fault Query Time Speedup Scan Time Speedup
8B/4CL 2.259s 0.596s√

2.270s 0.46% 0.596s 0.02%
64B/32CL 7.676s 0.833s√

7.679s 0.04% 0.823s -1.21%

Table 5.2: Prefetch fault hint speedup. 1M records, 1M queries, 10 scans.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4 8 12 16 20 24 28 32

T
im

e

Node Width

t1
nt1
nt2
nta

Figure 5.1: Comparison of locality hints for queries.

We set up the following experiment: We used a small pB+-tree (1M keys; 8B keys; 4CL
(cache-line) nodes) and a large pB+-trees (1M records; 64B keys; 32CL nodes). We ran
1M queries and 10 scans over each tree, comparing the running time. Results are shown
in Table 5.2. While the expectation was to see better performance with the faulting hint,
particularly in the case of the scan of the large tree, the results showed no significant
difference with or without the hint. As the logic for using the hint is still sound, however,
we suggest to use it.

Turning to the location hints, the expectation was that each operation would have its
preferred hint. We expected the nta hint to perform best to prefetch new nodes during
splits, but worst for the other operations. The reason is that the nodes will not be read,
so they done not need to be in the L1D (remember that the L1D is write-through), and it
does not need to stay in cache long, so it should be biased for replacement.

The performance trade-offs of the other hints were less clear. For all these experiments
we tested three key sizes, 8B, 16B and 32B, on 1M key trees, bulkloaded with fill fac-
tors 100%, 67% and 50%. Node widths used were 4CL through 32CL, using 4CL
strides.

Figure 5.1 shows the response time for queries for 16B keys, as the node size is varied. As
the figure shows, the t1 hint performs best with this workload, showing savings of up to
2.6% compared to the nt1 and nt2 hints, and up to 7% compared to the nta hint. Similar
savings were seen for other fill factors; across the key size/node size combinations we
tested, the t1 hint clearly performed the best.

5.2 The Prefetching Loop 35

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 8 12 16 20 24 28 32

T
im

e

Node Width

t1
nt1
nt2
nta

Figure 5.2: Comparison of locality hints for scan.

The insertion operation has two phases. First, a point query is used to find the correct
location for the tuple. Based on the previous results, we chose to use the t1 hint for this
point query. Then the data is inserted, but since the leaf is already in cache, no prefetching
is needed. In the case of node splits, however, reading new memory is necessary. For this
operation, we expect the nta hint to be beneficial.

Turning to the performance of insertions (not shown), we did not observe any significant
differences between the prefetching hints. In our experiments we did observe a few cases
where the nta hint does indeed perform best, but only for (unrealistically) large keys
and then not by a large margin. Clearly, the node splits are such a small fraction of the
workload that their performance impact is negligible.

Finally, we turn to the scan operation. Figure 5.2 shows the performance of full index
scans for an index with 1M keys of 16 bytes each, as the node size is varied from 4
to 32 cache-lines. For this operation, as it did for the search, the t1 hint gives the best
performance on average, but by a very small margin. The nt1 and nt2 hints perform about
the same, and nta is slightly worse.

5.2 The Prefetching Loop

We now turn to the implementation of the prefetching loop itself. While the prefetching
instructions do run in parallel to other processing, issuing the prefetches results in some
overhead and must be efficiently implemented.

We compare a straight-forward implementation of the loop with a method called Duff’s
device1 which allows unrolling loops which can handle an arbitrary number of iterations.
The pseudo-code for this unrolling is shown in Figure 5.3, where the pf() macro per-
forms the actual prefetching. The loop is based on a trick allowed by C syntax, whereby

1 See http://en.wikipedia.org/wiki/Duff’s_device.

36 Implementation Choices

ptr = first_cache_line
numloops = numcachelines / 8;
remainder = numcachelines % 8;
switch (remainder)
{
case 0: do { pf(ptr); ptr += cachelinelength;
case 7: pf(ptr); ptr += cachelinelength;
case 6: pf(ptr); ptr += cachelinelength;
case 5: pf(ptr); ptr += cachelinelength;
case 4: pf(ptr); ptr += cachelinelength;
case 3: pf(ptr); ptr += cachelinelength;
case 2: pf(ptr); ptr += cachelinelength;
case 1: pf(ptr); ptr += cachelinelength;

} while (--numloops > 0);
}

Figure 5.3: Pseudo-code for Duff’s device.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4 8 12 16 20 24 28 32

T
im

e

Node width

Query: Regular
Unrolled

Scan: Regular
Unrolled

Figure 5.4: Comparison of loop unrolling options.

the switch sentence jumps into the middle of a loop of eight unrolled prefetch operations.
The destination of the jump is based on the remainder of a division by 8 into the number
of cache-lines to prefetch. Note that there is a precondition to the loop, that numcache-
lines must be > 0. Once the initial jump has been made, the do-loop takes over (the case
labels are then ignored) and runs until every cache-line has been prefetched.

Figure 5.4 shows the performance of the regular and unrolled loops for 1M queries and
10 scans (it has very little effect on the inserts), over trees with 16B keys. As the figure
shows, the unrolled loop performs better in all cases, in some cases running 4–6% faster
than the original loop. The speedup for queries is 2–3% on average and up to 4% in
some cases, but 2–3% on average for scans and up to 6% on some cases. We therefore
recommend using the Duff’s device in all cases.

5.3 Node Prefetching 37

0.0

1.0

2.0

3.0

Regular/Query Unrolled Regular/Scan Unrolled

T
im

e

Busy
D-Cache Stalls

Branch Stalls
Other Stalls

Figure 5.5: Stall cycle analysis for loop unrolling.

Figure 5.5 shows a more detailed breakdown of the costs of the queries and scans, for
nodes of 16 cache-lines. The figure shows the primary benefit comes from a reduction
in busy time, presumably from less loop overhead. Finally, various other stalls are re-
duced, for some unidentified reason. For the scans only the busy time is observably
reduced.

5.3 Node Prefetching

Turning to the implementation options for node prefetching, Chen at al.[9] suggest prefetch-
ing all cache-lines of a node, left-to-right. But since a node does not necessarily use all
of its cache-lines it may be more efficient to prefetch only those cache-lines which are
in use. Additionally, when binary search is used, prefetching the cache-lines left-to-right
might not be the most appropriate order in which to prefetch, since the reading pattern of
binary-search is not sequential.

We have implemented four prefetching policies, the suggested method and three selective
prefetching policies, which have in common that they prefetch only cache-lines contain-
ing data. In the following, all four policies are described, along with their benefits and
drawbacks. The discussion is in terms of nodes, but it applies equally well to leafs.

Linear: The Linear policy prefetching prefetches all cache-lines of a node, left-to-right.
This is the fastest way to prefetch all lines in a node. This policy, however, is
oblivious to the order in which cache-lines are accessed and may prefetch cache-
lines that contain no data.

Binary: This policy first reads the node header to learn how many keys the node has.
It then prefetches the key array in the order dictated by a breadth-first traversal of
the binary-search recursion tree for that number of keys. This provides the optimal

38 Implementation Choices

prefetch order for binary-search. Finally, the policy prefetches the pointer array in
the same order.

This policy has two performance overheads. First, it suffers a mandatory cache-
miss for reading the node header before prefetching starts. This is avoided with
linear prefetching. Second, since cache-lines are no longer prefetched left-to-right,
Binary prefetching needs to know which cache-line to prefetch next. To save the
calculations, this information is pre-calculated for all possible node contents and
stored in a look-up-table, but there is still an extra indirection involved for each
prefetch.

Half-Binary: This is similar to the Binary policy above. This policy first prefetches the
node header, first half of key array and first half of pointer array, using a prefetch
order found in a lookup-table, but without any consideration for the actual node size.
All these prefetches are required, since the pB+-tree is guaranteed to have at least
50% occupancy of all nodes. It then reads the header and subsequently prefetches
all remaining required cache-lines in the same order as the Binary policy, excluding
cache-lines which have already been prefetched.

Half-Linear: This policy prefetches the header and the first half of the key array, regard-
less of how many keys the node has. It then reads the header to learn how many keys
are in the node. Finally it prefetches any remaining cache-lines containing keys and
all cache-lines containing pointers. Cache-lines are prefetched left-to-right.

Note that since both Half-Binary and Half-Linear policies require reading the node header,
they cannot issue the second batch of prefetching statements until the node header is in
the cache. Furthermore, note again that all the ordering data needed for these operations
is precomputed and stored in look-up-tables.

Turning to the performance of these proposed policies, we observed that the Binary poli-
cies were never significantly better than the Linear policies. There appear to be two
reasons. First, the Binary policies are only applicable for queries, and not for scans. As
we will discuss in a moment, more performance improvements are possible during scans.
The second reason appears to be that prefetching is so fast that the overhead of the indi-
rection is higher than the savings from the improved order. Therefore, we do not study
the Binary policies further.

Turning to the Linear policies, we observed that no performance gains were seen for
queries. This is understandable, since only a single node can be prefetched at a time, as
prefetching can not start until the appropriate child is found. Since the Linear policy can
very efficiently prefetch a full node, there is little to be gained.

For scans, on the other hand, it is possible to prefetch more than one node using the jump-
pointer array, so in this case there are more potential gains from prefetching only the
required data from each node. We ran the following experiment: We used a a pB+-tree
with 1M keys, bulkloaded using fill factors 100%, 67% and 50%, key sizes 8B, 16, 32B
and 64. We scanned these trees 10 times, using leaf prefetch distances 2 and 4. We found
that the Half-Linear prefetch policy only performed when the key size was 64B, and the
tree was bulkloaded to 50% or 67%. Figure 5.6 shows the results for trees bulkloaded to
100% using 16 byte keys. The Linear prefetch policy clearly performs better. Figure 5.7

5.3 Node Prefetching 39

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 8 16 32

T
im

e

Node Width

Linear 2
Linear 4

Half Linear 2
Half Linear 4

Figure 5.6: Performance of Linear prefetch policies.
1M × 16 keys, 10 Scans, 100% fill factor.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 8 16 32

T
im

e

Node Width

Linear 2
Linear 4

Half Linear 2
Half Linear 4

Figure 5.7: Performance of Linear prefetch policies.
1M × 32B keys, 10 Scans, 67% fill factor.

shows similar results but with a tree bulkloaded to 67% using 32 byte keys. Figure 5.8
shows the results for a tree bulkloaded to 50% using 64 byte keys, where the Half-Liner
prefetch policy performs better. These results indicate that unless the potential bandwidth
savings of prefetching only half the data is big, the Half-Linear policy is slower than the
simpler Linear policy.

40 Implementation Choices

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 8 16 32

T
im

e

Node Width

Linear 2
Linear 4

Half Linear 2
Half Linear 4

Figure 5.8: Performance of Linear prefetch policies.
1M × 64B keys, 10 Scans, 50% fill factor.

5.4 Search Algorithm and Comparison

B+-trees have traditionally used binary search within the nodes and, according to [8],
pB+-trees have inherited that behavior. In [27], however, linear search is (surprisingly)
shown to be preferable for the pCSB+-tree. We therefore studied these two alternatives
for our implementation.

Furthermore, especially for keys larger than eight bytes, there are alternatives for running
the key comparison. One obvious option is the memcmp() function, but this operation is
based on byte-wise comparison and therefore likely to be inefficient. We have therefore
implemented a comparison routine that works for keys which are multiples of eight bytes.
This routine always compares eight bytes at a time, by type-casting to unsigned long
integers, and uses Duff’s device to unroll the comparisons.

Figure 5.9 shows the performance of the linear and binary search, when used with mem-
cmp and the optimized comparison operator. The figure shows that 1) the optimized
comparison operator performs significantly better than the memcmp operator, and 2) the
binary search performs much better than the linear search, especially for large nodes. In
fact, we have run many other experiments comparing linear and binary search, and have
never observed linear search to outperform binary search.

5.4 Search Algorithm and Comparison 41

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32

T
im

e

Search/Key-Comparison

bin/memcmp
lin/memcmp

bin/optimized
lin/optimized

Figure 5.9: Performance of search with different search and key comparison methods.
1M × 16B keys; 1M queries; 100% fill factor.

Chapter 6

Prefetching Performance

The key idea behind the pB+-tree is to use prefetching to have nodes wider than a cache-
line, without incurring a full cache-latency for each cache-line accessed. Chapter 5
showed how different implementation choices affect the performance of the pB+-tree;
this chapter shows how the prefetching affects the overall performance.

We measure query and scan performance, but not insert performance. The reason is that
most of the work of the insert operation is performed during the initial point query. Ad-
ditional prefetching during inserts is only performed during leaf and node splits, which
occur very rarely. We therefore feel that query performance is characteristic of insert
performance.

6.1 Query Performance

To measure the effects prefetching has on query performance we measure the query per-
formance of trees with 1M keys, constructed using repeated insertion or bulkloading using
fill factors 50%, 67% and 100%, and key sizes 8B, 16B and 32B. We measure both query
performance with and without prefetching using binary search, and both the memcmp and
optimized key comparisons. We use the t1 prefetching hint as recommended by Chapter 5,
and the Linear prefetching policy.

Figure 6.1 shows the performance of 1M queries to a tree of 1M× 16B keys created using
repeated insertion, using the optimized key comparison and binary search. Prefetching
gives no benefit for node width 1CL, as expected. The benefit is at its most for node
widths 4CL, 6CL, 8CL and 12CL. After that the benefit decreases somewhat. This trend
of having decreased speedup after this interval of maximum speedup can be seen in all
the experiments.

Table 6.1 and Table 6.2 show the average speedups gained from prefetching over all these
experiments. The column 6-8-12 shows the average speedup for node-widths 6CL, 8CL
and 12CL. The column all shows the average speedup across all tested node widths. The
difference between the two columns, across all the experiments, show the same trend
as noted before; increasing the node width beyond a certain point results in decreasing

6.2 Scan Performance 43

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 6 8 12 16 20 24 28 32

T
im

e

Node Width

No Preftching
Prefetching

Figure 6.1: Performance gains of using prefetching.
1M × 16B keys, repeated insertion, optimized key comparison, binary search.

Key size (bytes) 8 16 32
Node Width (cache-lines) 6-8-12 All 6-8-12 All 6-8-12 All
Insert 13.0% 7.5% 16.7% 10.9% 21.7% 13.6%
100% 10.0% 5.4% 10.7% 7.2% 11.7% 9.0%
67% 9.0% 5.5% 10.3% 7.3% 11.7% 9.7%
50% 7.3% 5.9% 9.3% 7.9% 13.0% 9.2%

Table 6.1: Prefetching speedup for different trees using memcmp key comparison.
Averaged across node widths.

speedups. This is normal since at that point the tree height is only 2, and increasing the
node width will only result in greater node search time.

6.2 Scan Performance

As discussed earlier, scans can benefit greatly from prefetching. This is especially true
if it is possible to prefetch leafs sufficiently far ahead, since scans are more likely to be
memory bandwidth bound than queries. Since there is a data dependency between leafs
which limits how far ahead leafs can be prefetched, we need to have a leaf pointer array
which allows us to prefetch further ahead. In this section we measure the update costs
of the different ways of implementing a leaf pointer array and the performance benefits
prefetching has on scans in terms of the available bandwidth used.

44 Prefetching Performance

Key size (bytes) 8 16 32
Node Width (cache-lines) 6-8-12 All 6-8-12 All 6-8-12 All
Insert 12.7% 6.3% 17.3% 9.8% 23.7% 13.3%
100% 14.7% 6.5% 19.7% 13.4% 25.0% 17.6%
67% 13.3% 6.6% 19.3% 13.3% 24.0% 16.8%
50% 9.3% 6.4% 16.3% 13.0% 24.7% 16.4%

Table 6.2: Prefetching speedup for different trees using optimized key comparison
Averaged across node widths.

6.2.1 Leaf Pointer Array Update Cost

The leaf pointer arrays are necessary to allow scans to prefetch leafs farther ahead than just
the current leaf. As described in Section 3.6, there are 3 suggested implementations. The
simplest one, the internal leaf pointer array, uses the lowest node level, which already has
pointers to all leafs. The flat leaf pointer array stores the pointers in one flat array outside
the tree, and the chunked leaf pointer array stores the pointers in multiple smaller arrays
(chunks), which are all linked together.

The leaf pointer arrays need to be updated during leaf splits. In order to measure the
update costs for each one we set up the following experiment: we measure the operation
time for different number of inserts, using key size 16B and node width 1CL, and chunk
width of 4CL. The resulting tree has a small branch factor, and thus many leaf splits.
The results can be seen in Table 6.3. As expected, the update cost of the flat leaf pointer
array is prohibitive, and grows exponentially. Given this performance penalty, the flat
leaf pointer array is not feasible and will not be discussed further. The additional cost of
maintaining the internal leaf pointer array is effectively none. The additional cost of main-
taining the chunked leaf pointer is little, since leaf splits require only the modifications
of a single 4CL chunk. The last column in Table 6.3 shows the speed difference between
maintaining the chunked and internal leaf pointer arrays. The chunked leaf pointer array
maintenance overhead is never more than 6.4% of the entire update cost. Note that this
experiment shows the worst case performance, and different node widths will result in
fewer splits.

6.2.2 Prefetching

As mentioned earlier, the performance of scans is more likely to become memory band-
width bound than queries. The maximum bandwidth our experiment system can theoret-
ically achieve is 6.4 GB/s. Scans are very simple operations and mostly involve copying
data, so it is interesting to see how well they utilize the available bandwidth. We set up
a simple experiment, bulkloading trees with fill factor 100% and 50%, and over different
key sizes using leaf prefetch distance 2 and measured the scan time. The node width used
was the minimum allowed for each key size. The prefetching method used is nt1. In order
to measure the bandwidth used, we need to know much data travels over the bus. When
prefetching is enabled we use two measures, the number of cache-lines prefetched, and

6.2 Scan Performance 45

Inserts Flat Internal Chunked Difference
(in seconds) (in seconds) (in seconds)

10K 0.0278 0.0195 0.0200 2.50%
20K 0.0947 0.0415 0.0439 5.88%
40K 0.375 0.0894 0.0937 4.92%
80K 2.12 0.201 0.213 6.33%
160K 16.6 0.447 0.473 5.79%
320K 92.3 0.978 1.04 6.39%
640K Not measured 2.15 2.26 5.58%
1280K Not measured 4.62 4.85 4.97%
2560K Not measured 9.90 10.4 4.80%

Table 6.3: Update overhead for chunked leaf pointer array.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

8 16 32 64 128 256 512 1024 2048

B
an

dw
id

th
 (

G
iB

/s
)

Key Size

100% No Prefetching
50% No Prefetching

100% Prefetching
50% Prefetching

50% Prefetching. Scanned cache-lines.

Figure 6.2: Memory bandwidth used during scans.

the number of cache-lines scanned. When prefetching is not used we only use the number
of cache-lines scanned. The results can be seen in Figure 6.2.

The utilized bandwidth increases with increased key sizes, since the overhead of tree
operations decreases relative to the amount of data copies. For key size 2048B and full
trees we see that prefetching doubles the utilized bandwidth.

We have run benchmarks which read data from main-memory, performs minimal com-
putation for each cache-line, and prefetches cache-lines. They show that it is possible
to reach up to 6.25 GB/s bandwidth on the Itanium 2 processor, which is very close to
the theoretical limit of 6.4 GB/s. Another benchmark, which is more similar to scan-
ning, copies data from main-memory, and prefetches based on a pointer array. It can
prefetch multiple consecutive cache-lines for each pointer, which mimics how the pB+-
tree prefetches nodes which are wider than one cache-line. It performs minimal compu-
tation on each cache-line. That benchmark has reached up to 5.8 GB/s. This benchmark

46 Prefetching Performance

shows how fast pB+-tree scanning can be, given that there is very little overhead. As the
results show, the bandwidth used when prefetching cache-lines of a half-full tree, is al-
most 75% of the measured limit. The bandwidth used when scanning a full tree is 3 GB/s
for 2048B keys, which is 51.7% of the measured limit.

Chapter 7

Conclusions

In this thesis we have studied the performance of the pB+-tree on the Itanium 2 processor.
We have focused on the various implementation choices we faced and their effect on
performance. While some of these choices have a marginal effect on performance, others
affect it quite much; when all these gains are put together, the performance implications
of using prefetching are considerable.

Our results have, e.g., validated the choice of binary search for the pB+-tree [9], while
apparently being in contrast with the results of [27]. Furthermore, we have demonstrated
that careful coding of the prefetching loop and comparison operator, using Duff’s device,
leads to significant performance gains. Finally, we have shown which prefetching hints
should be used for which operation, although the performance gains are less significant
in this case.

The goal of this work is to move towards the deployment of cache-conscious structures
“in the field”. Future work includes further comparison with the pCSB+-tree, as well
as performance measurements on alternative architectures. Ultimately the goal is the
integration of cache-conscious trees into a commercial quality DBMS. The best candidate
is the InnoDB storage manager in the MySQL DBMS, since the source is available for
free and its architecture abstracts the components which are responsible for storing data
and providing access to it, making it easy to plug in different index structures.

References

[1] A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1974.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a modern pro-
cessor: Where does time go? In Proceedings of VLDB, pages 266–277, Edinburgh,
Scotland, 1999.

[3] J. Backus. Can crogramming be liberated from the von Neumann style? A Func-
tional style and its algebra of programs. Comm. ACM, 21(8):613–641, Aug. 1978.

[4] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1:173–189, 1972.

[5] M. Becker, N. Mancheril, and S. Okamoto. DBMSs on a modern processor: “Where
does time go?” revisited. Technical report, CMU, 2004.

[6] P. Bonnet and I. Manolescu, editors. Proceedings of the First International Work-
shop on Performance and Evaluation of Data Management Systems, 2006, Chicago,
USA, June 30, 2006. ACM, 2006.

[7] J. F. Cantin and M. D. Hill. Cache performance for selected spec cpu2000 bench-
marks. SIGARCH Computer Architecture News, 29(4):13–18, 2001.

[8] S. Chen. Redesigning Database Systems in Light of CPU Cache Prefetching. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2005.

[9] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index performance through
prefetching. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 235–246, Santa Barbara, CA, United States, 2001.

[10] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Fractal prefetching B+-trees:
Optimizing both cache and disk performance. In Proceedings of ACM SIGMOD,
pages 157–168, Madison, Wisconsin, 2002.

[11] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure layout. In
Proceedings of the ACM SIGPLAN 1999 conference on Programming Language
Design and Implementation, pages 1–12, 1999.

[12] D. Comer. Ubiquitous -
¯
tree. ACM Computing Surveys, 11(2):121–137, 1979.

[13] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. 2002.

BIBLIOGRAPHY 49

[14] M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE Transac-
tions on Computers, 38(12):1612–1630, 1989.

[15] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Rous-
sel. The microarchitecture of the Pentium 4 processor. Intel Technology Journal,
(Q1):13, Feb. 2001.

[16] Intel. Intel Itanium 2 Processor Reference Manual for Software Development and
Optimization, May 2004.

[17] J. Jannink. Implementing deletion in b+-trees. SIGMOD Rec., 24(1):33–38, 1995.

[18] S. Jarp. A methodology for using the Itanium 2 performance counters for bottleneck
analysis. Technical report, HP Labs, 2002.

[19] T. J. Lehman and M. J. Carey. A study of index structures for main memory database
management systems. In Proceedings of VLDB, pages 294–303, San Francisco, CA,
USA, 1986.

[20] P. Machanick. Approaches to Addressing the Memory Wall. Technical report,
School of IT and Electrical Engineering, University of Queensland, 2002.

[21] R. Maelbrancke and H. Olivie. Optimizing jan jannink’s implementation of +
¯
-tree

deletion. SIGMOD Record, 24(3):5–7, 1995.

[22] S. A. McKee. Reflections on the memory wall. In Proceedings of the Conference
on Computing Frontiers, page 162, Ischia, Italy, 2004.

[23] M. Olsen and M. Kristensen. MySQL performance on Itanium 2. Technical report,
DIKU, 2004.

[24] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill
Science/Engineering/Math, 2002.

[25] J. Rao and K. Ross. Making B+-trees cache conscious in main memory. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
pages 475–486, Dallas, TX, USA, 2000.

[26] J. Rao and K. A. Ross. Cache conscious indexing for decision-support in main
memory. In Proceedings of VLDB, pages 78–89, Edinburgh, Scotland, 1999.

[27] M. Samuel, A. U. Pedersen, and P. Bonnet. Making CSB+-trees processor con-
scious. In Workshop on Data Management on New Hardware (DaMoN), Baltimore,
MD, USA, 2005.

[28] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, 1982.

[29] J. von Neumann. First draft of a report on the EDVAC. IEEE Annals of the History
of Computing, 15(4):27–75, 1993.

[30] G. J. Ward. The radiance lighting simulation and rendering system. In Proceed-
ings of the Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 459–472, New York, NY, USA, 1994.

50 BIBLIOGRAPHY

[31] W. Wulf and S. McKee. Hitting the memory wall: Implications of the obvious.
Computer Architecture News, 23(1):20–24, March 1995.

[32] C.-L. Yang and A. R. Lebeck. Push vs. pull: Data movement for linked data struc-
tures. In International Conference on Supercomputing, pages 176–186, Santa Fe,
NM, USA, 2000. ACM.

[33] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah. Improving database performance
on simultaneous multithreading processors. In Proceedings of VLDB, pages 49–60,
Trondheim, Norway, 2005.

Department of Computer Science

Reykjavík University

Ofanleiti 2, IS-103 Reykjavík, Iceland

Tel: +354 599 6200

Fax: +354 599 6201

http://www.ru.is

